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ON DIFFERENTIAL IDENTITIES IN σ-PRIME RINGS WITH A
PAIR OF DERIVATIONS

Md Arshad Madni and Muzibur Rahman Mozumder

Abstract. The primary objective of this paper is to investigate the commutativity of
σ-prime rings with the second kind involution, involving pairs of derivations that satisfy
specific differential identities. Finally, we present examples to illustrate that the conditions
assumed in our results are essential and cannot be omitted.

1. Introduction

Throughout this work, R is taken to be an associative ring with JZ as its center.
For any t1, t2 ∈R, the notation [t1, t2] denotes the commutator, defined by t1t2−t2t1,
while t1 ◦ t2 represents the anti-commutator, given by t1t2 + t2t1. We use the basic
identities [t1t2, t3] = t1[t2, t3] + [t1, t3]t2 and [t1, t2t3] = [t1, t2]t3 + t2[t1, t3] for all
t1, t2, t3 ∈ R very frequently. Recall that an involution is an anti-automorphism of
order 2. A ring R with an involution σ is said to be σ-prime if aRb = aRσ(b) = (0)
or σ(a)Rb = aRb = (0) implies either a = 0 or b = 0. Every prime ring with an
involution σ is a σ-prime ring, but the converse is not true in general. For instance,
let S = R ×R0, where R0 is the opposite ring of a prime ring R. The mapping σ on
S defined by σ(t1, t2) = (t2, t1) is an involution on S. Thus, S with an involution σ is
σ-prime but not a prime ring. An element t1 ∈R is said to be hermitian if σ(t1) = t1
and skew-hermitian if σ(t1) = −t1. Let JH denote the set of all hermitian elements
and JS denote the set of all skew-hermitian elements of R. An involution σ is said
to be of the first kind if JZ ⊆ JH ; otherwise, it is of the second kind, and in this
case, we have JS ∩ JZ ̸= (0). An element t1 ∈R is called a normal element if it
commutes with its image under involution σ, and a ring R is called a normal ring if
every element of the ring R is normal (see in [5]).

A mapping ψ on R is termed a derivation if ψ(t1 + t2) = ψ(t1) + ψ(t2) and
ψ(t1t2) = ψ(t1)t2 + t1ψ(t2) hold for all t1, t2 ∈R. Let b ∈R be a fixed element of R.
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Then, the mapping ψ on R defined by ψ(t1) = [b, t1] = bt1 − t1b for all t1 ∈R is a
derivation, and such a derivation is called an inner derivation induced by b. A map
f : R → R is called centralizing on R if [f(t1), t1] ∈ JZ holds for all t1 ∈ R. In
particular, if [f(t1), t1] = 0 holds for all t1 ∈R, then it is called commuting.

Stimulated by the description of centralizing maps, a map f from R into itself is
called σ-centralizing if [f(t1), σ(t1)] ∈JZ for all t1 ∈R and is called σ-commuting if
[f(t1), σ(t1)] = 0 for all t1 ∈R. The narrative of centralizing and commuting maps
dates back to 1955, when Divinsky proved that if a simple Artinian ring has commut-
ing non-trivial automorphisms, then it is commutative. A few years later, Posner [14]
established that the presence of a nonzero centralizing derivation on a prime ring
implies the commutativity of the ring. The study of centralizing (resp. commuting)
derivations and various generalizations of the concept of centralizing (resp. commut-
ing) maps are the main concepts emerging directly from Posner’s result, with many
applications in various areas. Recently, a number of algebraists have demonstrated
the commutativity theorem for prime and semi-prime rings with or without an in-
volution, accepting identities on automorphisms, derivations, left centralizers, and
generalized derivations (for example) [1, 2, 4, 8, 9, 11].

In 2014, Ali and Dar [1] began the study of σ-centralizing derivations on prime
rings with an involution and proved a σ-version of the classical results of Posner [14],
under certain assumptions. They proved that if R is a prime ring with an invo-
lution σ such that char(R) ̸= 2, and ψ is a nonzero derivation on R such that
[ψ(t1), σ(t1)] ∈JZ for all t1 ∈R and ψ(JS ∩ JZ) ̸= (0), then R is commutative.
Furthermore, this result was extended by Najjar et al. [10] for the second kind in-
volution instead of the condition ψ(JS ∩ JZ) ̸= (0). Recently, Alahmadi et al. [2]
generalized the above results for generalized derivations and proved that “Let R be a
prime ring with an involution σ of the second kind such that char(R) ̸= 2, and if R
admits a nonzero generalized derivation F associated with a derivation d such that
[F (t), σ(t)] ∈JZ for all t ∈R, then R is commutative.” In this direction, a lot of
work has been done in recent years (see [3, 6, 7] and the references therein).

