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Abstract. In this paper, we present some fixed point results metric spaces under certain
admissibility conditions. A number of consequences and an illustration of the results are also
discussed herein. Further, we present error estimation and rate of convergence of the fixed
point iterations.

1. Introduction

The purpose of this paper is to establish new fixed point results using various ideas
prevalent in the field of metric fixed point theory. Below we briefly mention the ideas
that we have put together to obtain our results.

While going through the proofs of fixed point theorems of several contractive
mappings, it is an interesting observation that the contraction condition is not used
for every pair of points from the metric space. Thus, the contractive condition could be
restricted to certain pairs without disturbing the proof. Such restrictions were made
in two ways. One way is to introduce orderings such as partial orderings, graphs, etc.
on the metric space and then assert that the contraction holds only for pairs related by
the ordering, while the other way is to introduce admissibility conditions, which are
some additional functional requirements. Admissibility conditions were introduced
by Samet et al [11]. The same idea with many variations has been used in several
papers [1, 12].

In another approach, the contractive conditions were relaxed by introducing weak
inequalities. Originally this was done in metric spaces for Banach contractions in the
work of Rhoades [10]. This led to the use of a type of inequalities known as weak
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228 Fixed point results with rate of convergence

inequalities, which could be used to establish new fixed point theorems in works such
as [5, 9].

The use of rational terms in metric inequalities was initiated by Dass et al [4].
In later works the rational expressions were considered by many researchers. As a
result, several new and important fixed point results could be established in metric
fixed point theory [2, 8].

In this paper, we combine the above three trends in metric fixed point theory to
obtain new results. In particular, we exhibit the following features in our theorems.

(a) We use certain admissibility conditions.

(b) We use three control functions to construct a weak contraction inequality.

(c) We use a conditional rational expression in the weak inequality we consider in our
theorem.

We first prove the existence of the fixed point under certain conditions, and the
uniqueness of the fixed point is proved by assuming an additional condition. There
are several corollaries and illustrations. Our result extends some of the existing results.
Finally, we give a discussion on the error and the rate of convergence of the fixed point
iteration.

The conditional rational expression we use is a modification of the expression used
by Fisher [6], which was proposed in a correction of the result of Khan [7]. The result
of Khan [7] has many generalizations in works such as [8, 13].

2. Mathematical background

Definition 2.1. Let X be a nonempty set and T : X → X. An element x ∈ X is
called a fixed point of T if x = Tx.

Definition 2.2. LetX be a nonempty set, α, ν : X×X → [0,+∞) be two mappings.
A mapping T : X → X is said to be (α−ν)-dominated if α(x, Tx) ≥ ν(x, Tx) for all
x ∈ X.

Definition 2.3. Let (X, d) be a metric space and α, ν : X ×X → [0,+∞). Then X
is said to have (α−ν)-regular property if for every sequence {xn} in X converging to
x ∈ X,α(xn, xn+1) ≥ ν(xn, xn+1), for all n implies α(xn, x) ≥ ν(xn, x), for all n.

Definition 2.4. Let (X, d) be a metric space and α, ν : X × X → [0,+∞). Then
X is said to have (α−ν)-transitive property if α(x, y) ≥ ν(x, y) and α(y, z) ≥ ν(y, z)
imply α(x, z) ≥ ν(x, z) for x, y, z ∈ X.

The above definitions are illustrated though the following example.

Example 2.5. Let X = [0, 1] be equipped with the usual metric. Let T : X → X
and α, ν : X ×X → [0,+∞) be respectively defined as follows:

T (x) =
cosx

16
, α(x, y) = ex+y, for all x, y ∈ X,
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ν(x, y) =

{
x+ y, if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

8 ,

e2(x+y), otherwise.

