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ON (α, β, γ)-METRICS

Nasrin Sadeghzadeh and Tahere Rajabi

Abstract. In this paper, we introduce a new class of Finsler metrics that generalize
the well-known (α, β)-metrics. These metrics are defined by a Riemannian metric α and
two 1-forms β = bi(x)y

i and γ = γi(x)y
i. This new class of metrics not only generalizes

(α, β)-metrics, but also includes other important Finsler metrics, such as all (generalized)
γ-changes of generalized (α, β)-metrics, (α, β)-metrics, and spherically symmetric Finsler
metrics in Rn. We find a necessary and sufficient condition for this new class of metrics to
be locally projectively flat. Furthermore, we prove the conditions under which these metrics
are of Douglas type.

1. Introduction

(α, β)-metrics form a special class of Finsler metrics, in part because they are com-
putationally tractable. An (α, β)-metric on a smooth manifold M is defined by
F = αϕ(s), s = β

α where ϕ = ϕ(s) is a C∞ scalar function on (−b0, b0) satisfying cer-

tain regularity conditions, α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i

is a 1-form on M .
In [7] we have studied a new generalization of the (α, β)-metrics which is defined

by a Finsler metric F and a 1-form γ = γiy
i on an n-dimensional manifold M . Then

the metric is given by F̄ = Fψ(s̃), where s̃ := γ
F , ∥γ∥F < g0 and ψ(s̃) is a positive C∞

function on (−g0, g0). These metrics could be seen as β-change of a Finsler metric.
Suppose F = αϕ(s), s = β

α is a (α, β)- metric. For every 1-form γ ̸= β, F̄ =
αϕ(s)ψ(s̃) is not necessarily an (α, β)-metric. If F = α + β is a Randers metric and
F̄ = F + γ is a Randers change of F , then F̄ = α+ β + γ is a Randers metric. With
this idea, we have defined a new generalization of the (α, β)-metrics in the form of
F̄ = αΨ(s, s̄), where Ψ(s, s̄) = ϕ(s)ψ( s̄

ϕ(s) ), s̄ =
γ
α .

In this paper we intend to generalize the above metric. We consider a new general-
ization of the (α, β)-metrics which is defined by a Riemannian metric α =

√
aij(x)yiyj

and two 1-forms β = biy
i and γ = γiy

i on an n-dimensional manifold M . Then the
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metric is given by F = αΨ(s, s̄), where s = β
α , s̄ = γ

α , ∥β∥α < g0 and Ψ(s, s̄) is
a positive C∞ function on (−b0, b0) × (−g0, g0) is a Finsler metric, which we call
(α, β, γ)-metric.

This class of Finsler metrics generalizes (α, β)-metrics in a natural way. But
the main reason for our interest in them is that they include some Finsler metrics
such as all (generalized) γ-change of generalized (α, β)-metrics, (α, β)-metrics and
spherical symmetric Finsler metrics in Rn [10, 12]. As an example, let us consider

the transformed 2nd root metric F : F̄ =
√
F 2 + β + γ, where β = bij(x)y

iyi and
γ = ci(x)y

i is a one-form on the manifold Mn.
There are some generalizations of the (α, β)-metrics introduced in the various

papers. A generalization of the (α, β)-metric was presented in [5,8,9], which coincides
with the (α, β, γ)-metric in the case p = 2. Another generalization of the (α, β)-
metrics are the general (α, β)-metrics, which were first introduced by C. Yu and H.
Zhu in [11]. By definition, a general (α, β)-metric F can be expressed in the following
form F = αϕ(b2, s), where b := ∥β∥α. In the future, we can similarly define the
general (α, β, γ)-metric given by F = αϕ(b2, g2, s, s̄), where b := ∥β∥α and g := ∥γ∥α.

2. Preliminaries

Let M be a smooth manifold and TM :=
⋃

x∈M TxM be the tangent bundle of M ,
where TxM is the tangent space at x ∈ M . A Finsler metric on M is a function
F : TM −→ [0,+∞) with the following properties
− F is C∞ on TM\{0};

− F is positively 1-homogeneous on the fibers of tangent bundle TM ;

− for each x ∈M , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|t,s=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that C = 0
if and only if F is Riemannian.
Given a Finsler manifold (M,F ), then a global vector field G is induced by F on
TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
.

where Gi(x, y) are local functions on TM0 given by

Gi =
1

4
gil

{∂gjl
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

}
yjyk. (1)
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G is called the associated spray to (M,F ). The projection of an integral curve of the
spray G is called a geodesic in M .

A Finsler metric F = F (x, y) on an open subset U ⊆ Rn is said to be projectively
flat if all geodesics are straight in U . It is well-known that a Finsler metric F on an
open subset U ⊆ Rn is projectively flat if and only if it satisfies the following system
of equations, Fxkyjyk − Fxj = 0. This fact is due to G. Hamel [4]. In this case,

Gi = Pyi, where P = P (x, y) is given by P =
F

xky
k

2F . The scalar function P is called
the projective factor of F .