The main goal of our work is to investigate the commutativity of σ-prime rings
that satisfy some central identities involving pairs of derivations. Our motivation for
this manuscript comes from the types of identities studied by Mamouni et al. in [10],
and motivated by these types of identities, we generalized some results from [10]. To
prove our main results, we need some lemmas as well as some facts.

2. The main results

Lemma 2.1. Let R be a σ-prime ring. If a ∈R and z ∈JZ such that az ∈JZ and
aσ(z) ∈JZ , then either a ∈JZ or z = 0.

Proof. Since, az ∈JZ and aσ(z) ∈JZ , we have (0) = [az, r] = [aσ(z), r] for all r ∈R,
which implies that (0) = z[a, r] = σ(z)[a, r]. Therefore (0) = zR[a, r] = σ(z)R[a, r],
by the definition of σ-prime rings we have either z = 0 or a ∈JZ . □
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Lemma 2.2. Let R be a σ-prime ring. If a ∈R and z ∈JZ such that az ∈JZ and
σ(a)z ∈JZ , then either a ∈JZ or z = 0.

Proof. Since, az ∈JZ and σ(a)z ∈JZ , we have (0) = [az, r] = [σ(a)z, r] for all r ∈R,
which implies that 0 = z[a, r] = z[σ(a), r]. Therefore (0) = zR[a, r] = zR[σ(a), r], by
the definition of σ-prime rings we have either z = 0 or a ∈JZ . □

Lemma 2.3. Let R be a σ-prime ring of char(R) ̸= 2, then R is 2-torsion free.

Proof. Let u ∈R and 2u = 0 suggests, 2u(vw) = 0 for all v, w ∈R and uR(2w) = 0
for all w ∈R. Since char(R) ̸= 2 and R ̸= (0) then there exist 0 ̸= p ∈R such that
2p ̸= 0, forces uR(2p) = (0) = uRσ(2p), by the definition of σ-prime rings we have,
either u = 0 or 2p = 0. The second case is not possible by the assumption and first
case implies that R is 2-torsion free. □

Lemma 2.4. In σ-prime ring, JZ ∩ JH and JZ ∩ JS are free from zero-divisor.

Proof. Let a ∈R and b ∈JZ ∩ JH , such that ab = 0, implies abu = 0 for all u ∈R
provide us aRb = (0) = aRσ(b), by the definition of σ-prime ring, we have either
a = 0 or b = 0. □

Lemma 2.5. Let R be a 2-torsion free σ-prime ring with an involution σ which is of
the second kind. If t21 ∈JZ for all t1 ∈R, then R is commutative.

Proof. We are given that t21 ∈!JZ for all t1 ∈!R. By linearizing the last relation and
using it, we obtain t1t2 + t2t1 ∈!JZ for all t1, t2 ∈!R. Since σ is of the second kind,
there exists 0 ̸= c ∈!JZ ∩ JS . Now, replacing t2 by c, we have t1c ∈!JZ for all
t1 ∈!R, which implies that [t1, r]c = 0 for all r ∈!R. Applying Lemma 2.4, we get
that [t1, r] = 0 for all t1, r ∈!R, which implies that R is commutative. □

Lemma 2.6. Let R be a 2-torsion free σ-prime ring and ψ be the derivation on R.
If σ is of the second kind and ψ(h) = 0 for all h ∈JH ∩ JZ , then ψ(z) = 0 for all
z ∈JZ .

Proof. By the given hypothesis, we have ψ(h) = 0, where h ∈ JH ∩ JZ , then
ψ(k2) = 0 for all k ∈JS ∩JZ . Hence kψ(k) = 0, making use of Lemma 2.4, we have
either k = 0 or ψ(k) = 0. The first case is not possible because σ is of the second
kind. So we have ψ(k) = 0 for k ∈JS∩JZ . Now for any z ∈JZ we have 2z = h+k,
where h = z + σ(z) and k = z − σ(z). Therefore, we have ψ(2z) = ψ(h) + ψ(k) = 0.
Consequently, ψ(z) = 0 for all z ∈JZ . □

Fact 2.7. Let R be a 2-torsion free σ-prime rings with an involution σ which is of
the second kind, if R is normal, then R is commutative.

