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EXISTENCE AND NON EXISTENCE OF SOLUTIONS FOR A
BI-NONLOCAL PROBLEM

F. Jaafri, A. Ayoujil and M. Berrajaa

Abstract. The aim of this paper is to investigate the existence and non-existence of
non-trivial weak solutions to a bi-nonlocal problem under sufficient conditions by using the
variational arguments.

1. Introduction and main result

In recent years, the study of differential equations and variational problems with
nonlocal operators has emerged in many fields such as finance, optimization, contin-
uum mechanics, phase transition phenomena, population dynamics and game the-
ory [4,13,18,19].

Here we are interested in the following bi-nonlocal problem,

{—M (fQ ﬁ|Vu|p(“’)dm> Apyu=Af(z,u) [ [, F(z,u)dz] “fug(x,u) inQ,

1
u=0 on 012, o

where Q C RY (N > 1) is a bounded smooth domain, f,g: QxR — Rand M : R —
R* are continuous functions satisfying conditions given later. F(z,u) = fou f(x, s)ds,
A, u and r are real parameters with r > 0. p € C(Q) with N > p(x) > 1 and

N

Appyu = div(|VuP®~2vy) = Z <|Vup(m)_2§§)
i=1 ¢

is the p(x)-Laplacian operator.
This type of problem arises in the modeling of biological systems where u describes
a process that depends on the average of itself, such as the population density [2,5].
Furthermore, bi-nonlocal problems are related to the stationary version of a model,
the so-called Kirchhoff equation, which was introduced by Kirchhoff in 1883 [16]. The

various Kirchhoff-type equations have been studied (see e.g. [3,9,14,15]).
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234 Existence and non existence of solutions for a bi-nonlocal problem

The problem (1) was investigated by Corréa et al. [7]. For the special case that
1 = 0, the authors proved the existence of infinitely many solutions for A strictly
positive, for the following bi-nonlocal problem

(fﬂ )|Vu\p I)doz> Apyu = Af(z,u) UQ F(:z:,u)d:c]T in Q,
u=20 on 01},

After Corréa et al. [8], when g(z,u) = |u|¢®) =2y and y = 1, under appropriate
conditions and by a version of the Concentration Compactness Principle, investigated
the existence of a continuous family of eigenvalues considering different classes of the
Kirchhoff term M. More precisely, they showed the existence of a positive \, so that
the problem (1) has a non-trivial solution for all A > .

(2)

Motivated by the work mentioned above, we examine the problem (1) under more
general conditions than in [8]. We discuss the existence and non-existence of weak
solutions for the problem (1), where we obtain infinitely many solutions by applying
the Fountain theorem and the Krasnoselskii genus.

In this paper we assume the following hypotheses M, f and g : there are positive
constants mg, mq, A1, A2, By, By and functions a(z),8(z) € C4(Q) = {h : h €
C(Q); h(x) > 1,Vz € Q}, such that
(M1) mog < M(t) < my.

(f1) AtP@=1< (2, )<AptP@ =1 (£y) f(x,t)=—f(x,—t) for all (z,t) € (,R).
(gl) Blta(m)ilgg(xvt)SBZta(I)il' (gZ) g($7t):79(xa 7t) for all (xvt) € (QaR)

Problems of the form (1), are associated with the energy functional

Iapu(u) =M </Q o )|vu|p<w dm) - % U F(x,u)d:v] e “/Q Gz, u)dz,

for all u € Wy” @) (Q), where wy P @) (Q) is the generalized Lebesgue-Sobolev space
whose precise definition and properties are established in Section 2 and M(¢) =

fg M(s)ds.
The functional Jy ,, is differentiable and its Fréchet derivative is given by

T ) ):M( / e )|Vu|p(”)dx> / Va2V Vo da

—)\[/qudx} /fxuuvdx— / g(x, u)uv dx

for all u,v € WP (Q).
Thus, the weak solution of the problem (1), coincides with the critical point of Jy .
Let us define, for every x € Q,

_Nplz) if p(x) < N,
N.

