Well-posedness study for solutions to nonlinear degenerate parabolic problems with variable exponent


N. Elharrar, J. Igbida




The purpose of this article is to provethe existence anduniquenessof weak solutionsfornonlinearparabolic problem whose model is \begin{align*} \begin{cases} \frac{ tial v}{ tial t}-peratorname{div}eft[|abla v-heta(v)|^{q(x)-2}(abla v-heta(v))\right]+\beta(v)=f & ext { in }\quad Q_{T}:=(0, T) imes mega , v=0 & ext { on }\quad \Sigma_{T}:=(0, T) imes tial mega, v(\cdot, 0)=v_{0} & ext { in }\quad mega. \end{cases} \end{align*} Wetransform the parabolic problem into the elliptic problem by using time discretization technique by Euler forward scheme and Rothe method combined with the theory of variable exponent Sobolev spaces.