Proof. Since R is normal, i.e., hk = kh where h ∈JH and k ∈JS respectively. Take
any t1 ∈R, then t1 − σ(t1) ∈JS and

h(t1 − σ(t1)) = (t1 − σ(t1))h, for all t1 ∈R and h ∈JH . (1)
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Take s ∈ JS ∩ JZ , then s(t1 + σ(t1)) ∈ JS for all t1 ∈ R, using the normality
condition of R, we have hs(t1 + σ(t1)) = s(t1 + σ(t1))h for all t1 ∈R and h ∈JH .
This implies that

s{h(t1 + σ(t1))− (t1 + σ(t1))h} = 0, for all t1 ∈R and for all h ∈JH .

Invoking Lemma 2.4, we have either s = 0 or h(t1 + σ(t1)) = (t1 + σ(t1))h. The
first case is not possible, because σ is of the second kind and the latter case together
with (1), gives us ht1 = t1h for all t1 ∈R and h ∈JH . Replacing t1 by t2, we obtain

ht2 = t2h, for all t2 ∈R and h ∈JH . (2)

Substituting h by t1 + σ(t1) in (2), we get

{t1 + σ(t1)}t2 = t2{t1 + σ(t1)} for all t1, t2 ∈R. (3)

Now, we take s ∈JS ∩ JZ , then s(t1 − σ(t1)) ∈JH and using (2), we have s{(t1 −
σ(t1))t2 − t2(t1 − σ(t1))} = 0 for all t1, t2 ∈R. Making use of Lemma 2.4, we have
either s = 0 or (t1 − σ(t1))t2 = t2(t1 − σ(t1)) but the first case is not possible, due to
σ is of the second kind and the latter case implies that

(t1 − σ(t1))t2 = t2(t1 − σ(t1)) for all t1, t2 ∈R. (4)

Using (3), together with (4), we get, t1t2 = t2t1 for all t1, t2 ∈R. □

Fact 2.8. Let R be a 2-torsion free σ-prime rings with an involution σ which is of
the second kind, then σ is centralizing iff R is commutative.

Proof. Let

[t1, σ(t1)] ∈JZ for all t1 ∈R. (5)

Linearizing (5), we get

[t1, σ(t2)] + [t2, σ(t1)] ∈JZ for all t1, t2 ∈R.

Replacing t2 by σ(t2), we get

[[t1, t2], t1] + [[σ(t2), σ(t1)], t1] = 0 for all t1, t2 ∈R. (6)

Replacing t2 by t2t1 in (6), we get

[[t1, t2], t1]t1+σ(t1)[[σ(t2), σ(t1)], t1]+[σ(t1), t1][σ(t2), σ(t1)] = 0 for all t1, t2 ∈R. (7)

Combining (6) in (7), we get

[[t1, t2], t1]t1 − σ(t1)[[t2, t1], t1] + [σ(t1), t1][σ(t2), σ(t1)] = 0 for all t1, t2 ∈R. (8)

Taking t2t1 for t2 in the above equation, we obtain

[[t1, t2], t1]t
2
1−σ(t1)[[t2, t1], t1]t1+[σ(t1), t1]σ(t1)[σ(t2), σ(t1)] = 0 for all t1, t2 ∈R.

(9)

Using (8) in (9), and replacing t1 by σ(t1) and t2 by σ(t2), we have

[t1, σ(t1)]{t1[t2, t1]− [t2, t1]σ(t1)} = 0 for all t1, t2 ∈R. (10)

Exchanging t2 by t2t1 in (10), we capture

[t1, σ(t1)]{t1[t2, t1]t1 − [t2, t1]t1σ(t1)} = 0 for all t1, t2 ∈R. (11)

Invoking (10) in (11), we obtain

[t1, σ(t1)][t2, t1]{−t1σ(t1) + σ(t1)t1} = 0 for all t1, t2 ∈R.
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The last relation further implies

[t1, σ(t1)]
2R[t2, t1] = 0 for all t1, t2 ∈R. (12)

Replacing t1 by σ(t1) and t2 by σ(t2) in (12), we find

[t1, σ(t1)]
2R[t2, t1] = 0 = [t1, σ(t1)]

2R σ{[t2, t1]}, for all t1, t2 ∈R.