3. (α, β, γ)-metrics

Definition 3.1. For a Riemannian metric α and two 1-form β = bi(x)y
i and γ =

γi(x)y
i on an n-dimensional manifold M , an (α, β, γ)-metric F can be expressed as

the form F = αΨ(s, s̄), s := β
α , s̄ := γ

α , where ∥β∥α < b0, ∥γ∥α < g0 and Ψ(s, s̄)
is a positive C∞ function on (−b0, b0)× (−g0, g0).

Proposition 3.2. For an (α, β, γ)-metric F = αΨ(s, s̄), where s = β
α and s̄ = γ

α ,
the fundamental tensor is given by

gij = ρaij + ρ0bibj + ρ̄0γiγj

+ ρ1(biαj + bjαi) + ρ̄1(γiαj + γjαi) + ρ2αiαj + ρ3(biγj + bjγi), (2)

where

ρ := Ψ(Ψ− sΨs − s̄Ψs̄), ρ0 := ΨΨss +ΨsΨs, ρ1 := ΨΨs − sρ0 − s̄ρ3, (3)

ρ2 := −sρ1 − s̄ρ̄1, ρ̄0 := ΨΨs̄s̄ +Ψs̄Ψs̄, ρ̄1 := ΨΨs̄ − s̄ρ̄0 − sρ3,

ρ3 := ΨΨss̄ +ΨsΨs̄. (4)

Moreover,

det(gij) = Ψn+1
(
Ψ− sΨs − s̄Ψs̄

)n−2
Γ det(aij), (5)

where

Γ := Ψ− sΨs − s̄Ψs̄ + (b2 − s2)Ψss + (g2 − s̄2)Ψs̄s̄ + 2(θ − ss̄)Ψss̄

+
[
(b2 − s2)(g2 − s̄2)− (θ − ss̄)2

]
J, (6)

and

b2 := aijbibj , g2 := aijγiγj , θ := aijbiγj , J :=
ΨssΨs̄s̄ −Ψss̄Ψss̄

Ψ− sΨs − s̄Ψs̄
.

gij =
1

ρ

{
aij − 1

Γ

[
Ψss + (g2 − s̄2)J

]
bibj − 1

Γ

[
Ψs̄s̄ + (b2 − s2)J

]
γiγj (7)

− 1

ΨΓ

[
ρ1 + π2(θ − ss̄)− π1(g

2 − s̄2)
]
(biαj + bjαi)

− 1

ΨΓ

[
ρ̄1 − π2(b

2 − s2) + π1(θ − ss̄)
]
(γiαj + γjαi)
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+
1

Ψ2Γ

([
sΨ+ (b2 − s2)Ψs + (θ − ss̄)Ψs̄

][
ρ1 + π2(θ − ss̄)− π1(g

2 − s̄2)
]

+
[
s̄Ψ+ (g2 − s̄2)Ψs̄ + (θ − ss̄)Ψs

][
ρ̄1 − π2(b

2 − s2) + π1(θ − ss̄)
])
αiαj

}
,

where

π1 := Ψs̄Ψss̄ −ΨsΨs̄s̄ + sΨJ, π2 := ΨsΨss̄ −Ψs̄Ψss + s̄ΨJ. (8)

Moreover, the Cartan tensor of F is given by

Cijk =
ρ1
2

[
hkαij + hiαjk + hjαik

]
+
ρ̄1
2

[
h̄kαij + h̄iαjk + h̄jαik

]
+

(ρ0)s̄
2α

[
hihj h̄k + hjhkh̄i + hihkh̄j

]
+

(ρ̄0)s
2α

[
h̄ih̄jhk + h̄j h̄khi + h̄ih̄khj

]
+

(ρ0)s
2α

hihjhk +
(ρ̄0)s̄
2α

h̄ih̄j h̄k. (9)

Remark 3.3. One could easily show that the above preposition satisfies for any (α, β)-
metric just by putting s̄ = 0, and satisfies for any (α, γ)-metric just by putting s = 0.

Proof. Recall that the fundamental tensor and Cartan tensor of a Finsler metric F
are given by gij = 1

2 [F
2]yiyj = FFyiyj + FyiFyj and Cijk = 1

2 (gij)yk , respectively.
Direct computations yield

syi =
1

α
hi, where hi := bi − sαi, αi = αyi ,

s̄yi =
1

α
h̄i, where h̄i := γi − s̄αi,

Ψyi =
1

α

[
Ψshi +Ψs̄h̄i

]
,

(Ψs)yi =
1

α

[
Ψsshi +Ψss̄h̄i

]
,

(Ψs̄)yi =
1

α

[
Ψs̄shi +Ψs̄s̄h̄i

]
,

(hi)yj = − 1

α
hjαi − sαij , where αij = αyiyj =

1

α
(aij − αiαj).

(h̄i)yj = − 1

α
h̄jαi − s̄αij .

Let ℓi = Fyi and ℓij = Fyiyj . By above equations we have

ℓi = Ψαi +Ψshi +Ψs̄h̄i, (10)

ℓij =
[
Ψ− sΨs − s̄Ψs̄

]
αij +

1

α
Ψsshihj +

1

α
Ψs̄s̄h̄ih̄j +

1

α
Ψss̄

[
hih̄j + hj h̄i

]
. (11)

Then we get (2). We can rewrite (2) as follows

ḡij=ρ

{
aij+δ1bibj+δ2γiγj+δ0(bi+γi)(bj+γj)+

ρ2
ρ
[αi+

ρ1
ρ2
bi+

ρ̄1
ρ2
γi][αj+

ρ1
ρ2
bj+

ρ̄1
ρ2
γj ]

}
,

where δ0 := 1
ρ (ρ3 −

ρ1ρ̄1

ρ2
), δ1 := 1

ρ (ρ0 −
ρ2
1

ρ2
)− δ0, δ2 := 1

ρ (ρ̄0 −
ρ̄2
1

ρ2
)− δ0.