As y = Tx ∈ [0, 1
16 ] for all x ∈ [0, 1], it follows that α(x, y) = ex+y ≥ x+ y = ν(x, y)

for all x ∈ [0, 1], that is, T is a (α− ν)- dominated mapping.
Let {xn} be a sequence in X converging to x ∈ X, such that α(xn, xn+1) ≥

ν(xn, xn+1), for all n. Then x1 ∈ [0, 1] and xn ∈ [0, 18 ] for all n ≥ 2, which implies
that x ∈ [0, 18 ]. Therefore α(xn, x) = exn+x ≥ xn + x = ν(xn, x), for all n. So, X
has (α−ν)- regular property.

Let x, y, z ∈ X be such that α(x, y) ≥ ν(x, y) and α(y, z) ≥ ν(y, z). Then x ∈ [0, 1]
and y, z ∈ [0, 18 ] which imply that α(x, z) = ex+z ≥ x+ z = ν(x, z). Therefore, X has
(α−ν)-transitive property.

Next we describe following classes of functions which are used in our main findings.
•. Let Ψ denote the family of all functions ψ : [0,+∞) → [0,+∞) such that:

(i) ψ is non-decreasing; (ii) ψ(t) < t for each t > 0.

•. Let Φ denote the family of all functions ϕ : [0,+∞) → [0,+∞) such that

(i) ϕ is nondecreasing and continuous; (ii) for any sequence {tn} ⊆ [0,+∞),
limn→+∞ ϕ(tn) = 0 if and only if lim

n→+∞
tn = 0.

It is clear that ϕ(t) = 0 if and only if t = 0.

•. Let Ω be the collection of all functions ω : [0,+∞) → [0,+∞) such that ω is lower
semi-continuous and ω(t) = 0 if and only if t = 0.

Example 2.6. The following functions ψi : [0,+∞) → [0,+∞), (i = 1, 2) belong to
the class Ψ.
(i) ψ1(t) = k t for all t ∈ [0,+∞), where 0 < k < 1.

(ii) ψ2(t) =
t

1 + t
for all t ∈ [0,+∞).

Example 2.7. The following functions ϕi : [0,+∞) → [0,+∞), (i = 1, 2, 3) belong to
the class Φ.
(i) ϕ1(t) = t for all t ∈ [0,+∞).

(ii) ϕ2(t) = ln θ(t) for all t ∈ [0,+∞), where θ : (0,+∞) → (1,+∞) is non decreasing
function satisfying the property : each sequence {tn} in (0,+∞), limn→+∞ θ(tn) = 1
if and only if limn→+∞ tn = 0.

(iii) ϕ3(t) = eF (t), for all t ∈ [0,+∞), where F : (0,+∞) → R strictly increasing func-
tion satisfying the following property : for any sequence {an} in R+, limn→+∞ an = 0
and limn→+∞ F (an) = ±∞ are equivalent.

Definition 2.8. Let (X, d) be a metric space and α, ν : X × X → [0,+∞). A
mapping T : X → X is said to be a (ϕ−ψ−ω)- generalized rational weak contraction
if there exist ϕ ∈ Φ, ψ ∈ Ψ and ω ∈ Ω such that for all x, y ∈ X with α(x, y) ≥ ν(x, y),
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ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))− ω(M(x, y)), where M(x, y) is a conditional rational
expression defined as

M(x, y) =


d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)

max{d(x, Ty), d(y, Tx)}
, if max{d(x, Ty), d(y, Tx)} ≠ 0,

0, if max{d(x, Ty), d(y, Tx)} = 0.

3. Main results

First we prove the existence of fixed point of a self mapping T of a metric space.
Then under addition assumptions we establish the uniqueness of the fixed point. We
deduce some corollaries of the main result and illustrate it with an example.

Let (X, d) be a metric space and α, ν : X ×X → [0, +∞) be two mappings. We
designate the following properties by (A1), (A2) and (A3).
(A1) X has (α−ν)- regular property;
(A2) X has (α−ν)-transitive property;

(A3) for every x, x∗ ∈ X, there exists a u ∈ X such that α(x, u) ≥ ν(x, u) and
α(x∗, u) ≥ ν(x∗, u).