By the definition of σ-prime ring, we get

[t1, σ(t1)]
2 = 0 or [t1, t2] = 0for all t1, t2 ∈R.

The later case suggests that R is commutative. The first case implies that

[t1, σ(t1)]
2 = 0 for all t1 ∈R.

Since [t1, σ(t1)] ∈JZ ∩ JH and making use of Lemma 2.4, we get

[t1, σ(t1)] = 0 for all t1 ∈R.

Using Fact 2.7, R is commutative. □

Fact 2.9. Let R be a 2-torsion free σ-prime ring with an involution σ, which is of
the second kind. Then t1 ◦ σ(t1) ∈JZ for all t1 ∈R iff R is commutative.

Proof. By the given condition, we have

t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

Linearizing the above relation, we get

t1 ◦ σ(t2) + t2 ◦ σ(t1) ∈JZ for all t1, t2 ∈R.

The last relation further implies that

[t1 ◦ σ(t2), r] + [t2 ◦ σ(t1), r] = 0 for all t1, t2, r ∈R. (13)

Replacing t2 by σ(t2) in (13), we find that

[t1 ◦ t2, r] + [σ(t2) ◦ σ(t1), r] = 0 for all t1, t2, r ∈R. (14)

Taking t1 in place of t2 in (14), we grasp

[t21, r] + [σ(t1)
2, r] = 0 for all t1, r ∈R. (15)

Assuming t2 ∈JZ \ {0} and t1 = t21 in (13), we have

[t21, r]t2 + [σ(t1)
2, r]σ(t2) = 0 for all t1, r ∈R. (16)

Making use of (15) and (16), we obtain

[t21, r]{t2 − σ(t2)} = 0 for all t1, t2, r ∈R.

Now, {t2 − σ(t2)} ∈ JS ∩ JZ , by using Lemma 3, we have either [t21, r] = 0 or
{t2 − σ(t2)} = 0, the latter case is not possible, because σ is of the second kind, the
first case implies that [t21, r] = 0 for all t1, r ∈ R. So, t21 ∈ Z (R) for all t1 ∈ R.
Invoking Lemma 2.5, R is commutative. □

Fact 2.10. Let R be a 2-torsion free σ-prime ring. If σ is of the second kind involu-
tion and ψ ̸= 0 be a σ-centralizing derivation on R, then R is commutative.

Proof. By the given condition

[ψ(t1), σ(t1)] ∈JZ for all t1 ∈R.
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Replacing t1 by t1 + t2, we get

[ψ(t1), σ(t2)] + [ψ(t2), σ(t1)] ∈JZ for all t1, t2 ∈R. (17)

Substituting t2h in place of t2 in (17) and using it, where 0 ̸= h ∈ JZ ∩ JH , we
obtain

[t2, σ(t1)]ψ(h) ∈JZ for all t1, t2 ∈R.

Replacing t1 with σ(t1) and t2 by σ(t2), in the above relation we get

σ([t2, σ(t1)])ψ(h) ∈JZ for all t1, t2 ∈R.

By using Lemma 2.2, we have either [t2, σ(t1)] ∈ JZ or ψ(h) = 0, the first case
implies the commutativity of R and the later case implies that ψ(z) = 0 for all
z ∈JZ . Replacing t2 by t2z in (17), where z ∈JZ , we obtain

[ψ(t1), σ(t2)]σ(z) + [ψ(t2), σ(t1)]z ∈JZ for all t1, t2 ∈R. (18)

Combining (18) and (17), we obtain

[[ψ(t1)], t2], r](σ(z)− z) = 0 for all t1, t2, r ∈R.

Since, σ(z)− z ∈JZ ∩ JH , by Lemma 2.4 we obtain

[ψ(t1)], t1] ∈JZ for all t1 ∈R.

By [13, Theorem 1], R is commutative. □

Theorem 2.11. Let R be a noncommutative σ-prime ring with char(R) ̸= 2. If σ is of
the second kind and ψ1, ψ2 are derivations on R satisfying ψ1(t1)σ(t1)−σ(t1)ψ2(t1) ∈
JZ for all t1 ∈R, then ψ1 = ψ2 = 0.