Using [2, Lemma 1.1.1] four times, we obtain (5) and (7). □
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Remark 3.4. Notice that by Cauchy-Schwartz inequality we have θ2 = (aijbiγj)
2 ≤

(aijbibj)(a
ijγiγj) = b2g2.

We need to prove the following proposition.

Proposition 3.5. Let M be an n-dimensional manifold. An (α, β, γ)-metric F =
αΨ(s, s̄), s = β

α , s̄ = γ
α is a Finsler metric for any Riemannian α and 1-forms

β = biy
i, γ = γiy

i where ∥β∥α < b0, ∥γ∥α < g0, θ − ss̄ ≥ 0 if and only if the positive
C∞ function Ψ = Ψ(s, s̄) satisfying

Π := Ψ− sΨs − s̄Ψs̄ > 0, Γ > 0, (12)

when n ≥ 3 or Γ > 0, when n = 2, where Γ is given by (6) and s, s̄, b, g are arbitrary
numbers with |s| ≤ b < b0 and |s̄| ≤ g < g0.

Proof. The case n = 2 is similar to n ≥ 3, so we only prove the proposition for n ≥ 3.
It is easy to verify that F is a function with regularity and positive homogeneity. In
the following we will consider the strong convexity condition.

Assume that (12) is satisfied, then we could write ΠΓ as a second order equation
in Π as follows

ΠΓ = Π2 + (a+ ā)Π + (aā− bb̄) > 0, (13)

where

a := (b2 − s2)Ψss + (θ − ss̄)Ψss̄, b := (b2 − s2)Ψss̄ + (θ − ss̄)Ψs̄s̄,

ā := (g2 − s̄2)Ψs̄s̄ + (θ − ss̄)Ψss̄, b̄ := (g2 − s̄2)Ψss̄ + (θ − ss̄)Ψss.

The above inequality holds if and only if one of the following holds:
(i) ∆ < 0 where ∆ = (a+ ā)2 − 4(aā− bb̄);

(ii) ∆ = 0, then Π ̸= ω and ΠΓ = (Π− ω)2 where ω = − 1
2 (a+ ā);

(iii) ∆ > 0, then 0 < Π < ω1 or Π > ω2 where ω1 := − 1
2

[
(a + ā) +

√
∆
]
and

ω2 := − 1
2

[
(a+ ā)−

√
∆
]
. Note that ω1 < ω2.

Consider a family of functions Ψt(s, s̄) = 1 − t + tΨ(s, s̄), 0 ≤ t ≤ 1. Put Ft =
αΨt(s, s̄) and gtij = 1

2 [F
2
t ]yiyj , then F0 = α and F1 = F . We are going to prove

Πt > 0 and Γt > 0 for any 0 ≤ t ≤ 1, |s| ≤ b < b0 and |s̄| ≤ g < g0. It is easy to see
that Πt = 1− t+ tΠ > 0. Moreover ΠtΓt = Π2

t + t(a+ ā)Πt + t2(aā− bb̄). Then we
have ∆t = t2∆ where

∆ = (a+ ā)2 − 4(aā− bb̄). (14)

It is easy to see that for ∆t(s, s̄) < 0, the equation ΠtΓt is always positive, i.e. Γt > 0.
Now suppose that there are t0 and (s0, s̄0) such that ∆t0(s0, s̄0) > 0. Since ∆t(s, s̄)

is continuous with respect to t and (s, s̄), then there is D ⊂ (−b0, b0)× (−g0, g0) such
that ∀(s, s̄) ∈ D ∆t(s, s̄) > 0 and ∀(s, s̄) ∈ ∂D ∆t(s, s̄) = 0, where ∂D is border
of D. Then on D we have

ΠtΓt = (Πt − tω1)(Πt − tω2). (15)

If on D we have Γt(s, s̄) > 0, then there is not anything to prove. Now suppose that
there exits U ⊂ D such that for (s, s̄) ∈ U = U

⋃
∂U we have Γt(s, s̄) ≤ 0. Since
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Γ0,Γ1 are both positive, then by continuity Γt we get ∃t1, t2 ∈ (0, 1) s.t. Γt1(s, s̄) =
Γt2(s, s̄) = 0; ∀(s, s̄) ∈ U . By (15) we have

(Πt1 − t1ω1)(Πt1 − t1ω2) = 0, and (Πt2 − t2ω1)(Πt2 − t2ω2) = 0. (16)

Then for t1 ≤ t ≤ t2 we get ∀(s, s̄) ∈ U Γt(s, s̄) ≤ 0, and ∀(s, s̄) ∈ D−U Γt(s, s̄) >
0. By continuity Γt we have Γt(s, s̄) = 0, t1 ≤ t ≤ t2, (s, s̄) ∈ ∂U . Then (15) yields
Πt = tω1 or Πt = tω2. In this case by (16) we get t1 = t2 which is a contradiction.
So Γt(s, s̄) > 0 on D.