+o0 if p(x) >

Now we can present our main result.
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THEOREM 1.1. Suppose that a~ < a(z) < g—ioﬁ <p” <plx)<pt<pB” <B@)p".
(i) For every A\ >0, p € R, with (M1), (f,), (), (91) and (g95) satisfied, assuming
mt ()

Az B
Then problem (1) has a sequence of weak solutions (ux) such that Jy ,(ur) — 400 as
k — +oo0.

(i) For every A > 0, u > 0, where (M1), (1), (f5), (91) and (g95) are satisfied, assume
mpt (Al)wl B r+1)
mo Ay B
Then the problem (1) has a sequence of weak solutions (ux) such that Jy ,(ux) <0
and Jx,(ur) = 0 as k — +o0.

(iii) For every A < 0, pu > 0, with (M1), (f,), (f), (9.) and (g95) satisfied, the
problem (1) has infinitely many solutions.

(iv) For every A <0, p < 0, with (M1), (f;) and (g,) satisfied, (1) has no non-trivial
weak solution.

mo

The rest of this paper is structured as follows. The Section 2 contains some
properties concerning the generalized Lebesgue and Sobolev spaces and embedding
results. The proofs of our results are presented in Section 3.

2. Preliminaries on variable exponent spaces

To study p(x)-Laplacian problems, we need some theories about the spaces LP(*)(Q)
and W) (Q). For details see [10,12].

Define Vh € C1(€2), h~ = min g h(z) < bt = max
define the variable exponent Lebegue space

LP@(Q) = {u Q=R measurable;/ lu(z)|P @ dx < oo} )
Q

seq M(x). For p € CL(Q), we

equipped with the Luxemburg norm

[ull Lo () = [ulp(z) = inf {n >0: /Q

which is a separable and reflexive Banach space.

p(z)
¢ der <15,
n

PROPOSITION 2.1 ([12]). (i) The space (LP®)(Q), |ulyx)) is a separable, uniformly
convex Banach space and its dual space is L9%) | where ﬁ + ﬁ = 1. For any
u € LP®)(Q) and v € L) (Q), we have

/ d <(1 1)I |v]
uvax + Ulp(2)|Vlg(z)-
o =\t p(@) [Vlg(x)
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(ii) If p1(x),pa(z) € C1(Q), pr1(z) < po(x) Vo € Q, then LP>®)(Q) — LP1(®)(Q) and
the embedding is continuous.

PROPOSITION 2.2 ([12]). Let p(u) = [, |u|P"®dz. For u,u, € LP® (), we have
L ulp@) <1 (resp =1,>1) & p(u) <1 (resp=1,>1).

p+
p(z

3. |un(z)|p@) — 0 (resp. = o0) < p(un) — 0(resp. — o0).

-

play U]

. - +
2. min(|ul ) < plu) < max(|u|z(1), |ulpz))-

The Sobolev space with variable exponent W1P(®)(Q) is defined as
WP (Q) .= {u QCRY 5 R:ue LPP(Q), Vu e (Lp(m)(Q))N} ,

and is equipped with the norm [|ul|; p(z) = [tlp() + [Vtt|pr). Then WHPE(Q) also
becomes a separable, reflexive and Banach space. We denote by VVO1 p(@) (2) the closure
of Cg°(2) in WhP@)(Q).

PROPOSITION 2.3 ([12, Sobolev embedding]). Suppose that  is a bounded smooth
domain in RN and p,q € C4+(Q) such that 1 < g(x) < p*(x) for all z € Q, then
there is a continuous embedding WP (Q) — LI@)(Q). If we replace < by <, the
embedding is compact.

PROPOSITION 2.4 ([12, Poincaré inequality]). If u € W'P@)(Q), then |ulym) <
C|Vulp(), where C is a constant that does not depend on wu.

REMARK 2.5. By Proposition 2.4 we know that [Vul,) and |u|,,) are equivalent
norms on Wo"™(Q). It follows that we work on Wy ™ (Q) with the norm ||u =
IVl p(z)-

PROPOSITION 2.6 ([11]). Denote

(Lp(ay (u),v) = / VPO =2VuVude  Yu,v € Wy (Q).
Q

(i) Lp) : Wol’p(x)(Q) — (Wol’p(w)(Q))* is a continuous, bounded, and strictly mono-
tone operator.