Proof. Given that

ψ1(t1)σ(t1)− σ(t1)ψ2(t1) ∈JZ for all t1 ∈R. (19)

Linearizing the above, we achieve

ψ1(t1)σ(t2)+ψ1(t2)σ(t1)−σ(t1)ψ2(t2)−σ(t2)ψ2(t1) ∈JZ for all t1, t2 ∈R. (20)

Replacing t2 by σ(t2) in (20), we have

ψ1(t1)t2+ψ1(σ(t2))σ(t1)−σ(t1)ψ2(σ(t2))−t2ψ2(t1) ∈JZ for all t1, t2 ∈R. (21)

Replacing t2 by t2h, where 0 ̸= h ∈JZ ∩ JH , we receive

ψ1(t1)t2h+ ψ1(σ(t2))σ(t1)h+ σ(t2)σ(t1)ψ1(h)− σ(t1)ψ2(σ(t2))h

− σ(t1)σ(t2)ψ2(h)− t2ψ2(t1)h ∈JZ for all t1, t2 ∈R. (22)

Invoking (21) in (22) and using Lemma 2.4, we have

σ(t2)σ(t1)ψ1(h)− σ(t1)σ(t2)ψ2(h) ∈JZ for all t1, t2 ∈R. (23)

Substituting t2 by h, where 0 ̸= h ∈JZ ∩ JH , we get

hσ(t1)ψ1(h)− σ(t1)hψ2(h) ∈JZ for all t1, t2 ∈R.

The last relation further implies that

h{σ(t1)ψ1(h)− σ(t1)ψ2(h)} ∈JZ for all t1, t2 ∈R. (24)

Replacing t1 by σ(t1) in (24) and using Lemma 2.4, we obtain

t1{ψ1(h)− ψ2(h)} ∈JZ for all t1 ∈R.
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The last relation further implies that

[t1, r]{ψ1(h)− ψ2(h)} = 0 for all t1, r ∈R. (25)

Replacing r by ru, where u ∈R and using (25), we have

[t1, r]u{ψ1(h)− ψ2(h)} = 0 for all t1, r, u ∈R.

The last relation further implies that

[t1, r] R {ψ1(h)− ψ2(h)} = (0) = σ{[t1, r]} R {ψ1(h)− ψ2(h)} for all t1, r ∈R.

By the definition of σ-prime ring we have either [t1, r] = 0 or {ψ1(h)−ψ2(h)} = 0, the
first case implies that the commutative of R which is not possible by our assumption.
The latter case implies that ψ1(h) = ψ2(h) and by (23), we have

{σ(t2)σ(t1)− σ(t1)σ(t2)}ψ2(h) ∈JZ for all t1, t2 ∈R.

The last relation further implies

[σ(t2), σ(t1)] ψ2(h) ∈JZ for all t1, t2 ∈R.

On manipulating the last relation, we obtain

[t2, t1]ψ2(h) ∈JZ for all t1, t2 ∈R. (26)

The above relation further implies that

σ([t2, t1])ψ2(h) ∈JZ for all t1, t2 ∈R.

The last relation together with (26) and Lemma 2.2, we have either ψ2(h) = 0 or
[t2, t1] ∈ JZ , for all t1, t2 ∈ R. Replacing t1 by σ(t2), then R is commutative
by the Fact 2.8, which is not possible by our assumption. The first case implies
that ψ2(h) = 0 = ψ1(h) for all h ∈ JZ ∩ JH . Replacing t2 by h in (22), where
h ∈JZ ∩ JH , we obtain

ψ1(t1)− ψ2(t1) ∈JZ for all t1 ∈R.

Let assume ϕ(t1) = ψ1(t1) − ψ2(t1), so ϕ(t1) ∈ JZ for all t1 ∈ R, if ψ1 ̸= ψ2 then
ϕ is centralizing derivation so, by [13, Theorem 1], R is commutative, which is not
possible by our assumption. Now, if ψ1 = ψ2, then (19), gives [ψ1(t1), σ(t1)] ∈JZ

for all t1 ∈R. Fact 2.10, implies ψ1 = 0 □

Corollary 2.12 ([10, Theorem 1]). Let R be a noncommutative prime ring with an
involution σ which is of the second kind, with char(R) ̸= 2, if ψ1, ψ2 are derivations
of R satisfying ψ1(t1)σ(t1)− σ(t1)ψ2(t1) ∈JZ for all t1 ∈R, then ψ1 = ψ2 = 0.

