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Abstract. Notions of Z®-limit points and Z®-cluster points of functions are studied in
topological spaces. In the first countable space, all Z®-cluster points of a function f : S — X
belong to the closure of each member of the filter base Bf(Z"). Fréchet compactness is
studied in the light of ideals Z and K of subsets of S and showed that in an Z-sequential
Hausdorff space, Fréchet compactness and Z-Fréchet compactness are equivalent. Using the
FDS-property introduced by D. Shakmatov, M. Tkachenko, R. Wilson in Houston J. Math.,
it is seen that Z®-Fréchet compactness, Fréchet compactness and Z-Fréchet compactness are
equivalent for a particular class of ideals on S.

1. Introduction

During last two decades, statistical convergence [6,17] has proudly achieved its place
into the theory of convergence. As an extension of statistical convergence, theory
of ideal convergence of real numbers was introduced by P. Kostyrko, T. Salit, W.
Wilezytiski [9]. A significant development of the theory of statistical and ideal conver-
gence have been made by a number of mathematicians, few of which are J. A. Fridy [7],
G. Di. Maio, L. D. R. Ko¢inac [14], P. Kostyrko, T. Saldt, W. Wilczynski [9], B. K.
Lahiri, P. Das [11], A. K. Banerjee, A. Banerjee [1] etc.. An ideal Z on an arbitrary
set S is a family Z C 2% that is closed under finite unions and taking subsets [10].
An ideal 7 is called trivial if Z = {@#} or S € Z. A non-trivial ideal Z C 2° is called
admissible if it contains all the singleton sets [10].

The ideal Fin is the class of all finite subsets of N. Various examples of non-
trivial admissible ideals are given in [9]. A sequence (z,)nen in a topological space
X is said to be Z-convergent to @ € X (o = Z — limy 00 ) if for any open set
U containing o, {n € N : z, ¢ U} € Z [11]. Also in the theory of statistical
convergence, the following result of T. Saldt [16] and J. A. Fridy [7] is well-known. A
sequence of real numbers is statistically convergent to x if and only if there exists a
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set M C N with §(M) = 1, asymptotic density or natural density of M [15] such that
the corresponding subsequence converges to x. Influenced by this result, the concept
of Z*-convergence [11] was introduced. A sequence (z,)nen in a topological space X
is said to be Z*-convergent to £ € X if there exists a set M = {m; < ma2 < ... <
my < ...}€ F(Z) (i.e. N\ M € I) such that limg_,o0 m, = &. For any admissible
ideal on N, Z*-convergence always implies Z-convergence but the converse may not be
true. A class of ideals (property AP) was defined in [9] and showed that the notions
Z-convergence and Z*-convergence are equivalent if and only if the ideal Z-satisfies
the property AP.

The notion of Z-limit point and Z-cluster point in a metric space (X,d) were
defined by P. Kostyrko, T. Salat, W. Wilczyniski [9]. An element ¢ € X is said to be
an Z-limit point of (z,) provided that there is a set M = {m; < mg < ...} C N such
that M ¢ T and kli_)n;o T, = €. An element £ € X is said to be an Z-cluster point of

(xy,) if for each € > 0, {n € N:d(z,,§) <€} ¢ T.

B. K. Lahiri, P. Das [11] generalized these concepts in topological spaces and
characterized Z(C;), the collection of all Z-cluster points of a sequence x = (z,,) in
a topological space X, as closed subsets of X (see [11, Theorem 10]). Also for any
ideal Z on N, the collection Z(L,) of all Z-limit points of x is a subset of Z(C,)
(see [11, Theorem 9)).

In 2011, the Z®-convergence of function in a topological space was introduced by
Macaj and Sleziak [13] as a generalization of Z*-convergence of function. Suppose Z
is an ideal on a nonempty set S and X is a topological space. A function f: 5 — X
is said to be Z-convergent to [ € X if f=*(W) = {s € S: f(s) € W} € F(Z) holds
for every neighbourhood W of the point I [13].

A function f from S into a topological space X is said to be Z*-convergent to some
point a € X if there exists a set K € F(Z) such that the function g : S — X defined
by g(s) = f(s)if s € K and g(s) = a if s € S\ K is Fin-convergent to a [13]. Whenever
S = N, I*-convergence of functions coincide with Z*-convergence of sequences as a
special case. Z*-convergence is defined by replacing Fin by an arbitrary ideal IC on
S. A function f : S — X is said to be Z®-convergent to some point a € X if there
exists a set K € F(Z) such that the function g : S — X defined by g(s) = f(s) if
s € K and g(s) = aif s € S\ K is K-convergent to a [13]. In [4], they investigated
the relation between T®-convergence and Z-convergence and also find the condition
under which these two convergence are equivalent.