14 z) satisfies condition (S+), namely, u, — u and limsup 2 (Un ) Un —u) <
1) Lp(x) isfi diti S l dli Lz
0, imply u, = u in Wol’p(z)(Q).

(1i5) Lip(z) : Wol’p(x)(ﬂ) — (Wol’p(x)(Q))* is a homeomorphism.

p(z
To prove our main results, we need to apply the following Fountain theorem and
the Krasnoselskii’s genus.
Let X be a reflexive and separable Banach space, then there exist {e;} C X and
{ej} C X* such that X =span{e; : j =1,2,3,4,...}, X" =span{e} : j = 1,2,3,4,...},
with (e;, e7) = d;;, where &;; denotes Kronecker’s delta symbol. Define

k [SS)
X; = span{e, }, Yk:@Xj, Zk:@Xj. (3)
j=1 j=k
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Then we have the following proposition.

PROPOSITION 2.7. If B(z),a(z) € C(Q), B(x),a(z) < p*(x) for x € Q, let

Br = sup{|ulg@) ¢ [Jull = Lu € Zi}, Op =sup{|u|a@) : [Jul| = 1,u € Zi},
then limk_mo Bk = 0, limk_mo Gk =0.
LEMMA 2.8 ([20, Fountain theorem]). Let

(H1) I € C*(X,R) be an even functional, where (X;||.||) is a separable and reflexive
Banach space, the subspaces Xy, Yy and Zy are defined by (3).

If for each k € N, there exist pr, > rr > 0 such that
(H2) inf{I(u) : u € Zy;||u|| = rr} — 400 as k — +oo.
(H3) max{I(u):u € Yy;|ul| = pr} <O0.

(H4) I satisfies the (PS)-condition for every ¢ > 0.

Then I has an unbounded sequence of critical points.

LEMMA 2.9 ([20, Dual Fountain theorem]). Assuming (H1) is satisfied and there is
ko > 0 such that for every k > ko there exist py, > r, > 0 such that

(L1) ap =inf{I(u) : u € Zy; ||u| = px} > 0.

(L2) by, = max{I(u) : u € Yy;||u|| = rr} <O0.

(L3) dy, = inf{I(u) :u € Zy;||lul| < pr} = 0 as k = +o0

(L4) I satisfies the condition (PS)% for every ¢ € [d,,0).

Then I has a sequence of negative critical values converging to 0.

DEFINITION 2.10. We say that I satisfies the condition (PS)} (with respect to (Y,,)),
if every sequence u,;, C X such that n; — +00, un; € Y, I(unj) — ¢ and
(I ‘Y"j )/ (tn,) — 0, contains a subsequence that converges to a critical point of I.

In the following we recall some basic notions of Krasnoselskii’s genus.
Let X be a real Banach space. Set ® = {E C X\ {0}: E is compact and
E=-F}.

DEFINITION 2.11. Let £ € ® and X = R¥. The genus 7(E) of E is defined by

v(E) = min {k > 1; there exists an odd continuous mapping ¢ : E — R*\ {0} }.

If such a mapping does not exist for any k£ > 0, we set v(E) = co. Note also that
v(E) = 11if F is a subset consisting of finitely many pairs of points. Furthermore,
~v(0) = 0. A typical example of a set of genus k is a set that is homeomorphic to a
(k — 1) dimensional sphere via an odd mapping.

We now state some results about the Krasnoselskii’s genus that are necessary for
the present proof.

THEOREM 2.12. Let X = RF and 0 be the boundary of an open, symmetric and
bounded subset Q C R* with 0 € Q. Then v(9) = N.
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COROLLARY 2.13. (S*1) =N —1.

REMARK 2.14. If X is of infinite dimension and separable and S is the unit sphere
in X, then v(5) = oc.

The following result obtained by Clarke [6] is the main idea we use in our proof.

THEOREM 2.15. Let J € C1(X,R) be a functional satisfying the condition (PS). Let
us further assume that the following hold.
(i) J is bounded from below and even.

(i1) There exists a compact set K € R such that y(K) =k and supg J(u) < 0 = J(0).
Then J has at least k pairs of distinct critical points, and their corresponding critical
values are smaller than J(0).

Further information on this topic can be found in the references [1,17].
In this paper we use ¢;(i = 1,2,...) to denote the general non-negative constants.