Theorem 2.13. Let R be a noncommutative σ-prime rings with an involution σ which
is of the second kind with char(R) ̸= 2, if ψ1 and ψ2 are derivations of R satisfying
ψ1(σ(t1))t1 − σ(t1)ψ2(t1) ∈JZ for all t1 ∈R, then ψ1 = ψ2 = 0.

Proof. Given that

ψ1(σ(t1))t1 − σ(t1)ψ2(t1) ∈JZ for all t1, t2 ∈R.

Linearizing the above relation, we achieve

ψ1(σ(t1))t2 + ψ1(σ(t2))t1 − σ(t1)ψ2(t2)− σ(t2)ψ2(t1) ∈JZ for all t1, t2 ∈R. (27)

Replacing t2 by t2h, where 0 ̸= h ∈JZ ∩ JH , we receive

ψ1(σ(t1))t2h− σ(t1)ψ2(t2)h− σ(t1)t2ψ2(h) + ψ1(σ(t2))t1h
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+ σ(t2)t1ψ1(h) + σ(t2)ψ2(t1)h ∈JZ for all t1, t2 ∈R. (28)

Using (27) in (28), we obtain

σ(t2)t1ψ1(h)− σ(t1)t2ψ2(h) ∈JZ for all t1, t2 ∈R. (29)

Taking t2 = t1 in (29), we gain

σ(t1)t1{ψ1(h)− ψ2(h)} ∈JZ for all t1 ∈R.

The last relation further implies that

[σ(t1)t1, r] {ψ1(h)− ψ2(h)} = 0 for all t1 ∈R. (30)

Replacing r by ru, where u ∈R and using (30), we have

[σ(t1)t1, r]R{ψ1(h)− ψ2(h)}=(0)=σ([σ(t1)t1, r])R{ψ1(h)− ψ2(h)} for all t1 ∈R.

By the definition of σ-prime rings we have, either σ(t1)t1 ∈ JZ or ψ1(h) = ψ2(h),
the first case implies that the commutativity of R, which is not possible by our
assumption. The later case together with (29), gives us

{σ(t2)t1 − σ(t1)t2}ψ1(h) ∈JZ for all t1, t2 ∈R. (31)

The formal relation further implies that

σ(σ(t2)t1 − σ(t1)t2)ψ1(h) ∈JZ for all t1, t2 ∈R.

The previous relation together with (31) and Lemma 2.2, we have either σ(t2)t1 −
σ(t1)t2 ∈JZ for all t1, t2 ∈R or ψ1(h) = 0 for all h ∈JZ ∩ JH . The initial case
implies that

σ(t2)t1 − σ(t1)t2 ∈JZ for all t1, t2 ∈R. (32)

Taking t1s in place of t1, where 0 ̸= s ∈ JZ ∩ JS , making use of Lemma 2.4, we
obtain

σ(t2)t1 + σ(t1)t2 ∈JZ for all t1, t2 ∈R. (33)

Combining (32) and (33) and using char(R) ̸= 2, we obtain

σ(t2)t1 ∈JZ for all t1, t2 ∈R.

Replacing t2 by t1, we achieve

σ(t1)t1 ∈JZ for all t1 ∈R. (34)

Replacing t1 by σ(t1), we get

t1σ(t1) ∈JZ for all t1 ∈R. (35)

Combining (35) and (34), we obtain

[σ(t1), t1] ∈JZ for all t1 ∈R.

By Fact 2.8, R is commutative, which is not true by our assumption. Now, if ψ1(h) =
0 for all h ∈JZ ∩ JH , then ψ2(h) = 0, Lemma 2.6 implies ψ1(z) = ψ2(z) = 0, for
all z ∈JZ , replacing t2 by h in (27), where h ∈JZ ∩ JH , we obtain

ψ1(σ(t1))− ψ2(t1) ∈JZ for all t1 ∈R. (36)

Replacing t1 by s in (27), where s ∈JZ ∩ JS , we obtain

ψ1(σ(t1)) + ψ2(t1) ∈JZ for all t1 ∈R. (37)

The last relation together with (36), implies that ψ1(t1) ∈JZ for all t1 ∈R. By [13,
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Theorem 1], ψ1 = 0, so (37), implies ψ2(t1) ∈JZ for all t1 ∈R, so by same result
ψ2 = 0. □

Corollary 2.14 ([10, Theorem 2]). Let R be a noncommutative prime rings with an
involution σ which is of the second kind with char(R) ̸= 2, if ψ1 and ψ2 are derivations
of R satisfying ψ1(σ(t1))t1 − σ(t1)ψ2(t1) ∈JZ for all t1 ∈R, then ψ1 = ψ2 = 0.