Theorem 3.1. Let (X, d) be a complete metric space and α, ν : X ×X → [0,+∞) be
two mappings such that the properties (A1) and (A2) hold. Suppose that T : X → X
be a (α−ν)-dominated mapping and there exist ϕ ∈ Φ, ψ ∈ Ψ and ω ∈ Ω such that T
is a (ϕ−ψ−ω)-generalized rational weak contraction. Then T has a fixed point in X.

Proof. Let x0 ∈ X. We construct a sequence {xn} in X such that

xn+1 = Txn, for all n ≥ 0. (1)

As T is (α−ν)-dominated, we have

α(xn, xn+1) ≥ ν(xn, xn+1), for all n ≥ 0. (2)

If there exists n0 such that d(xn0
, xn0+1) = 0, then xn0

= xn0+1 = Txn0
, that is,

xn0
is a fixed point of T . Hence we assume that d(xn, xn+1) ̸= 0 for all n ≥ 0. Let

rn = d(xn, xn+1) for all n ≥ 0. Then rn = d(xn, xn+1) > 0 for all n ≥ 0. As T is a
(ϕ−ψ−ω)-generalized rational weak contraction, we have for all n ≥ 0 that

ϕ(d(xn+1, xn+2))=ϕ(d(Txn, Txn+1))≤ψ(ϕ(M(xn, xn+1)))−ω(M(xn, xn+1)). (3)

If max{d(xn0
, Txn0+1), d(xn0+1, Txn0

)}=0 for some n0, thenM(xn0
, xn0+1)=0. Using

the properties of ϕ, ψ and ω, we have from the above inequality that d(Txn0 , Txn0+1)
=0, that is, d(xn0+1, xn0+2)=0, that is, rn0+1=0, which contradicts our assumption
that rn=d(xn, xn+1) > 0 for all n ≥ 0. Therefore, we assume that max{d(xn, Txn+1),
d(xn+1, Txn)} ≠ 0 for all n, that is, d(xn, xn+2) ̸= 0 for all n. Now,

M(xn, xn+1) =
d(xn, Txn) d(xn, Txn+1) + d(xn+1, Txn+1) d(xn+1, Txn)

max{d(xn, Txn+1), d(xn+1, Txn)}

=
d(xn, xn+1) d(xn, xn+2) + d(xn+1, xn+2) d(xn+1, xn+1)

max{d(xn, xn+2), d(xn+1, xn+1)}
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=
d(xn, xn+1) d(xn, xn+2)

d(xn, xn+2)
= d(xn, xn+1) = rn > 0. (4)

Using (4) and the properties of ϕ, ψ and ω, we have from (3) that

ϕ(rn+1) = ψ(ϕ(rn))− ω(rn) ≤ ϕ(rn)− ω(rn) < ϕ(rn). (5)

Therefore, {ϕ(rn)} is monotone decreasing sequence of nonnegative real numbers. By
a property of ϕ, {rn} is a monotone decreasing sequence of nonnegative real numbers.
So, there exist L ≥ 0 and r ≥ 0 such that limn→+∞ ϕ(rn) = L and limn→+∞ rn = r.
If possible, suppose that r > 0. By a property of ω,we have ω(r) > 0. Taking limit
superior on both sides of (5) and using the lower semi-continuity of ω, we have

L ≤ L− lim inf
n→+∞

ω(rn) ≤ L− ω(r) < L,

which is a contradiction. Therefore,

r = lim
n→+∞

rn = lim
n→+∞

d(xn, xn+1) = 0. (6)

We show that {xn} is a Cauchy sequence. Suppose, on contrary that {xn} is not a
Cauchy sequence. Then there exists an ϵ > 0 for which we have two sequences {p(n)}
and {q(n)} of natural numbers such that for every n ∈ N, p(n) is the smallest such
positive integer for which

p(n) > q(n) > n, d(xq(n), xp(n)) ≥ ϵ and d(xq(n), xp(n)−1) < ϵ. (7)

For every n ∈ N, we have

ϵ ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) < d(xp(n), xp(n)−1) + ϵ.