3. Proof of Theorem 1.1

We will use the Fountain theorem to prove (i), and the Dual Fountain theorem to
prove (ii). We will use genus theory to prove (iii).
Proof. (i) First we verify that Jy , satisfies the (P.S) condition. Suppose that (u,) C
Wol’p(z)(Q) is (P.S) sequence, i.e.

Iapu(un) = c1 and Jﬁ\’u(un) — 0. (4)

Step 1. We prove that {u,} is bounded in W,? (z)(Q). For convenience, assume
that {u,} is unbounded in X. Thus to a passing a subsequence if necessary, we get
|lun|| > 1 for n large enough. Take

myp* AN\ (B4 )
me 0= ( > (BH)r

A
e For y < 0. From (4), (M1), (f;) and (g;), we have
1
0

P 1 )\ r+1
=M Vunp(x)dx>—[/Fx,un dx] — /Gx,un dx
([ 517l 2| rwuns] - [ Gl

- é <M </Q p(lx)VunP("”)d:v) /Q |V, [P dz — A {/QF(:r,un)dx} /Qf(:c,un)undm>

+ H/ 9(x, up)upde
0 Ja

(z) r+1 r+1 r+1
mo M1 P Al 1 Ag) (/ A( )
> (M0 My gy de A [ - (22 MECE
= 0)/9' wnl et (9(B+)" r+1(ﬁ ol

cr+ 1+ [Junl] = Tap(un) — 274, (st
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Bl BQ (z) mo mq -
— - _ -z alz > (= - = p
ot = T [ fan* O = (22— T |

which is contradiction because p~ > 1. Hence {u,,} is bounded in Wol’p(r)(Q).
e For p > 0. From (4), (M1), (f;) and (g;), we have

1
c1 14 [lunll = Iy pu(un) — gJﬁ\,u(un)un
()
mo My P By B ()
> (20 (=22 2L
> (=0 [Vl o= (2= [ e
r+1 r+1 r+1
+A A L (4 / |t | 2@ daz
o(6*)"  r+1\B" 0
mo My - By, B +
> (0 _ L P peg(22 - 2L a
> (2 = Zh) P —pea(22 = 24yl

At 1 /A -
e (g g (52) )t
0BH) r+1\p
dividing the above inequality by ||un||a+, passing to the limit as n — 400, we obtain

a contradiction. It follows that {uy} is bounded in WO1 P (x)(Q).

Step 2. We prove that (u,) has a convergent subsequence in WO1 P (I)(Q). From
J} . (un) = 0, we have
1

Hotonon =) =20 ([ 2
Y [/Q F(x,un)d:v]r /Q £, 1) (1 — w)dar — u/ﬂg(m,un)(un — w)dz — 0,

By the Holder inequality, we obtain
‘/ flz,up) (up—u)dz| < Ag/ |un|6(w)*1|un—u|dx <ecy ’|un|'6(”’3)*1
Q Q

Since B(z) < p*(x) for all x € Q, we deduce that Wol’p(z)(Q) is compactly embedded
in LP(*) hence (u,) converges strongly to u in L?(®) then Jo [z, un) (un — u)dz — 0.
By the definition of f and if (u,) is bounded, we have

1 T T 1 T
cs < [Al/ |un|5(x)d$c} < [/ F(w,un)dx} < |:A2/ |un|ﬂ(”’)d4 < cg
a B(x) Q a B(x)

and we obtain

Vun|p(w)dm>/|Vunp(”)_2VunV(un—u)dx
Q

Blz)—1

[/Q F(x,un)dx] T/Qf(x,un)(un —w)dz — 0.

Using similar arguments as above, we obtain fQ g(z,un)(u, —u)dz — 0.
From (M1), we have also L, (tn) (un—t) = [, |Vun [P 2V, V(u, —u)dz — 0.

According to the fact that L, ,) satisfies condition S , we have u,, — u in Wol’p(x) (Q).
Hence J) , satisfies the (PS) condition.
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In the following, we will prove that if k is large enough, then there exist p, > r > 0
such that (H2) and (H3) hold.