The notion of Z®-limit point and Z®*-cluster point of a function in a topological
space X were studied in [19]. Let f : S — X be a function and Z, K be ideals on
S. A point x € X is called an Z®-limit point of f if there exists a set M € F(Z)
such that for the function g : S — X defined by g/n = f/m and g[S\ M] = {«}
has a K-limit point z. A point € X is called an Z®-cluster point of f if there
exists a set M € F(Z) such that for the function g : S — X defined by g/p = f/m
and g[S \ M] = {z} has a K-cluster point z, i.e., for any open set U containing =,
{seS:g(s)eU} ¢K.

The collection of all Z¥-limit points and Z*-cluster points of a function f in a
topological space X is denoted by L;(Z*) and C(Z"*) respectively. For admissible
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ideals Z and K on S, L;(Z) c C;(Z*) [19].

2. Properties of Z*-limit points and Z*-cluster points

Let’s consider two ideals 7 = {A : AN(N\4N) is finite} and K = {4 : AN(N\4N+1) is
finite} on N. Counsider the sequence x = (x,,) in R defined by 2, = nifn € 4N, z,, =0
ifnedN+1, z, =2nif n € AN+ 2 and z,, = 3n if n € 4N+ 3. Then for an open set
(—1,1) containing 0, {n € N: z, € (—3,1)} = 4N+ 1 € K. Therefore 0 ¢ C,(K).
Now consider N\ 4N € F(Z) and a sequence (y,,) defined by y, = x,, if n ¢ 4N and
yn = 0 if n € 4N. For any open set Uy containing 0, {n € N : y,, € Up} D 4N. Since
AN ¢ K, {n €N:y, € Uy} ¢ K. Therefore 0 € C,(Z").

So C.(I%) ¢ C.(K), even if ZU K is a proper ideal.

As a consequence of this non inclusiveness, the truth of [19, Theorem 4.6 (ii)] is
questionable, though no doubt about [19, Theorem 4.6 (i)] which can be translated in
the language of Z®-convergence of functions as follows: For any function f : S — X
and ideals T, K on S, C;(I") is closed.

Let X be a completely separable space and C' be any non-empty closed subset
of it. Assume that there exists a pairwise disjoint sequence of sets {T,} such that
T, C S, T, ¢ K for all p e N. Being a closed subset of a completely separable space
C' is separable and let A = {c1,co,...} be a countable dense subset of C. Define a
function f: S — X as f(s) =¢; if s € T; and b elsewhere, where b € C.

Let p € Cf(I’C). If p=b or p = ¢; for some i, then p € C. Suppose neither p =b
nor p = ¢; for any i. There exists a set M € F(Z) such that function g : S — X given
by g/m = f/m and g[S\ M] = {p}, has K-cluster point p. Let U be any open set
containing p. Therefore {s € M : f(s) e UYU(S\ M) ={s€ S:g(s) eU} ¢ K. If
ICK,{seM:f(s)eU} ¢TI Therefore UNC # ¢. Thus p is a limit point of C
and so p € C. Hence C;(I*) C C.

Suppose p € C. Let U be any open set containing p. Then there is ¢; € A such
that ¢; € U. Thus T; C {s € S : f(s) € U}. Consider a proper subset M of S such
that M € F(Z) and define a function g : S — X by g/m = f/m and g[S\ M] = {p}.
Since {s € S : g(s) e U} D{s e S: f(s) €U} and {s € S: f(s) e U} ¢ K,
{s € S:g(s) € U} ¢ K. This implies that p € C¢(Z*). Hence C C Cp(Z").

The above discussion can be summarized in the form of a theorem given below.

THEOREM 2.1. (i) For any function f : S — X and ideals Z, K on S, C;(I*) is
closed.

(i) Suppose X is completely separable and I, K are ideals on S. If there exists a
pairwise disjoint sequence of sets {T} such that T, C S, T, ¢ K for allp € N and
T C K then for any non-empty closed set C C X, there is a function f:S — X such
that C = Cy(T%).