Now let there is D1 ⊂ (−b0, b0)× (−g0, g0) such that ∆(s, s̄) = 0 for every (s, s̄) ∈
D1. Then we see that for every 0 ⩽ t ⩽ 1 and (s, s̄) ∈ D1 we have ∆t(s, s̄) = 0. One
could easily get ΠtΓt − t2ΠΓ = (1− t)

(
1− t+2t(Π+ a+ā

2 )
)
. If for some 0 < t < 1 we

have 1 − t + 2t(Π + a+ā
2 ) ⩾ 0 then ΠtΓt ⩾ t2ΠΓ > 0 and therefore Γt > 0. Now we

assume that there are 0 < t < 1 such that

1− t+ 2t(Π +
a+ ā

2
) < 0. (17)

which one could easily get 1− t+ t(Π− a+ā
2 ) < 1

2 (1− t) ̸= 0. Thus

ΠtΓt = (Πt − ωt)
2 =

(
1− t+ t(Π− ω)

)2
=

(
1− t+ t(Π− a+ ā

2
)
)2
> 0. (18)

Then for this 0 < t < 1 we get Γt > 0, too.

All above arguments yield Γt > 0 for any 0 ≤ t ≤ 1. Then det(gtij) > 0 for all

0 ≤ t ≤ 1. Since (g0ij) is positive definite, we conclude that (gtij) is positive definite
for any t ∈ [0, 1]. Therefore, Ft is a Finsler metric for any t ∈ [0, 1].

Conversely, assume that F = αΨ(s, s̄) is a Finsler metric for any Riemannian
metric α and 1-forms β and γ with b < b0 and g < g0. Then Ψ = Ψ(s, s̄) and det(gij)
are positive. By Proposition 3.2, det(gij) > 0 is equivalent to Πn−2Γ > 0, which
implies Π ̸= 0 when n ≥ 3. Noting that Ψ(0, 0) > 0, one could get the inequality
Π > 0. Γ > 0 also holds because of det(gij) > 0. □

Example 3.6. In [7], a new class of Finsler metrics called (F, γ)-metrics was in-
troduced. A Finsler metric F̄ is called (F, γ)-metric if it has the following form
F̄ = Fψ(s̃), s̃ = γ

F , where F is a Finsler metric and γ = γiy
i is a 1-form on an n-

dimensional manifold M , ψ(s̃) is a positive C∞ function on (−g0, g0) and ∥γ∥F < g0.
It has been shown that F̄ is a Finsler metric if and only if the positive C∞ function
ψ(s̃) satisfying

ψ − s̃ψ′ > 0, ψ − s̃ψ′ + (p2 − s̃2)ψ′′ > 0, (19)

when n ≥ 3 or ψ − s̃ψ′ + (p2 − s̃2)ψ′′ > 0, when n = 2, where p2 := gijγiγj . Now

suppose that F is an (α, β)-metric, i.e. F = αϕ(s), s = β
α . Then

F̄ = αϕ(s)ψ(s̃). (20)

Let s̄ = γ
α and Ψ := ϕ(s)ψ( s̄

ϕ(s) ). Then (20) is an (α, β, γ)-metric. A direct computa-

tion gives Π = (ϕ− sϕ′)(ψ− s̃ψ′), Γ =
[
ϕ− sϕ′+(b2− s2)ϕ′′

][
ψ− s̃ψ′+(p2− s̃2)ψ′′].

By these relations we can conclude that if F be an (α, β)-metric, then F̄ is Finsler
metric iff Π > 0 and Γ > 0.
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For 1-form β = bi(x)y
i and γ = γi(x)y

i, we have

βrij :=
1

2

(
bi|j + bj|i

)
, βsij :=

1

2

(
bi|j − bj|i

)
. (21)

γrij :=
1

2

(
γi|j + γj|i

)
, γsij :=

1

2

(
γi|j − γj|i

)
. (22)

where ”|” denotes the covariant derivative with respect to the Levi-Civita connection
of α. Moreover, we define

βri0 :=βrijy
j , βrj := bi βrij ,

βr0 :=βrjy
j , βr00 =βrijy

iyj ,
βsi0 :=βsijy

j , βsj := bi βsij ,
βs0 :=β sjy

j , βsi0 = aij βsj0,
βs̄0 :=β si0γi,

and γri0 :=γrijy
j , γrj := bi γrij ,

γr0 :=γrjy
j , γr00 =γrijy

iyj ,
γsi0 :=γsijy

j , γsj := bi γsij ,
γs0 :=γsjy

j , γsi0 = aij γsj0,
γs̄0 :=γ si0bi.

4. Spray coefficients of F

In this section, to compute Gi, we use a technique used by Matsumoto in [6].