(H2) For any u € Zy, ||u|| =r > 1 (ry will be given below), we have

Ja(u) = T ( /Q p(lx)|vu|p<z>dx) - % { / F(m,u)dx] o / Gz, u)dz

3 )\ A r+1 r+1 B
> 0y~ ( ) [ / |u|ﬁ<f>dx] T
p r+1\ g~

2p+ Cllulp” —cs if |ulpe) <1,
> A AQ r+1 N
R sl 1 (ﬁ) (Bellul)?" D5 Julgay > 1.
mo A A2 T
> - P _ i r+1 )
> P - 2 (52) el -
.
— B+
Choose 1, = <2/\B (?) f8+(r+1)> grir+1) , we have
I p(u) > — >1"Z—08—>oo as k — oo,
2 p+ B‘*(r +1)

because of p~ < pT < BT (r + 1), and limy, o Bx = 0.
(H3) Let u € Yy, such that ||u|| = px > 7 > 1, then

< - p(z) _ B
ok <3 ([ csivapa) - 2 | | e “d“"] 1],
r+1
i B
<D - 2o () e Md} ' B [ s
p r+1 o o

Since dimY}; < oo, all norms are equivalent in Yy, we obtain

m A AN B
Iaulw) < = ( 5i) a0 4 BB o
We get that: Jy ,(u) - —oo as Hu|| — +oo since S (r +1) > pt > a™. So (H3)
holds. From (f5) and (g,) we can deduce that Jy ,(u) is even. By Lemma 3.1 the
proof of (i) is complete.

(ii) We will use Lemma 3.2 to prove conclusion (ii). We prove that there is kg > 0
such that, for each k > kg, there exist py > r > 0 such that (L1), (L2) and (L3) are
satisfied.

(L1) For any u € Zj, we have

—~

x,u)dz

+1

[/quda:} [ G u)ds

r+1 Q

A A2 - BQ
> pt _ 22 BT (r+1) _ 22 (Z) 1.
> P~ 2 (22) g po [ s

mo +
o) 2 2wl
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Notice that 87 (r + 1) > p™, there exists pg > 0 small enough such that

A A2 it — m +
() collull?” 1 < 2 ffulP” as 0 < p = |lul| < po. Then,

r+1\ B~ ~ 2pt
my + By PR
2]7||U||p —Ncloai(9k||u||) if |ula@) <1,
VPRSI R 1 )
— — —= at () > 1.
2er||u|| penn—=(Ollul)™ 3 fulae)
Choose
1 1
2pT B w-\pT—a- [(2p™B o\t — at
= d (2 pcsp(@ulul) )P (2 B e ) )P
mo& moox

Since p* > a™, by Proposition 2.7, we have p;, — 0 as k — oo, then Jy ,(u) > 0.
(L2) For any u € Yy, with [Ju|| < 1, we have

@Hu”f R {/ F(x u)da:] T+1—u G(z,u)dz
P r+1lJg o

m - - +
Sl Al — perglful

J,\M(u)

IN

IN

Because dim Y}, < oo, conditions 37 (r + 1) > p~ > a, there exists 73 € (0, px) such
that Jy ,(u) < 0 when ||u|| = 7y, i.e. (L2) is satisfied.
(L3) Because Y N Zy # 0, and r, < pg, we have

inf Iapw) <bp= max Jy,(u) <O0.
wezZpfull<pr u€Yiuli=rx

For u € Zy, ||ul| < pi small enought. From (5), we have
m + + +
Tau(u) = %%\\UHP — pera(Okllul)® = —pera(Orful)™
Since 0, — 0 and p;, — 0 as k — 0, (L3) holds.

Finally, we verify the (PS); condition. Suppose that (u,;) C Wol’p(x)(Q) such
that u,, € Yy, Jx .(un,) — m and (J,\,#\ynj)’(un].) — 0 as n; — +o0.

Similar to proof of Step 1. in (i), we can get the boundedness of ||uy, |. Hence,
there exists u € Wy ") () such that U, — u weakly in W™ (Q) = Un, Yn,. Then
we can find v,, € Y, such that v,, — u. We have

<J//\,,u(u’ﬂj)?uﬂj - u> = <J;\,p.<unj)7unj - Unj> + <J§\,u(unj)7vnj - u>
Notice that u,, —vy; € Yy, it yields
<J$\,;L(un]‘)?un]‘ - u> = <(J>\7H|Ynj )/(un]‘) - Uﬂj> + <J;\,u(unj)7vnj - U> — 0 asn — oo.