THEOREM 2.2. Let f : S — X and g: S — X be functions. Then
(Z) Cf(I’C) (- Cf(FZ’I”L) and Lf(I’C) - Lf(FiTL),
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(i) Cyp(I®2) C Cp(T*) and Ly(I7?) C Ly(T) with Ky C Ka,

(iii) If {s € S : f(s) # g(s)} € K, then C;(T®) = Cy(IT*) and Ls(I") = L, (T"),
where T, IC, K1, are ideals on S.

Proof. (i) and (ii) follow from the definitions. For (iii), let p € C't(Z*). Then there
exists a set M € F(Z) such that the function hy : S — X given by hi(s) = f(s) if
s € M and p otherwise, has K-cluster point p. So for any open set U containing p,
{s € S:hi(s) € U} ¢ K. Consider a function hy : S — X given by ha(s) = g(s) if
s € M and p otherwise. Therefore {s € S:hi(s) €U} C{s € S:ha(s) eULU{s €
S hi(s) # ha(s)}. If {s €S :ha(s) eU} e K, {s €S :hi(s) € U} € K which is
a contradiction. Therefore {s € S : hao(s) € U} ¢ K and so p € Cy(ZX). Similarly,
Cy(I%) C C4(Z%) and consequently C;(Z*) = C,(Z*). The proof of Z®-limit points
is same as previous one. O

Let (X, 7) be a topological space. Suppose S is a non-empty set and X is the set
of all functions from S to X. For ideals Z, L on S, {X\C C X : C = UfecsCf(I’C)}
forms a topology on X, denoted by 7(Z*). In addition, if Z, K are ideals on N with
T = K, then 7(Z*) coincides with 7(Z) cf. [12].

THEOREM 2.3. For any topological space (X,7) and ideals Z, K on a nonempty set
S, 7 C 7(IX). In addition, if X is first countable, T = T(I*).

Proof. Let G be a 7-closed set. For each element o € G, consider the constant
function f : S — G at @. Then G C UfeGsC'f(I’C) C UsegsCr(Fin) = G (as in
Theorem 2.2 (i)).

Consider a 7(Z*)-closed set G and a € G. There is a set M € F(Z) such that the
function g : S — G given by g/ = f/m and g(S\ M) = {a} has K-cluster point «.
Let {U,} be a decreasing local base at o. Then E; = {s € S : g(s) € U;} ¢ K, for
each 7 € N. Take s; € E; and for each i € N, s;41 € E;j1 \ {51, 82,...8;}. Suppose
C ={s1, s2,...}, then « is a limit point of {g(s) : s € C} that is, v is a limit point of
G. Hence G is a 7-closed set. U

LEMMA 2.4. Suppose A is a compact subset of a topological space X and f: S — X
is a function. Then for ideals T, K on S, {s € S : f(s) € A} ¢ K implies that
ANCHIF) # ¢

Proof. If possible let, ANCy(ZX) = ¢. Let a € A. Then there exists a set M € F(T)
such that the function g : S — X given by g(s) = f(s) if s € M and a otherwise, has
no K-cluster point. So for each a € A there exists an open set U, containing a such
that {s € S : g(s) € Uy} € K. Since {s € S : f(s) € Uy} C {s € §:g(s) € Uy},
so Ly = {s € S: f(s) € U} € K. Now consider the collection {U, : a € A}
which forms an open cover of the compact set A and so it has a finite subcover
{Uay,Uqy, ... Ug,} (say). Then {s € S: f(s) € A} C Ly ULg, U...UL,, € K. This
implies {s € S: f(s) € A} € K, which is a contradiction. U

For any topological space X, f : S — X is a function then Z*-filter generated
by f is defined by G;(Z*) = {Y C X : there exist A € F(Z) and y € X such that
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{s € S:49(s) ¢ Y} € K}, where g : S — X defined by g(s) = f(s) if s € A and
g(s) =y if s € S\ A. Therefore G;(Z*) forms a filter on X. The corresponding filter
base Bf(I%) = {{g(s) : s ¢ K} : K € K and there is A € F(T) with g/4 = f/a and
g(S\ A) = {y},y € X}. In addition, if Z, K are ideals on N with Z = K, then G(Z")
coincides with Z-filter generated by the function f: N — X, cf. [12] and in particular
if Z = K = Fin on N, then G;(Z¥) coincides with the elementary filter associated
with the function f: N — X cf. [2, Definition 7, p.64].