For F = αΨ(s, s̄) we can get

βxj = b0|j + brG
r
j , γxj = γ0|j + γrG

r
j ,

sxj =
1

α
(b0|j + hrG

r
j), s̄xj =

1

α
(γ0|j + h̄rG

r
j), (23)

where Gi
j =

αGi
yj . Moreover, by α|i = 0 and αi|j = 0 we have

αxj = αrG
r
j , (αi)xj = αirG

r
j + αrG

r
ij , (24)

where Gr
ij =

αGr
yiyj . Then

(hi)xj = bi|j −
1

α
b0|jαi −

1

α
hrG

r
jαi + hrG

r
ij − sαirG

r
j ,

(h̄i)xj = γi|j −
1

α
γ0|jαi −

1

α
h̄rG

r
jαi + h̄rG

r
ij − s̄αirG

r
j . (25)

Differentiating (10) with respect to xj and using (23), (24) and (25) yield

∂ℓi
∂xj

= Ψsbi|j +Ψs̄γi|j +
1

α

[
Ψssb0|j +Ψss̄γ0|j

]
hi +

1

α

[
Ψss̄b0|j +Ψs̄s̄γ0|j

]
h̄i

+
[
Ψαr +Ψshr +Ψs̄h̄r

]
Gr

ij + (Ψ− sΨs − s̄Ψs̄)αirG
r
j

+
1

α

[
Ψsshihr +Ψs̄s̄h̄ih̄j +Ψss̄(hih̄j + h̄ihj)

]
Gr

j . (26)

Let ”; ” denotes the horizontal covariant derivative with respect to Cartan connection
of F . Next, we deal with ℓi;j = 0, that is ∂ℓi

∂xj = ℓirN
r
j + ℓrΓ

r
ij . Let us define

Di
jk := Γi

jk −Gi
jk, Di

j := Di
jky

k = N i
j −Gi

j , Di := Di
jy

j = 2Gi − 2 αGi. (27)

Then ∂ℓi
∂xj = ℓir(D

r
j + Gr

j) + ℓr(D
r
ij + Gr

ij). Putting (10) and (11) in above equation
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yields

∂ℓi
∂xj

= ℓirD
r
j + ℓrD

r
ij +

[
Ψαr +Ψshr +Ψs̄h̄r

]
Gr

ij

+
[
(Ψ− sΨs − s̄Ψs̄)αir +

1

α
Ψsshihr +

1

α
Ψs̄s̄h̄ih̄r +

1

α
Ψss̄(hih̄r + h̄rhi)

]
Gr

j . (28)

By comparing (26) and (28) we get the following

Ψsbi|j+Ψs̄γi|j=ℓirD
r
j+ℓrD

r
ij−

1

α

[
Ψssb0|j+Ψss̄γ0|j

]
hi −

1

α

[
Ψss̄b0|j+Ψs̄s̄γ0|j

]
h̄i. (29)

Thus by (21) and (22) we have

2Ψs
βrij + 2Ψs̄

γrij = ℓirD
r
j + ℓjrD

r
i + 2ℓrD

r
ij

− 1

α

[
Ψssb0|j +Ψss̄γ0|j

]
hi −

1

α

[
Ψssb0|i +Ψss̄γ0|i

]
hj

− 1

α

[
Ψss̄b0|j +Ψs̄s̄γ0|j

]
h̄i −

1

α

[
Ψss̄b0|i +Ψs̄s̄γ0|i

]
h̄j , (30)

2Ψs
βsij + 2Ψs̄

γsij = ℓirD
r
j − ℓjrD

r
i

− 1

α

[
Ψssb0|j +Ψss̄γ0|j

]
hi +

1

α

[
Ψssb0|i +Ψss̄γ0|i

]
hj

− 1

α

[
Ψss̄b0|j +Ψs̄s̄γ0|j

]
h̄i +

1

α

[
Ψss̄b0|i +Ψs̄s̄γ0|i

]
h̄j . (31)

Contracting (30) and (31) with yj implies that

2Ψs
βri0 + 2Ψs̄

γri0 = ℓirD
r + 2ℓrD

r
i −

1

α

[
Ψss

βr00 +Ψss̄
γr00

]
hi

− 1

α

[
Ψss̄

βr00 +Ψs̄s̄
γr00

]
h̄i. (32)

2Ψs
βsi0 + 2Ψs̄

γsi0 = ℓirD
r − 1

α

[
Ψss

βr00 +Ψss̄
γr00

]
hi

− 1

α

[
Ψss̄

βr00 +Ψs̄s̄
γr00

]
h̄i. (33)

If you subtract (33) from (32), you get

Ψs(
βri0 − βsi0) + Ψs̄(

γri0 − γsi0) = ℓrD
r
i . (34)

The contraction of (34) with yi leads to

Ψs
βr00 +Ψs̄

γr00 = ℓrD
r. (35)

To obtain the spray coefficients of F , we first propose the following lemma.

Lemma 4.1. The system of algebraic equations (i) ℓirA
r = Bi, (ii) ℓrA

r = B, has
unique solution Ar for given B and Bi such that Biy

i = 0. The solution is given by

Ai = (αrA
r)αi +

α

Π
Bi − α

ΠΓ
(µ1h

i + µ2h̄
i), (36)

where Bi = ailBl, h
i = ailhl, h̄

i = ailh̄l and

Π := Ψ− sΨs − s̄Ψs̄,

µ1 :=
[
Ψss + (g2 − s̄2)J

]
Brb

r +
[
Ψss̄ − (θ − ss̄)J

]
Brγ

r,
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µ2 :=
[
Ψs̄s̄ + (b2 − s2)J

]
Brγ

r +
[
Ψss̄ − (θ − ss̄)J

]
Brb

r.