Taking limit as n→ +∞ and using (6), we have

lim
n→+∞

d(xp(n), xq(n)) = lim
n→+∞

d(xq(n), xp(n)) = ϵ.

Again for every n ∈ N, we have ϵ≤d(xq(n), xp(n))≤d(xq(n), xp(n)+1)+d(xp(n)+1, xp(n)).
Taking limit infimum on both sides of the above inequality and using (6), we have
lim infn→+∞ d(xq(n), xp(n)+1) ≥ ϵ. Then there exists n2 ∈ N such that d(xq(n), xp(n)+1)
> ϵ

2 , for all n > n2. This implies that for all n > n2,

max{d(xq(n), xp(n)+1), d(xp(n), xq(n)+1)} =

max{d(xq(n), Txp(n)), d(xp(n), Txq(n))} >
ϵ

2
. (8)

From (7), we have

ϵ ≤ d(xq(n), xp(n)) ≤ d(xq(n), xq(n)+1) + d(xq(n)+1, xp(n)+1) + d(xp(n)+1, xp(n)).

Taking limit infimum on both sides of the above inequality and using (6), we have
lim infn→+∞ d(xq(n)+1, xp(n)+1) ≥ ϵ. Then there exists n3 ∈ N such that, for all
n > n3, d(xq(n)+1, xp(n)+1) >

ϵ
2 . By assumption (A2), we have α(xq(n), xp(n)) ≥

ν(xq(n), xp(n)). By (8), max{d(xq(n), Txp(n)), d(xp(n), Txq(n))} >
ϵ

2
̸= 0 for all n > n2.

As ϕ is nondecreasing and T is a (ϕ− ψ − ω)- generalized rational weak contraction,
we have for every n > max{n2, n3},

ϕ(
ϵ

2
) ≤ ϕ(d(xq(n)+1, xp(n)+1)) = ϕ(d(Txq(n), Txp(n)))
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≤ ψ(ϕ(M(xq(n), xp(n))))− ω(M(xq(n), xp(n))) ≤ ψ(ϕ(M(xq(n), xp(n))), (9)

where,

0 ≤M(xq(n), xp(n)) =
d(xq(n), Txq(n)) d(xq(n), Txp(n))+d(xp(n), Txp(n)) d(xp(n), Txq(n))

max{d(xq(n), Txp(n)), d(xp(n), Txq(n))}

=
d(xq(n), xq(n)+1) d(xq(n), xp(n)+1)+d(xp(n), xp(n)+1) d(xp(n), xq(n)+1)

max{d(xq(n), xp(n)+1), d(xp(n), xq(n)+1)}

=
d(xq(n), xq(n)+1)d(xq(n), xp(n)+1)

max{d(xq(n), xp(n)+1), d(xp(n), xq(n)+1)}
+

d(xp(n), xp(n)+1)d(xp(n), xq(n)+1)

max{d(xq(n), xp(n)+1), d(xp(n), xq(n)+1)}
≤ d(xq(n), xq(n)+1)+d(xp(n), xp(n)+1).

Taking limit as n→ +∞ and using (6), we have limn→+∞M(xq(n), xp(n)) = 0. Then
there exists n4 ∈ N such thatM(xq(n), xp(n)) <

ϵ
2 for all n > n4. Using the properties

of ϕ and ψ, we have from (9) that for all n > max{n2, n3, n4},

ϕ(
ϵ

2
) ≤ ψ(ϕ(M(xq(n), xp(n)))) ≤ ψ(ϕ(

ϵ

2
)) < ϕ(

ϵ

2
),

which is a contradiction. Therefore, {xn} is a Cauchy sequence in X. As X is
complete, there exists x ∈ X such that

lim
n→+∞

xn = x. (10)

Next we show that x is a fixed point of T . If possible, let x is not a fixed point of T .
Then d(x, Tx) > 0. By (2), (10) and the (α−ν)- regularity assumption of the space,
we have α(xn, x) ≥ ν(xn, x) for all n ≥ 0. As T is a (ϕ−ψ−ω)- generalized rational
weak contraction, we have

ϕ(d(xn+1, Tx)) = ϕ(d(Txn, Tx)) ≤ ψ(ϕ(M(xn, x)))− ω(M(xn, x)), for all n. (11)

Suppose that for each k ∈ N, there exists nk ∈ N such that nk > k and xnk
= Tx.