THEOREM 2.5. For any topological space X, suppose f:S — X is a function and Z,
K are ideals on S. Then ﬂBer(I’C)B C Cy(TF). In addition if X is first countable,

ﬂBer(I’C)B = Cf(IK)-

Proof. Let p € ﬂBer(I’C)B' Suppose p is not an ZX-cluster point of f. Then for
any set L € F(Z) such that function h : S — X defined by h(s) = f(s) if s € L and
h(s) = pif s € S\ L has no K-cluster point. So there exists an open set U containing p
such that Ly = {s € S : h(s) € U} € K. This implies that {h(s) : s ¢ L1} € B;(Z*).
It follows p € nBer(I’C)B C{h(s):s¢ L1} = {h(s):h(s) ¢ U} € X \ U that is
p € X \ U, which leads to a contradiction. Conversely suppose p € Cy (Z%). Then
there exists a set M € F(Z) such that function g : S — X defined by g(s) = f(s) if
s € M and g(s) =pif s € S\ M has a K-cluster point p. Let {W;} be a decreasing
local base at p. Then for each i, A; = {s € S : g(s) € W;} ¢ K. Take K € K and
B; = A;\ K ¢ K, for each i. Put iy € By and 4,41 € Bpi1 \ {41,42,...4n}, for all
n. Suppose L = {iy,is,...}, then clearly i, ¢ K. Then p is a limit point of the set
{g(s):s ¢ K} that is p € {g(s) : s ¢ K}. Hence p € (geic{9(s) : s ¢ K}. 0

Consider a Hausdorff uniform space (Y,U). Suppose K(Y) and CL(Y) are the
collection of all nonempty compact and closed subsets of Y respectively. Recall that a
sequence (y,) in (Y, U) is said to be bounded if {y, : n € N} C V][a] ={b€Y : (a,b) €
V} for some a € Y and V € U. Y is said to be boundedly compact if every closed
bounded subset in Y is compact. Let bs(Y') be the set of all bounded sequences in
(Y, U) and by es(Y') the set of all sequences y = (y,,) in Y with C,(Z¥) # ¢. According
to Lemma 2.4, for every sequences y € bs(Y), Cy(Z%) # ¢ ie., bs(Y) C es(Y). If
(Y,U) is boundedly compact, then C,(Z*) is compact (it is closed and bounded).
Hence the assignment y — C,(Z*) defines a mapping I'zx of the set bs(Y) to the
set K(Y) of all nonempty compact subsets of (Y,U). As in [3], endow ¢s(Y) with
a uniformity U defined by U = {V = ((y,), (zn)) : for all n, (y, € V|[z,] and z, €
Vliyn]),V € U} and on K(Y) consider the Hausdorff-Bourbaki uniformity Uz (see [5])
inherited from the space CL(Y") defined by Uy = {V. = (B,C) € CL(Y) x CL(Y) :
VeU,BCV[C]and C C V[B]}.

We recall the definition of Vietoris topology on the set A of all non empty closed
subsets of a Hausdorff topological space Y. For any subset B of Y, take B~ = {C €
A:CNB # ¢} and BT = {C € A: C C B}. Then the upper Vietoris topology
on A denoted by T‘J}, is the topology with subbase Sy = {B™ : B is open in Y}
and the lower Vietoris topology on .4 denoted by 7, is the topology with subbase
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S = {B~ : Bis open in Y}. The Vietoris topology on A denoted by 7y, is the
topology with subbase S5 U Sg.

THEOREM 2.6. Suppose (X,U) is a boundedly compact uniform space and I, K are

ideals on N. Then the mapping I'zx : (bs(X),U) — (K(X),Ug) is uniformly contin-
uous.

Proof. Suppose U € U. Then there exists V € U such that V3 C U. Let ((z,), (yn)) €
V and a € C,(ZF), where = (z,,). Then there exists a set M € F(Z) such that
sequence (z,) given by z, = z, if n € M and a otherwise, has K-cluster point a.
Therefore K = {n € N: z,, € V]a]} ¢ K. Consider a sequence (w,) given by w, = y,
if n € M and a otherwise. Since for each n, (z,,y,) € V which implies (z,,w,) € V.
So for each n € K, (z,,a) € V and (2,,w,) € V and then (w,,a) € V? ie., w, €
V2[a]. Hence K C {n € N: w, € V?[a]}. As K ¢ K, {n € N: w, € V?[d]} ¢ K.
Since V2[a] is compact, by Lemma 2.4, V2[a] N C,(Z*) # ¢ (where y = (y,,)), which
implies a € V3[C,(Z*)]. Therefore C,(I*) C V3[C,(I*)] C U[C,(Z*)]. Similarly
Cy(I7) C U[C,(T")] and it follows that (C,(Z*),Cy(I%)) € U € Uy. O

THEOREM 2.7. Suppose (X, U) is a locally compact uniform space and Z, K are ideals
on N. Then the mapping I'zx : (¢s(X),U) = (CL(X), /) is continuous.