Proof. By contracting (11) with bi and γi we have

ℓijb
i=

1

α

[
Π+(b2−s2)Ψss+(θ−ss̄)Ψss̄

]
hj+

1

α

[
(b2−s2)Ψss̄+(θ−ss̄)Ψs̄s̄

]
h̄j , (37)

ℓijγ
i=

1

α

[
(θ−ss̄)Ψss+(g2−s̄2)Ψss̄

]
hj+

1

α

[
Π+(θ−ss̄)Ψss̄+(g2−s̄2)Ψs̄s̄

]
h̄j . (38)

Next contracting equation (i) with bi and γi and using (37) and (38) we get the
following{ [

Π+ (b2 − s2)Ψss + (θ − ss̄)Ψss̄

]
hjA

j +
[
(b2 − s2)Ψss̄ + (θ − ss̄)Ψs̄s̄

]
h̄jA

j = αBjb
j[

(θ − ss̄)Ψss + (g2 − s̄2)Ψss̄

]
hjA

j +
[
Π+ (θ − ss̄)Ψss̄ + (g2 − s̄2)Ψs̄s̄

]
h̄jA

j = αBjγ
j .

By solving the above system we obtain

hjA
j =

α

ΠΓ

{[
Π+ (θ − ss̄)Ψss̄ + (g2 − s̄2)Ψs̄s̄

]
Bjb

j

−
[
(b2 − s2)Ψss̄ + (θ − ss̄)Ψs̄s̄

]
Bjγ

j
}
, (39)

h̄jA
j =

α

ΠΓ

{[
Π+ (b2 − s2)Ψss + (θ − ss̄)Ψss̄

]
Bjγ

j

−
[
(θ − ss̄)Ψss + (g2 − s̄2)Ψss̄

]
Bjb

j
}
. (40)

Substituting (10) in equation (ii) yields ΨαjA
j + ΨshjA

j + Ψs̄h̄jA
j = B. By (39)

and (40) we get

αjA
j=

1

Ψ

{
B− α

ΠΓ

(
Ψs

[
Π+(θ−ss̄)Ψss̄+(g2−s̄2)Ψs̄s̄

]
−Ψs̄

[
(θ−ss̄)Ψss+(g2−s̄2)Ψss̄

])
Bjb

j

− α

ΠΓ

(
Ψs̄

[
Π+(b2−s2)Ψss+(θ−ss̄)Ψss̄

]
−Ψs

[
(b2−s2)Ψss̄+(θ−ss̄)Ψs̄s̄

])
Bjγ

j
}
.

Applying (11) in equation (i) yields

Π

α

[
aijA

j − (αjA
j)αi

]
+

1

α

[
(Ψsshi +Ψss̄h̄i)hjA

j + (Ψss̄hi +Ψs̄s̄h̄i)h̄jA
j
]
= Bi.

Contracting this equation with aij and using (39) and (40) one could get (36). □

Now, we are able to obtain the spray coefficients of F .

The equations (33) and (35) constitute the system of algebraic equations whose
solution from Lemma 4.1 is given by Di = (αrD

r)αi+ α
ΠB

i− α
ΠΓ (µ1h

i+µ2h̄
i), where

Bi=2Ψs
βsi0+2Ψs̄

γsi0+
1

α

[
Ψss

βr00+Ψss̄
γr00

]
hi+

1

α

[
Ψss̄

βr00+Ψs̄s̄
γr00

]
h̄i,

B=Ψs
βr00+Ψs̄

γr00,

Bib
i=2Ψs

βs0+2Ψs̄
γs̄0+

1

α

[
Ψss

βr00+Ψss̄
γr00

]
(b2−s2)+ 1

α

[
Ψss̄

βr00+Ψs̄s̄
γr00

]
(θ−ss̄),

Biγ
i=2Ψs

βs̄0+2Ψs̄
γs0+

1

α

[
Ψss

βr00+Ψss̄
γr00

]
(θ−ss̄)+ 1

α

[
Ψss̄

βr00+Ψs̄s̄
γr00

]
(g2−s̄2).

Now put Di = 2Ḡi − 2Gi and then we get the followin.
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Proposition 4.2. The spray coefficients Gi are related to αGi by

Gi =αGi +
α

A

[
Ψs

βsi0 +Ψs̄
γsi0

]
+

1

2Γ

[
Γ1b

i + Γ2γ
i +

1

Ψ
Γ3α

i
]
, (41)

where

Γ1 :=
[
Ψss + (g2 − s̄2)J

]
Rβ +

[
Ψss̄ − (θ − ss̄)J

]
Rγ , (42)

Γ2 :=
[
Ψs̄s̄ + (b2 − s2)J

]
Rγ +

[
Ψss̄ − (θ − ss̄)J

]
Rβ ,

Γ3 :=
[
ρ1 + π2(θ − ss̄)− π1(g

2 − s̄2)
]
Rβ+

[
ρ̄1 − π2(b

2 − s2) + π1(θ − ss̄)
]
Rγ , (43)

and

Rβ :=βr00 −
2α

Π

[
Ψs

βs0 +Ψs̄
γs̄0

]
, Rγ :=γr00 −

2α

Π

[
Ψs

βs̄0 +Ψs̄
γs0

]
.