Then x = limk→+∞ xnk
= Tx, which contradicts the assumption d(x, Tx) > 0. Thus,

there exists m ∈ N such that xn ̸= Tx for each n ≥ m. Hence, for each n ≥ m,
max{d(xn, Tx), d(x, Txn)} > 0. Therefore,

M(xn, x) =
d(xn, Txn) d(xn, Tx) + d(x, Tx) d(x, Txn)

max{d(xn, Tx), d(x, Txn)}

=
d(xn, xn+1) d(xn, Tx) + d(x, Tx) d(x, xn+1)

max{d(xn, Tx), d(x, xn+1)}
.

Taking limit as n → +∞ and using (10), we have limn→+∞M(xn, x) = 0. As

d(x, Tx) > 0, there exists n5 ∈ N such that M(xn, x) <
d(x,Tx)

2 for all n > n5. Using
the properties of ϕ and ψ, we get from (11) that for all n > n5,

ϕ(d(xn+1, Tx)) ≤ ψ(ϕ(M(xn, x)))− ω(M(xn, x))

≤ ψ(ϕ(
d(x, Tx)

2
))− ω(M(xn, x)) < ϕ(

d(x, Tx)

2
)− ω(M(xn, x)).

Take limit superior and use the continuity of ϕ and the lower semi-continuity of ω:

ϕ(d(x, Tx))≤ϕ(d(x, Tx)
2

)− lim inf ω(M(xn, x)))≤ϕ(
d(x, Tx)

2
)−ω(0)=ϕ(d(x, Tx)

2
).
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By the nondecreasing property of ϕ, we have d(x, Tx) ≤ d(x, Tx)

2
, which is a contra-

diction. Therefore, d(x, Tx)= 0, that is, x = Tx, that is, x is a fixed point of T . □

Theorem 3.2. In addition to the hypothesis of Theorem 3.1, if (A3) holds then T
has a unique fixed point.

Proof. By Theorem 3.1, the set of fixed points of T is nonempty. If possible, let x and
x∗ be two fixed points of T . Then x = Tx and x∗ = Tx∗. Our aim is to show that
x = x∗. By the assumption (A3), there exists a u ∈ X such that α(x, u) ≥ ν(x, u) and
α(x∗, u) ≥ ν(x∗, u). Put u0 = u. Then α(x, u0) ≥ ν(x, u0). Let u1 = Tu0. Similarly,
as in the proof of Theorem 3.1, we define a sequence {un} such that un+1 = Tun, for
all n ≥ 0. As T is (α− ν)-dominated, we have

α(un, un+1) ≥ ν(un, un+1), for all n ≥ 0. (12)

Arguing similarly as in proof of Theorem 3.1, we prove that {un} is a Cauchy sequence
in X and there exists a p ∈ X such that limn→+∞ un = p. We claim that

α(x, un) ≥ ν(x, un), for all n ≥ 0. (13)

As α(x, u0) ≥ ν(x, u0) and α(u0, u1) ≥ ν(u0, u1), by the assumption (A2), we have
α(x, u1) ≥ ν(x, u1). Therefore, our claim is true for n = 1. We assume that
α(x, um) ≥ ν(x, um) holds for some m > 1. By (12), α(um, um+1) ≥ ν(um, um+1).
Applying the assumption (A2), we have α(x, um+1) ≥ ν(x, um+1) and this proves our
claim.