Proof. Suppose O~ be a basic open set in (C'L(X), 7, ), where O is open in X. Let
x = (T,) € I‘;,%(O’). Then C,(Z*) N O # ¢. Let a € C.(ZF) N O. Since (X,U)

is locally compact, there exists U € U such that Ula] is compact and a € Ula] C O.
So for U € U, there exists V € U such that V2 C U. As a € C,(T*), there exists a
set M € F(Z) such that sequence (y,) given by y, = x, if n € M and a otherwise,
has K-cluster point a. So B = {n € N:y, € V[a]} ¢ K. Let z = (2,) € V[(z)],
then for each n, (2, 2,) € V. Consider a sequence (wy) given by w, = z, if n € M
and a otherwise. Again for each n € B, y, € V]a] and w,, € V[y,] which implies
wy, € V2[a] C Ula]. Therefore B C {n € N: w, € Ula]} C {n € N: w, € Uld]}.

As B ¢ K, {n € N: w, € Ula]} ¢ K. Since Ula] is compact, by Lemma 2.4,
Ula] N C.(T®) # ¢ and so C.(Z*) N O # ¢. Hence z € I‘;,% (O~) and consequently
V((zs)] € T7£(07). Hence I'7¢(O7) is open in (es(X), D). O

3. Z-Fréchet compactness and ZX-Fréchet compactness

In [7], J. A. Fridy introduced nonthin subsets of natural numbers in terms of natural
density. Being motivated by the concept of nonthin subsets, Z-nonthin subset is
introduced as follows.

DEFINITION 3.1 (]20, Definition 1]). Suppose A is a subset of a nonempty set S and
X is a topological space. A function f: A — X is said to be Z-thin, where Z is an
ideal on S if A € Z, otherwise it is called Z-nonthin.

If 7 is a nontrivial admissible ideal on S, Z/p = {ANM; A € Z} is an ideal on M
called trace of Z on M [13]. Z/js is nontrivial if M ¢ 7.
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DEFINITION 3.2. For a subset C of a topological space X and x € X, the Z-closure
of C' is denoted by ¢ = = {z € X : there exists an Z-nonthin functlon f+A— C that

T/ a-converges to x} and the Z®-closure of C' is denoted by o = = {z € X : there
exists an Z-nonthin function f : A — C that (Z/)"*-converges to x}, where Z and K
are ideals on a nonempty set S.

THEOREM 3.3. Suppose L , K are ideals on S such that K C Z. For any subset C of a
_ 75 _ _
topological space X, C' C C’C - CI C C, where C is the closure of C'. Furthermore,
_ _ _TK
if X is first countable, NC S and N¢ Z, C = ="

K
Proof. Consider a € c’ , there exists an Z-nonthin function f : A — C that (Z/4)*-
converges to a. Therefore there is M € F(Z/4) such that the function g : A — C
given by g(s) = f(s) if s € M and g(s) = a if s € A\ M is K-convergent to a. So
for any open set U containing «, {s € A : g(s) € U} € F(K/4). Since K C Z, the
set {s€ A:g(s) €U} € F(Z/4) andso {s € A: f(s) € U} € F(Z/4). Then there
exists p € A such that p € {s € A: f(s) € U}. Thus f(p) € CNU and hence a € C.
Now suppose a € C. Then there exists a function f : N — C such that f : N — C' is

convergent to a. Since Z and K are admissible ideals on .S, f : N — C'is Z-convergent
K

—T
as well as [C-convergent to a. Thus a € C™ . U

DEFINITION 3.4. For non-trivial ideals Z, K on a nonempty set S, a subset C of a
topological space X is called Z-closed if C = C and Z-closed if C =C.