Similar to proof of Step 2. in (i), we deduce that u,, — u in Wol’p(m)(Q).
Furthermore, J3 | (un;) — J3 ,(u).

Now we claim that u is a critical point of Jy ,. Taking wy € Y}, notice that when
n; > k we have

(T (uny )y wi) = (T (w) = Ty () wie) + (T3, (U, ), wi)
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= (S5 u(w) = Iy (tny ) wie) + ((Tauly,, ) (tn, ), wie).-
Taking n; — 0o, we obtain (J} ,(un;), wx) = 0, Vwy, € Y.
So, J} ,(un;) = 0, this show that Jy , satisfies the (PS); condition for every
ceR.
(iii) By (fz) and (g,) we know that Jy, is even, next we will prove the two
important lemmas for our proof.

LEMMA 3.1. Jy , is bounded from below.

Proof (of Lemma 3.1). From (M1), (f ) d (g;) we have
Iap(u) = M </ —— |VuP @ dy { F(z,u d:ﬂ] - y/ G(z,u)d
o p(z r+1

mo p(z) )\ o B(x) a(z)
|Vu| dx — |u| dm - u |u| dx
r+

Taking, ||uH > 1, we have

A (AN - B "
0 e — et BT(r+1) _ P2 o
Il = 2l - 2 /ﬁ) exslu p 22
So Jx,, is bounded from below, because = (r + 1) > p~ > a™. U

LEMMA 3.2. Jy , satisfies the (PS) condition.

Proof (of Lemma 3.2). Let (u,) has a convergent subsequence in Wol’p(m)(Q)7 such
that Jy ,(u,) = c17 and Jg’#(un) — 0. Then, by the ceorcivity of Jy ,, the sequence
(un) is bounded in Wy (Q). By the reflexity of Wy ") (), for a subsequence still
denoted (uy ), such that w, — u in VV1 p(z)( 2). Similar to proof of Step 2. in (i), we
deduce that u, — u in W3 7"(Q). 0

In the sequel, for each k£ € N consider X}, = span{e,es,es,..., e}, the sub-
space of X. Note that Xj — L®)(Q), X}, — LA@(Q), 1 < a(z) < B(z) < p*(z)
with continuous immersions. Thus, the norm Wo ™ (Q), L@ (Q) and L@)(Q) are
equivalent on Xj.

Note that using (M1), (f;) and (g;), we obtain

m1 A Ag T ( T Bl
7 Ty lP@) Az s\ _ B / al@) g
) < P~ ( [Vl ) r+1 (ﬂJr) Q e Hot ) u :

+1
mi p~ A A2 " B~ (r+1) Bl at
pTHUH Tt (BJF) cslul - HaijHu“

if [|u]| is small enough. Hence,

my A A\ - —at By
-  r+1\gF cis | [ull —Najclg .

/\

IN

at
Dau(w) < |lul|
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Let R be a positive constant such that

m A A\ - B
- ( 2) c1g | R? _a+<ua7}r019.

p—  r+1\pt
Thus, for all 0 < ro < R, and considering K = {u € X : ||u]| = ro}, we obtain
r+1
at my A Ao p—at By
Iau(u) <7g - r+l (5+) 18 | To TR FC
| (m A A\ .+ B
< R* p7_1— il (ﬂi) C18 RP —¢ —u?iclg <0=J)\“u(0).

Which implies supy Jy ,(u) < 0 = Jy ,(0). Because Xy and R* are isomorphic and
K and S*~! are homeomorphic, we conclude that (k) = k. By the Clark theorem,
Jx,u has at least k£ pair of different critical points. Because k is arbitrary, we obtain
infinitely many critical points of J) .

(iv) When A < 0, o < 0, we argue by contradiction that u € Wol’p(z)(Q) \ {0} is a
weak solution of (1). Multiplying (1) by w and integrating by part, we have

1
M(/ |Vu|p(’”)dx>/|Vu|p(x)da:
o p(z) Q

=\ [/Q F(x,u)da:y/gf(x,u)uderu/Q g(x,u)udz.