If possible, suppose x ̸= p. Then d(x, p) > 0. As T is a (ϕ−ψ−ω)- generalized
rational weak contraction, using (13) we have

ϕ(d(x, un+1))≤ϕ(d(Tx, Tun))≤ψ(ϕ(M(x, un)))−ω(M(x, un)), for all n ≥ 0. (14)

Suppose that for each k ∈ N, there exists nk ∈ N such that nk > k and unk
= Tx.

Then p = limk→+∞ unk
= Tx = x, which implies that d(x, p) = 0, which contradicts

that d(x, p) > 0. Therefore, there exists m ∈ N such that un ̸= Tx for each n ≥ m.
Hence, in this case max{d(un, Tx), d(x, Tun)} ≠ 0 for each n ≥ m. Therefore,

M(x, un) =
d(x, Tx) d(x, Tun) + d(un, Tun)d(un, Tx)

max{d(x, Tun), d(un, Tx)}
=

d(un, un+1)d(un, x)

max{d(x, un+1), d(un, x)}
.

Taking limit as n→ +∞ on both sides, we have limn→+∞M(un, x) = 0. As d(x, p) >

0, there exists n6 ∈ N such thatM(x, un) <
d(x,p)

2 for all n > n6. Using the properties
of ϕ and ψ, we have from (14) that for all n > n6,

ϕ(d(x, un+1)) ≤ ψ(ϕ(M(x, un)))− ω(M(x, un)) < ϕ(
d(x, p)

2
)− ω(M(x, un)).

Taking limit superior in above inequality and using the continuity of ϕ and the lower
semi-continuity of ω, we have

ϕ(d(x, p)) ≤ ϕ(
d(x, p)

2
))− lim inf ω(M(x, un)) = ϕ(

d(x, p)

2
)− ω(0) = ϕ(

d(x, p)

2
).

By a property of ϕ, we have d(x, p) ≤ d(x, p)

2
, which is a contradiction. So, we have

d(x, p) = 0, that is, x = p. Similarly, we can show that x∗ = p. Then x = x∗ and
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hence T has a unique fixed point. □

Corollary 3.3. Let (X, d) be a complete metric space and ψ ∈ Ψ, ϕ ∈ Φ and ω ∈ Ω.
Then a mapping T : X → X has a unique fixed point if for all x, y ∈ X the following
inequality holds: ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y))) −ω(M(x, y)), where M(x, y) is same
as in Definition 2.8.

Proof. Taking two functions α, ν : X ×X → [0,+∞) such that α(x, y) = ν(x, y) for
all x, y ∈ X, we have the required proof from that of Theorem 3.2. □

Corollary 3.4. Let (X, d) be a complete metric space and α, ν : X ×X → [0,+∞)
be two mappings such that the properties (A1), (A2) and (A3) hold. Suppose that
T : X → X be a (α − ν)-dominated mapping and there exists a ω ∈ Ω such that for
all x, y ∈ X with α(x, y) ≥ ν(x, y),

d(Tx, Ty) ≤ M(x, y)

1 +M(x, y)
− ω(M(x, y)),

where M(x, y) is given in Definition 2.8. Then T has a unique fixed point in X.

Proof. Define two mappings ψ, ϕ : [0,+∞) → [0,+∞) as ψ(t) = t
1+t , for all t ∈

[0,+∞) and ϕ(t) = t, for all t ∈ [0,+∞). Then ψ ∈ Ψ and ϕ ∈ Φ. Then the
inequality of the theorem takes the form ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))−ω(M(x, y)),
where M(x, y) is same as in Definition 2.8. Then we have the required proof from
that of Theorem 3.2. □

Remark 3.5. Our results generalize the results in [6–8].

Example 3.6. Take the complete metric space X = {0, 1, 2, 3, . . . , n, . . .} with the

metric “d” defined as d(x, y) =

{
x+ y, if x ̸= y,

0, if x = y.
.