Theorem 3.3 follows that if Z, I are ideals on S, closed subsets with I C Z are
T¥_closed. For any topological space (X, 7), {G C X : X \ G is T®-closed} forms a
topology on X denoted by 77« having 7 C 77«c. Consequently combining Theorem 2.3
and Theorem 3.3, 77 = 7(Z%) in first countable spaces. In general 7(ZX) C 77«, but
the reverse inclusion may not hold.

ExAMPLE 3.5. Consider the space X = {0,1}® with product topology and two ide-
als Z, K on R, where 7 is the collection of all countable subsets of R and K is the
collection of all finite subsets of R. Let S = Rand U = {f € X : f(z) = 0 for all

x € Q}. Suppose C = X \U. Then C = UtEth’l({l}) Claim that O° = C.

K K

Clearly C C T Let x € . Then there exists an Z-nonthin function F : A — C
such that F is (Z/a)®-convergent to x. So there exists M € F(Z/4) such that the
function g : A — X defined by g(s) = F(s) if s € M and g(s) =z if s € A\ M
is KC-convergent to x. Then for any open set V of x, {s € A : g(s) ¢ V} € K/a.
Therefore {s € A: g(s) ¢ V} is a finite set and so {s € M : F(s) ¢ V'} is a finite set.
Again F(s) € C for all s € M. So, M = {J;q{s € M : F(s) € m, Y({1})}. Since M
is uncountable, there exists t € Q such that {s € M : F(s) € 7; *({1})} is infinite.
So {s € M : F(s) ¢ 7, }({0})} is an infinite set. Therefore = ¢ 7, '({0}) and so
z €, ' ({1}). Hence z € C.

Now define a function y : R — {0,1} by y(¢) = 0if t e Q and y(t) =1 if t €e R\ Q.
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Then y € U, that is y ¢ C. Define a function G : S — C by G(s)(t) = 1 if t = [s] and
G(s)(t) = y(t) if t # [s], where [s] is the greatest integer less than or equal to s. We
will prove that y € C(Z*). For any basic open set W containing y, where

W = 7"-75711({y(7€1)}) n 7@1({?/(752)}) s ngl({y(tn)})v ti,t2,... .ty €R,

{s €8S :G(s) e Wy D{seS:|[s] ¢ {ti,ta,...tn}}. Since {s € S : [s] ¢
{t1,t2,...tn}} is infinite so {s € S : [s] ¢ {t1,t2,...tn}} ¢ K. Therefore y €
Ca(TF) C UgECSCQ(IK:)' Hence C # UgecsC’g(I’C).

DEFINITION 3.6. Suppose Z is an ideal on S. A function f: S — X is said to be Z-
eventually constant at « if {s € S': f(s) # o} € Z. An Z-nonthin function f: A - X
is said to be Z-eventually constant at a if {s € A : f(s) # a} € Z/ 4.

NOTE 3.7. Suppose A C S and a function f : S — X is Z/s-eventually constant at
a. Then {s € S: f(s) Fa}t €Z/a. As{sec A: f(s) #a} C{seS: f(s) # a},
{s€A:f(s)#£a}€Z/4. Sof:A— X is Z-eventually constant at a.

Every constant function is Z-eventually constant. Particularly any eventually
constant sequence is Z-eventually constant, but the reverse implication may not hold.
For example, suppose E C N, E,, = {r € E : r < n}. The natural density of E is
defined by d(E) = lim,— oo ‘i’"’l, if the limit exists [8,15]. Consider Z; = {E C N:
d(E) = 0} [9]. Suppose A is an infinite subset of N with d(A) = 0. Take x,, = 0 if
n € Aand z, =1if n ¢ A. Then obviously (z,) is Z-eventually constant but not
eventually constant.

DEFINITION 3.8. For any ideal Z on S, a point « in a topological space X is said to
be an Z.,-limit point of Y C X if there exists an Z-nonthin non Z-eventually constant
function f : A — Y \ {a} that Z/a-converges to o and ZX -limit point of Y C X if

there exists an Z-nonthin non Z-eventually constant function f : A — Y \ {a} that
(Z/a)*-converges to a.

DEFINITION 3.9. A topological space X is said to be Z-Fréchet compact if every
infinite subset of X has an Z,,-limit point and is called Z*-Fréchet compact if every
infinite subset of X has an ZX,-limit point.

THEOREM 3.10. For ideals T, K on S, T’-closed (I-closed) subset of T*-Fréchet
compact space (I-Fréchet compact space) is I"-Fréchet compact (resp. I-Fréchet
compact).