It is contrary to conditions (M1), (f;) and (g;). The proof is complete. O

ACKNOWLEDGEMENT. The authors would like to thank the anonymous referees
and the editor for their careful reading and valuable comments and suggestions on
this article.

REFERENCES

[1] A. Mao, W. Wang, Signed and sign-changing solutions of bi nonlocal fourth order elliptic
problem, J. Math. Phys., 60 (2019), 051513.

[2] D. Andrade, T. F. Ma, An operator equation suggested by a class of stationary problems,
Commun. Appl. Nonlinear Anal., 4 (1997), 65-71.

[8] M. Avci, B. Cekic, R. A. Mashiyev, Ezistence and multiplicity of the solutions of the
p(z)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci., 34(14) (2011),
1751-1759.

[4] Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restora-
tion, SIAM J. Appl. Math., 66 (2006), 1383-1406.

[6] M. Chipot, J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems. RAIRO,
Modélisation Math. Anal. Numér., 26 (1992), 447-467.

[6] D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972),
65-74.

[7] F.J.S.A. Corréa, A. C. R. Costa, On a bi-nonlocal p(z)-Kirchhoff equation via Krasnoselskii’s
genus, Math. Meth. Appl. Sci., 38 (2014), 87-93.

[8] F. J. S. A. Corréa, A. C. R. Costa, On a p(z)-Kirchhoff equation with critical exponent and
an additional nonlocal term, Funkc. Ekvacioj, Ser. Int., 58(8) (2015), 321-345.



244

(9]

[10]
[11]
[12]
[13]
[14]
[15]

(16]
(17]

(18]
(19]

(20]

Existence and non existence of solutions for a bi-nonlocal problem

F. J. S. A. Corréa, A. C. R. Costa, A variational approach for a bi-non-local elliptic problem
involving the p(z)-Laplacian and non-linearity with non-standard growth, Glasg. Math. J.,
56(2) (2014), 317-333.

X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wm*p<””)(Q)7 J. Math.
Anal. Appl., 262 (2001), 749-760.

X. L. Fan, Q. H. Zhang, Ezistence of solutions for p(z)-Laplacian Dirichlet problems, Nonlinear
Anal., 52(8) (2003), 1843-1852.

X. L. Fan, D. Zhao, On the spaces LP(*)(Q) and Wm’p(z)(Q), J. Math. Anal. Appl., 263
(2001), 424-446.

M. Hamdani, A. Harrabi, F. Mtiri, D. D Repovs, Existence and multiplicity results for a new
p(z)-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598.

F. Jaafri, A. Ayoujil, M. Berrajaa, On a bi-nonlocal fourth order elliptic problem, Proyecciones,
40(1)(2021), 235-249.

F. Jaafri, A. Ayoujil, M. Berrajaa, Multiple solutions for a bi-nonlocal elliptic problem involv-
ing p(z)-biharmonic operator, Palest. J. Math., 12(1) (2023), 197-203.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations,
MacMillan: New York, 1964.

T. G. Myers, Thin films with high surface tension, SIAM Review, 40(3) (1998), 441-462.

M. Ruzi¢ka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin,
2000.

M. Willem, Minimaxz Theorems, Birkhauser, Boston, 1996.

(received 15.01.2021; in revised form 14.08.2023; available online 16.08.2024)

University Mohamed I, Faculty of sciences, laboratory LaMAO, Oujda, Morocco

E-mail: jaafri.fatna.sma@gmail.com
ORCID iD: https://orcid.org/0009-0001-8727-8405

Regional Centre of Trades Education and Training, laboratory LaMAO, Oujda, Morocco

E-mail: abayoujil@gmail.com
ORCID iD: https://orcid.org/0000-0002-0559-3242

University Mohamed I, Faculty of sciences, laboratory LaMAO, Oujda, Morocco

E-mail: berrajaamo@yahoo.fr
ORCID iD: https://orcid.org/0009-0006-8795-4078


https://orcid.org/0009-0001-8727-8405
https://orcid.org/0000-0002-0559-3242
https://orcid.org/0009-0006-8795-4078

	Introduction and main result
	Preliminaries on variable exponent spaces
	 Proof of Theorem 1.1