Theorem 2.15. Let R be a σ-prime rings with an involution σ which is of the second
kind with char(R) ̸= 2, if ψ1 and ψ2 are derivations on R such that ψ1σ = σψ1, or
(ψ2σ = σψ2), then following assertions are equivalent:
(i) ψ1(t1) ◦ ψ2(σ(t1))− t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

(ii) ψ1(t1) ◦ ψ2(σ(t1)) + t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

(iii) [ψ1(t1), ψ2(σ(t1))]− t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

(iv) [ψ1(t1), ψ2(σ(t1))] + t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

(v) R is commutative.

Proof. Clearly (v) =⇒ (i)–(iv).
If ψ1 = 0 or ψ2 = 0, then the above relation reduces to t1 ◦ σ(t1) ∈ JZ for all

t1 ∈R. Then R is commutative by Fact 2.9.
Now, we assume ψ1 ̸= 0 and ψ2 ̸= 0.
(i) =⇒ (v) Given that

ψ1(t1) ◦ ψ2(σ(t1))− t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

Linearizing the above equation, we receive

ψ1(t1) ◦ ψ2(σ(t2)) + ψ1(t2) ◦ ψ2(σ(t1))− t1 ◦ σ(t2)− t2 ◦ σ(t1) ∈JZ for all t1, t2 ∈R.

Replacing t2 by t2h, where 0 ̸= h ∈JZ ∩JH , in the above equation and using it, we
get

{ψ1(t1) ◦ σ(t2)}ψ2(h) + {t2 ◦ ψ2(σ(t1))}ψ1(h) ∈JZ for all t1, t2 ∈R. (38)

Putting h in the place of t2 where; 0 ̸= h ∈JZ ∩JH , in the above relation and using
Lemma 2.4, we get

ψ1(t1)ψ2(h) + ψ2(σ(t1))ψ1(h) ∈JZ for all t1 ∈R. (39)

Putting s in the place of t2 in (38), where, 0 ̸= s ∈JZ ∩ JS , and using Lemma 2.4,
we get

−ψ1(t1)ψ2(h) + ψ2(σ(t1))ψ1(h) ∈JZ for all t1 ∈R. (40)

Combining (39) and (40) and using char(R) ̸= 2, we obtain

ψ2(t1)ψ1(h) ∈JZ for all t1 ∈R.

The previous relation further implies that

{[ψ2(t1), r]}ψ1(h) = 0 for all t1, r ∈R.

Since, σ commutes with ψ1, then ψ1(h) ∈JZ ∩JH , so by Lemma 2.4, we have either
ψ1(h) = 0 or [ψ2(t1), r] = 0. The first case is not possible because σ is of the second
kind, the later case implies that [ψ2(t1), r] = 0 for all t1, r ∈R. In particular, taking
r = t1, we have [ψ2(t1), t1] = 0 for all t1 ∈R. By Fact 2.10, R is commutative.
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(ii) =⇒ (v) Given that

ψ1(t1) ◦ ψ2(σ(t1)) + t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

Linearizing the above equation, we obtain

ψ1(t1) ◦ ψ2(σ(t2))+ψ1(t2) ◦ ψ2(σ(t1))+t1 ◦ σ(t2)+t2 ◦ σ(t1) ∈JZ for all t1, t2 ∈R.

Replacing t2 by t2h, where 0 ̸= h ∈JZ ∩ JH , in the above equation, we get

{ψ1(t1) ◦ σ(t2)}ψ2(h) + {t2 ◦ ψ2(σ(t1))}ψ1(h) ∈JZ for all t1, t2 ∈R.

The above equation is same as (38), so by the same argument R is commutative.
(iii) =⇒ (v) Given that

[ψ1(t1), ψ2(σ(t1))]− t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

Taking t1 = t1 + t2 in the above relation, we obtain

[ψ1(t1), ψ2(σ(t2))] + [ψ1(t2), ψ2(σ(t1))]

− t1 ◦ σ(t2)− t2 ◦ σ(t1) ∈JZ for all t1, t2 ∈R. (41)

Replacing t2 by t2h in (41) and using it, where 0 ̸= h ∈JZ ∩ JH , we gain

[ψ1(t1), σ(t2)] ψ2(h) + [t2, ψ2(σ(t1))]ψ1(h) ∈JZ for all t1, t2 ∈R. (42)

Substituting t2 by t2s in (42), where 0 ̸= s ∈JZ ∩ JS , we obtain

−[ψ1(t1), σ(t2)] ψ2(h) + [t2, ψ2(σ(t1))]ψ1(h) ∈JZ for all t1, t2 ∈R. (43)

By combining (42) and (43), we achieve

[ψ1(t1), σ(t2)]ψ2(h) ∈JZ for all t1, t2 ∈R.