Let T : X → X and α, ν : X ×X → [0,+∞) be respectively defined as follows:

T (x) =

{
x− 1, if x ̸= 0,

0, if x
.
= 0,

, α(x, y) = ex+y and ν(x, y) = x+ y, for x, y ∈ X.

Let ψ, ϕ, ω : [0,+∞) → [0,+∞) be given respectively by the formulas

ψ(t) =

{
0, 0 ≤ t < 1,

t− 1, t ≥ 1,
ϕ(t) =

{
t2, 0 ≤ t < 1,

t, t ≥ 1,
ω(t) =

{
0, 0 ≤ t ≤ 1,

1, t > 1.

Let x, y ∈ X. Without loss of generality we take x ≥ y and discuss following cases.
Case 1. y ̸= 0 and x > y.

ϕ(d(Tx, Ty)) = ϕ(d(x−1, y−1)) = x+y−2,

d(x, Tx) = 2x−1, d(x, Ty) = x+y−1, d(y, Ty) = 2y−1

d(y, Tx) = x+y−1 (if y ̸= Tx) or d(y, Tx) = 0 (if y = Tx).

Now, max{d(x, Ty), d(y, Tx)} ≠ 0, M(x, y) = 2(x+y−1) or M(x, y) = 2x−1

and ψ(ϕ(M(x, y)))−ω(M(x, y)) = 2(x+y−1)−1−1 = 2(x+y−2)
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or ψ(ϕ(M(x, y)))−ω(M(x, y)) = (2x−1)−1−1 = 2x−3 = x+x−3 = x+y+k−3,

where k ≥ 1 is an integer (as x > y). Then we have ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))−
ω(M(x, y)).

Case 2. y = 0 and x > y.

ϕ(d(Tx, Ty)) = ϕ(d(x− 1, 0)) = x− 1,

d(x, Tx) = 2x− 1, d(x, Ty) = x, d(y, Ty) = 0, d(y, Tx) = x− 1.

Now, max{d(x, Ty), d(y, Tx)} ≠ 0, M(x, y) = 2x− 1

and ψ(ϕ(M(x, y)))− ω(M(x, y)) = (2x− 1)− 1− 1 = (x− 1) + x− 2 if x = 1

or ψ(ϕ(M(x, y)))− ω(M(x, y)) = (2x− 1)− 1− 0 = 2(x− 1) if x > 1.

Then we have ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))− ω(M(x, y)).

Case 3. x = y ̸= 0.

ϕ(d(Tx, Ty)) = 0, d(x, Tx) = d(x, Ty) = d(y, Ty) = d(y, Tx) = 2x− 1.

Now, max{d(x, Ty), d(y, Tx)} ≠ 0, M(x, y) = 2x− 1

and ψ(ϕ(M(x, y)))− ω(M(x, y)) = (2x− 1)− 1− 1 = (x− 1) + x− 2, if x = 1

or ψ(ϕ(M(x, y)))− ω(M(x, y)) = (2x− 1)− 1− 0 = 2(x− 1) = 0, if x > 1.

Then we have ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))− ω(M(x, y)).

Case 4. x = y = 0.

ϕ(d(Tx, Ty)) = 0, d(x, Tx) = d(x, Ty) = d(y, Ty) = d(y, Tx) = 0.

Now, max{d(x, Ty), d(y, Tx)}=0, M(x, y)=0, ψ(ϕ(M(x, y)))−ω(M(x, y))=0.

Then we have ϕ(d(Tx, Ty)) ≤ ψ(ϕ(M(x, y)))− ω(M(x, y)).
All the conditions of Theorem 3.1 and Theorem 3.2 are satisfied and here 0 is the
unique fixed point of T .

4. Error estimation and rate of convergence

For the purpose of the present section we formally state the following fixed point
problem.
Problem A Let (X, d) be a metric space and T : X → X be a mapping. We consider
the problem of finding a fixed point of T , that is, the problem of finding x ∈ X such
that x = Tx.