Proof. Consider an Z®-closed subset Y of ZX-Fréchet compact space X. Let E be an
infinite subset of Y. Since X is Z"-Fréchet compact, E has an ZX -limit point say,
a € X. So there exists an Z-nonthin non Z-eventually constant function f : A —

K
E\ {a} that (Z/a)*-converges to . Since E C Y, a € Y" =Y. Therefore E has
an ZX -limit point in Y and so Y is Z¥-Fréchet compact. O

ev

COROLLARY 3.11. Closed subspace of I-Fréchet compact space (I-Fréchet compact
space) is T -Fréchet compact (resp. I-Fréchet compact ).
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THEOREM 3.12. A topological space X is not I -Fréchet compact if and only if there
exists an infinite T -closed discrete subspace.

K
Proof. Let G be an infinite Z%-closed discrete subspace. Then 61 =G. If ais an
ZK -limit point of G, there exists an Z-nonthin non Z-eventually constant function
f:A— G\ {a} that (Z/a)*-converges to . There is B € F(Z/4) such that the
function g : B — G\ {a} given by g(s) = f(s),s € B is K-convergent to «. Since
G is a discrete subspace, there is an open set U containing «, {s € B : g(s) € U}
is an empty set, which is a contradiction. Therefore X is not Z®-Fréchet compact
space. Now let A C X be an infinite Z"-closed discrete subspace. If possible let, X
is ZX-Fréchet compact, then A has an ZX -limit point say /. But since A is Z"-closed,
l € A. Also A is a discrete subspace, which contradicts the fact that [ is an ZX -limit
point. O

COROLLARY 3.13. A topological space X is I"-Fréchet compact if and only if all
TIF-closed discrete subspaces are finite.

The following theorem is a translation of the proof of the Theorem 3.12 in terms
of Z-Fréchet compact space.

THEOREM 3.14. A topological space X is not Z-Fréchet compact if and only if there
exists an infinite Z-closed discrete subspace.

ExAMPLE 3.15. Counsider the space X = N x {0,1}, where discrete topology on N
and indiscrete topology on {0,1}. Clearly X is Fréchet compact. Consider an infinite
set A = {(n,0);n € N}. For any ideal Z on N, A does not have an Z-nonthin non
T-eventually constant function that Z-converges to some point in X. So X is not
Z-Fréchet compact.

EXAMPLE 3.16. Consider the space X = {1;n € N}U{0} where discrete topology on

%; n € N} and cofinite topology containing 0. Suppose Z = {A C N: AN A, is finite
for all but finitely many i}, where N = U2, A; is a decomposition of N such that
each A; is infinite and A; NA; = ¢ for ¢ # j and K = Fin. So Z, K are non-trivial
admissible ideals on N. Then for any infinite subset A of X, 0 is an Z.,-limit point
of A. Thus X is Z-Fréchet compact. But there is no Z-nonthin non Z-eventually
constant sequence that is C-convergent, so X is not Z®-Fréchet compact.

DEFINITION 3.17. A topological space is called Z-sequential if every Z-closed set is
closed.

THEOREM 3.18. For any Z-sequential Hausdorff space, Fréchet compactness and I-
Fréchet compactness are equivalent, provided Z is an ideal on N.

Proof. Suppose X is an Z-sequential Hausdorff Fréchet compact space. Let A be an
infinite subset of X having no Z,-limit point. Thus A is Z-closed and so closed.
Since X is countable compact and closed subset of a countable compact space is
countable compact, A is countable compact. Therefore A is first countable in the
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relative topology. Suppose B is an infinite subset of A. Then B has a limit point say
a. Let {V,,} be a countable base at « such that V1 C V,,, for all n. So there exists
a sequence (z,) in X such that z, € AN (V,, \ {a}) and (z,) converges to «. Thus
(2,,) is a non Z-eventually constant sequence that Z-converges to «. Therefore « is
an Z,-limit point of B and so A is Z-Fréchet compact. This contradicts the fact that
A has no Z.,-limit point. Hence X is Z-Fréchet compact. O

DEFINITION 3.19. Let Z, K be ideals on S. Z is said to satisfy shrinking condition
(A) with respect to K or shrinking condition A(Z, K) holds, if for any sequence {A;}
of sets none in Z, there exists a sequence {B;} of sets in K such that B; C A; and
U2, Bi ¢ I.

The following example is an witness of such ideal.