5. Projectively flat (α, β, γ)-metrics

Lemma 5.1. An (α, β, γ)-metric F = αΨ(s, s̄), where s = β
α and s̄ = γ

α , is projectively
flat on an open subset U ⊆ Rn if and only if

αhij
αGi +

α

Π

[
Ψs

βsj0 +Ψs̄
γsj0

]
+

1

2Γ

[
Γ1hj + Γ2h̄j

]
= 0, (44)

where Γ1 and Γ2 are given by (43) and αhij = aij − αiαj.

Proof. Let F = αΨ(s, s̄) be a projectively flat metric on U . Therefore, we have

Gi = Pyi (45)

Contracting (45) with αhij and using (41) we get (44).
Conversely, suppose that (44) holds. Contracting (44) by aij yields

α

Π

[
Ψs

βsj0 +Ψs̄
γsj0

]
= − 1

2Γ

[
Γ1h

j + Γ2h̄
j
]
−

[α
Gi −αGrαrα

i
]
.

Applying it to (41) leads to

Gi =
{

αGrαr +
1

2Γ

[
sΓ1 + s̄Γ2 +

1

Ψ
Γ3

]}
αi.

This implies that F is projectively flat. □

Example 5.2. We consider an (α, β, γ)-metric in the following form F = αe
β
α + γ,

Ψ(s, s̄) = es + s̄. Let b0 > 0 and g0 > 0 be the largest numbers such that

Π = (1− s)es > 0, Γ = (1− s+ b2 − s2)es > 0, |s| < b < b0, |s̄| < g < g0. (46)

Note that F is a Finsler metric if and only if β and γ satisfy that b := ∥β∥α < b0 and
g := ∥γ∥α < g0.

For this metric we can prove the following lemma.

Lemma 5.3. The (α, β, γ)-metric F = αe
β
α + γ is locally projectively flat if and only

if β is parallel with respect to α and γ is closed.
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Recall that 1-form β is closed (dβ = 0) if and only if βsij = 0, and β is parallel
with respect to α if and only if bi|j = 0, i.e. βsij = 0 and βrij = 0.

Proof. let F = αe
β
α + γ be locally projectively flat. Putting (46) into (44) yields

hij
αGi +

α2

(α− β)e
β
α

[
e

β
α βsj0 +

γ sj0
]

+
α2

2
[
α2 − αβ + b2α2 − β2

]{ βr00 −
2α2

(α− β)e
β
α

[
e

β
α βs0 +

γ s̄0
]}
hj = 0.

By multiplying this equation by 2α2(α− β)
[
α2 − αβ + b2α2 − β2

]
e

β
α , we get

(α− β)
[
α2 − αβ + b2α2 − β2

]
e

β
α (aijα

2 − yiyj)
αGi

+ 2α4
[
α2 − αβ + b2α2 − β2

][
e

β
α βsj0 +

γ sj0
]

+ α2(α− β)e
β
α βr00(α

2bj − βyj)− 2α4
[
e

β
α βs0 +

γ s̄0
]
(α2bj − βyj) = 0.

We can rewrite this equation as a polynomial in yi and α. This gives

0=
{
−2β

[
2α2+b2α2−β2

]
e

β
α (aijα

2−yiyj) αGi+2α4
[
α2+b2α2−β2

][
e

β
α βsj0+

γsj0
]

−α2βe
β
α βr00(α

2bj−βyj)−2α4
[
e

β
α βs0+

γs̄0
]
(α2bj−βyj)

}
+α

{
2
[
α2+b2α2

]
e

β
α (aijα

2−yiyj) αGi−2βα4
[
e

β
α βsj0+

γsj0
]
+α2e

β
α βr00(α

2bj−βyj)
}
.

αeven is rational in yi and α is irrational. Then we have two following equations:

−2β
[
2α2 + b2α2 − β2

]
e

β
α (aijα

2 − yiyj)
αGi + 2α4

[
α2 + b2α2 − β2

][
e

β
α βsj0 +

γ sj0
]

− α2βe
β
α βr00(α

2bj − βyj)− 2α4
[
e

β
α βs0 +

γ s̄0
]
(α2bj − βyj) = 0, (47)

and

2
[
α2 + b2α2

]
e

β
α (aijα

2 − yiyj)
αGi − 2βα4

[
e

β
α βsj0 +

γ sj0
]

+ α2e
β
α βr00(α

2bj − βyj) = 0. (48)

Then we have

(α2+b2α2)
{
2α4

[
α2+b2α2 − β2

][
e

β
α βsj0+

γsj0
]

− α2βe
β
α βr00(α

2bj − βyj)− 2α4
[
e

β
α βs0+

γs̄0
]
(α2bj − βyj)

}
=− β

[
2α2+b2α2 − β2

]{
− 2βα4

[
e

β
α βsj0+

γsj0
]
+α2e

β
α βr00(α

2bj − βyj)
}
.