We now study the rate at which the iteration method of finding the fixed point
converges if the initial approximation to the fixed point is sufficiently close to the
desired fixed point. The same idea with many variations were utilized in several a
recent work [3]. For this purpose we first define the order of convergence of the fixed
point Problem A.

Definition 4.1. Problem A is said to be of order r or has the rate of convergence
r with respect to {xn} defined in (1) if (i) T has a unique fixed point x, (ii) r
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is a positive real number for which there exists a finite constant C > 0 such that
Rk+1 ≤ C [Rk]

r, where Rk = d(x, xk) is the error in k-th iterate. The constant C is
called the asymptotic error. If r = 1, we say that the iteration process has linear rate
of convergence.

Theorem 4.2. Let (X, d) be a complete metric space and T : X → X be a mapping.
Let α, ν : X ×X → [0,+∞) be two mappings and ϕ ∈ Φ, ψ ∈ Ψ, ω ∈ Ω such that all
the assumptions of Theorem 3.2 are satisfied. Then Rn+1 ≤ 2Rn, if Rn ̸= 0.

Proof. By Theorem 3.2, T has unique fixed point. Suppose x is the unique fixed point
of T . Let x0 ∈ X be the initial approximation of x. We define a sequence {xn} such
that xn+1 = Txn for all n ≥ 0. Following Theorem 3.1, we have {xn} is a Cauchy
sequence in X and {xn} converges to the fixed point of T in X. As we consider that
x is the unique fixed point of T , we have limn→+∞ xn = x.

If the error at n-th stage is zero, that is, if Rn = 0 then d(xn, x) = 0, that is,
xn = x. Then xn+1 = Txn = Tx = x, which implies that Rn+1 = d(xn+1, x) = 0.
Similarly, we can show that Rn+k = 0 for all k = 1, 2, 3, . . .. Hence we assume that
Rn = d(xn, x) ̸= 0 for all n > 0. If there exists n0 such that d(xn0

, xn0+1) = 0,
then xn0 = xn0+1 = Txn0 , that is, xn0 is a fixed point of T . As we consider that
x is the unique fixed point of T , we have xn0 = x Therefor, Rn0 = d(xn0 , x) = 0,
which contradicts our assumption that Rn ̸= 0 for all n > 0. Therefore, we assume
that rn = d(xn, xn+1) > 0 for all n. Following Theorem 3.1, we have α(xn, x) ≥
ν(xn, x) for all n ≥ 0. As max{d(xn, Tx), d(x, Txn)} = max{d(xn, x), d(x, xn+1)} =
max{Rn, Rn+1} > 0 for all n, we have

ϕ(Rn+1) = ϕ(d(xn+1, x)) = ϕ(d(xn+1, Tx)) = ϕ(d(Txn, Tx))

≤ ψ(ϕ(M(xn, x)))− ω(M(xn, x))) ≤ ψ(ϕ(M(xn, x))),

where

M(xn, x) =
d(xn, Txn)d(xn, Tx) + d(x, Tx)d(x, Txn)

max{d(xn, Tx), d(x, Txn)}
=

d(xn, xn+1)Rn

max{Rn, Rn+1}
> 0.

Using the properties of ϕ and ψ, we have

ϕ(Rn+1) ≤ ψ(ϕ(M(xn, x))) < ϕ(M(xn, x)) = ϕ
( d(xn, xn+1) Rn

max{Rn, Rn+1}

)
≤ ϕ

( [d(xn, x) + d(x, xn+1)] Rn

max{Rn, Rn+1}

)
= ϕ

( [Rn +Rn+1)] Rn

max{Rn, Rn+1}

)
≤ ϕ

(2 [max{Rn, Rn+1}] Rn

max{Rn, Rn+1}

)
= ϕ(2 Rn),

which, by a property of ϕ, implies that Rn+1 ≤ 2 Rn. □

Remark 4.3. The rate of convergence of the iteration method of finding the fixed
point is here linear.
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