EXAMPLE 3.20. Let N = U2, A; be a decomposition of N such that each A; is infinite
and A; NA; = ¢ for i # j. Consider Z = {A C N: AN A, is finite for all but finitely
many i} and K denote the class of all subset A of N which intersect at most finite
number of A; [9]. Then 7 satisfies shrinking condition (A) with respect to .

The following theorem possessed by finite derived set property or FDS-property,
which was introduced in [18] to study the properties of Tj-independent topologies on
a set.

DEFINITION 3.21 ([18]). A topological space X has the finite derived set property
or FDS-property if every infinite subset of X contains an infinite subset with only
finitely many limit points in X.

THEOREM 3.22. Suppose L, K are ideals on S with KK C Z. Then Z-Fréchet compact-
ness, T -Fréchet compactness, Fréchet compactness are equivalent provided shrinking
condition A(Z,K) holds and the underlying space is first countable with the FDS-
property.

Proof. Suppose X is a first countable Z- Fréchet compact space. Consider an infinite
subset A C X which has an Z.,-limit point say o € X. There is an Z-nonthin non
Z-eventually constant function f : B — A\{«a} that Z/g-converges to a. Let {U,} be
countable base for X at the point a such that U, C U, for all n € N. Therefore for
allmeN, A,, ={se€ B: f/p(s) € Uy} ¢ Z. If shrinking condition A(Z, K) holds,
there exists a sequence of sets {B;} in K such that B; C A; and D = U;enB; ¢ Z. Let
U be any open set containing «. Then there exists U, € {U,} such that U, C U, for
alln>p. So{seD: f(s)¢ U} C BiUByU...UB, € K. Therefore the restriction
f:D — A\ {a} is K-convergent to a. So X is Z*- Fréchet compact.

Suppose X is - Fréchet compact. From Corollary 3.13, all Z®-closed discrete
subspaces are finite. Theorem 3.3 follows that if K C Z, closed subsets are Z*-closed.
Thus every closed discrete subspace of X is finite and so X is Fréchet compact.

Suppose X is a Fréchet compact space with the FDS-property and Y is an infinite
subset of X. Since X has the FDS-property, there exists an infinite subset A of
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Y with finite set of limit points say {a1,s,...,a,}. Let f : My — A be an Z-
nonthin function of distinct elements. If f : My — A is Z/p,-convergent to o, then
the proof is done. If not then there exists an open set U; containing «; such that
My ={se My: f(s) ¢ Ui} ¢ . Let Ay = {f(s);s € My}. Then A; is an infinite
set and f: My — Aj is an Z-nonthin function of distinct elements. If f: M; — A; is
T/ p,-convergent to ag, then the proof is done. If not then there exists an open set Us
containing s such that My = {s € My : f(s) ¢ Uz} ¢ Z. Therefore {f(s);s € Mz} is
an infinite set say As. Proceeding in this way we get for some k < n, the Z-nonthin
function f : M1 — Ag_1 i8 Z/pg,_,-convergent to «. Otherwise the infinite set
A\U?_; A; has no limit point, which contradicts our assumption. Hence every infinite
subset of X has an Z,,-limit point. g

K Fréchet compactness

shrinking condition A(Z, K) +KcCcZ
+ first countable

Z-Fréchet compactness

Tw-sequential

+ 1 +ZIm+ Ty
+ Lindelof
Fréchet compactness p— Z—Compactness
+Zn+ T
+ Lindelof

Figure 1: Relation among T -Fréchet compactness, Z-Fréchet compactness, Z-compactness
and Fréchet compactness

We conclude the article with diagram (see Figure 1) which shows relations among
different types of compactness exhibited in the present work as well as the article [20].
In Figure 1, Z,, is an ideal on N and Z,, is the dual maximal ideal to the free ultrafilter
on N.

Z-compactness [20] was introduced and showed that even in metric spaces Z-
compactness and compactness are different. If Z,, is the dual maximal ideal to the
free ultrafilter on N, then every compact space is Z-compact (see [20, Note 4]). For
any nontrivial ideal on N, every Z-compact space is Z-Fréchet compact. Also, Theo-
rem 3.18 showed that in first countable T} space Fréchet compactness and Z-Fréchet
compactness are equivalent, provided 7 is an ideal on N. So neither of Fréchet com-
pactness and Z-Fréchet compactness imply Z-compactness in general (see [20, Exam-

ple 3]).
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