The previous relation further implies that

[[ψ1(t1), σ(t2)], r]ψ2(h) = 0 for all t1, t2, r ∈R.

Since, σ commutes with ψ2, then ψ2(h) ∈JZ ∩JH , so by Lemma 2.4, we have either
ψ2(h) = 0 or [[ψ1(t1), σ(t2)], r] = 0. The first case is not possible because σ is of the
second kind, the latter case implies that [ψ1(t1), σ(t2)] ∈ JZ for all t1, t2 ∈ R. In
particular, taking t2 = σ(t1), we have [ψ1(t1), t1] ∈JZ for all t1 ∈R. By Fact 2.10,
R is commutative.

(iv) =⇒ (v) Given that

[ψ1(t1), ψ2(σ(t1))] + t1 ◦ σ(t1) ∈JZ for all t1 ∈R.

Taking t1 = t1 + t2 in the above relation, we obtain

[ψ1(t1), ψ2(σ(t2))]+[ψ1(t2), ψ2(σ(t1))]+t1 ◦ σ(t2)+t2 ◦ σ(t1) ∈JZ for all t1, t2 ∈R.

Replacing t2 by t2h in the above equation, where 0 ̸= h ∈JZ ∩ JH , we get

{ψ1(t1) ◦ σ(t2)}ψ2(h) + {t2 ◦ ψ2(σ(t1))}ψ1(h) ∈JZ for all t1, t2 ∈R.

The above equation is same as (42), so by the same argument R is commutative. □

Corollary 2.16. Let R be a σ-prime rings with an involution σ which is of the
second kind, with char(R) ̸= 2, if ψ1 and ψ2 are derivations on R such that ψ1σ =
σψ1, or (ψ2σ = σψ2), then following assertions are equivalent:
(i) ψ1(t1) ◦ ψ2(t2)− t1 ◦ t2 ∈JZ for all t1, t2 ∈R.

(ii) ψ1(t1) ◦ ψ2(t1) + t1 ◦ t2 ∈JZ for all t1, t2 ∈R.
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(iii) [ψ1(t1), ψ2(t2)]− t1 ◦ t2 ∈JZ for all t1, t2 ∈R.

(iv) [ψ1(t1), ψ2(t2)] + t1 ◦ (t2) ∈JZ for all t1, t2 ∈R.

(v) R is commutative.

As it is well-known that the zero-divisor is impossible in the center of a prime
ring, but in σ-prime rings center is not free from zero divisor. The follwing example
explain that the above fact.

Example 2.17. Consider R =

{[
a 0
0 b

] ∣∣∣a, b ∈ Z
}
, define σ in such away,

σ

([
a 0
0 b

])
=

[
b 0
0 a

]
. It is easy to verify that R is a σ-prime ring with an invo-

lution σ. For any non zero a,

[
a 0
0 0

]
∈JZ , and for any nonzero b,

[
0 0
0 b

]
∈R

and

[
a 0
0 0

] [
0 0
0 b

]
=

[
0 0
0 0

]
. This shows the fact.

The following examples show that the second kind is necessary in Theorem 2.15.

Example 2.18. Consider R =

{[
a b
c d

] ∣∣∣a, b, c, d ∈ Z
}
. Define σ in such a way

that σ

([
a b
c d

])
=

[
d −b
−c a

]
. It is easy to verify that R is a σ-prime ring with

an involution σ of the first kind.

Moreover, define ψ1 and ψ2 by ψ1

([
a b
c d

])
=

[
0 b
−c 0

]
and ψ2

([
a b
c d

])
=[

0 −b
c 0

]
. Here, ψ1 and ψ2 satisfy the condition ψ1(t1)◦ψ2(σ(t1))− t1 ◦σ(t1) ∈JZ

for all t1 ∈R. However, R is noncommutative.
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