Therefore

2α2
{
(α2+b2α2 − β2)2 − α2β2

}[
e

β
α βsj0+

γsj0
]

+
{
β(α2 − β2)e

β
α βr00 − 2α2(α2+b2α2)

[
e

β
α βs0+

γs̄0
]}

(α2bj − βyj) = 0. (49)
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Contracting (49) with bj leads to

2α2(α2 − β2)(α2+b2α2 − β2)(e
β
α βs0+

γs̄0)+β(α
2 − β2)(b2α2 − β2)e

β
α βr00 = 0.

(50)

Since α2 ̸≡ 0 (mod β) Then α2 − β2 ̸= 0. The term of (50) which does not contain

α2 is −β3e
β
α βr00. Notice −β3e

β
α is not divisible by α2, then βr00 = k(x)α2 where we

can consider two cases.

Case 1: k(x) = 0. Substituting βr00 = 0 into (50) implies that (α2+b2α2 −
β2)(e

β
α βs0+

γs̄0) = 0. If α2+b2α2 − β2 = 0, then the term which does not contain α2

is β2, which implies that β2 = 0 and is a contradiction. Hence

e
β
α βs0+

γs̄0 = 0. (51)

Putting βr00 = 0 and (51) into (49) leads to
[
(α2+b2α2−β2)2−α2β2

][
e

β
α βsj0+

γsj0
]
=0.

If (α2+b2α2 − β2)2 − α2β2 = 0, then by a similar argument, we get β4 = 0 which is
a contradiction. Therefore

e
β
α βsi0+

γsi0 = 0. (52)

Differentiating (52) with respect to yj and yk imply that

−(αjhk+αkhj − sααjk)
βsi0+hjhk

βsi0+αhj
βsik+αhk

βsij = 0.

Contracting it with bjbk yields

(b2 − s2)
[
(−3s+b2 − s2) βsi0 − 2α βsi

]
= 0. (53)

Contracting (53) with bi leads to (−3s+b2 − s2) βs0 = 0.

If −3s+b2 − s2 = 0, then −3αβ+b2α2 − β2 = 0. By separating it in the rational
and irrational terms of yi, we get β = 0. But this leads to a contradiction. Then
βs0 = 0, that is βsi = 0. Putting βsi = 0 in (53) yields βsi0 = 0. Substituting it
into (52) implies that γsi0 = 0. From βsi0 = 0 and γsi0 = 0, we get βsij = 0, γsij = 0.

Case 2: k(x) ̸= 0. Let βr00 = k(x)α2. Substituting βr00 = k(x)α2 into (50)
implies that

(α2+b2α2 − β2)(e
β
α βs0+

γs̄0)+β(b
2α2 − β2)e

β
α k(x) = 0. (54)

The term of (54) which does not contain α2 is −β2(e
β
α βs0+

γs̄0) − β3e
β
α k(x). Then

we have (e
β
α βs0+

γs̄0) = −βe
β
α k(x). Putting it into (54) yields −α2βe

β
α k(x) = 0.

This implies that k(x) = 0, then βr00 = 0. Similar to Case 1, we can conclude that
βsij =

γ sij = 0. □

6. Douglas spaces by (α, β, γ)-metrics

In [3], Douglas introduced the local functions Di
j kl on TM0 defined by

Di
j kl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
.
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It is easy to verify that D := Di
j kldx

j ⊗ ∂
∂xi ⊗ dxk ⊗ dxl is a well-defined tensor on

TM0. D is called the Douglas tensor. The Finsler space (M,F ) is called a Douglas
space if and only if Giyj −Gjyi is homogeneous polynomial of degree three in yi [1].

By (41) one can gets Giyj −Gjyi = (αGiyj −αGjyi) +Bij , where

Bij :=
α

Π

[
Ψs (βsi0y

j −β sj0y
i) + Ψs̄ (γsi0y

j −γ sj0y
i)
]

+
1

2Γ

{[
Ψss + (g2 − s̄2)J

]
Rβ +

[
Ψss̄ − (θ − ss̄)J

]
Rγ

}
(biyj − bjyi)

+
1

2Γ

{[
Ψs̄s̄ + (b2 − s2)J

]
Rγ +

[
Ψss̄ − (θ − ss̄)J

]
Rβ

}
(γiyj − γjyi). (55)

Example 6.1. Let F be the metric that introduced in Example 5.2. We can prove

(α, β, γ)-metric F = αe
β
α + γ is Doaglus if and only if β is parallel with respect to α

and γ is closed.

Proof. Substituting (46) into (55) implies that

Bij =
α2

(α− β)e
β
α

[
(βsi0y

j −βsj0y
i)e

β
α + (γsi0y

j −γsj0y
i)
]

+
α2

2
[
α2 − αβ + b2α2 − β2

][ βr00 −
2α2

(α− β)e
β
α

(e
β
α βs0 +

γs̄0)
]
(biyj − bjyi).

Suppose that F is a Douglas space, that is Bij are hp(3). Multiplying this equation

by 2(α− β)
[
α2 − αβ + b2α2 − β2

]
e

β
α yields

2(α− β)
[
α2 − αβ + b2α2 − β2

]
e

β
αBij =

2α2
[
α2 − αβ + b2α2 − β2

]
e

β
α (βsi0y

j −βsj0y
i) + 2α2

[
α2 − αβ + b2α2 − β2

]
(γsi0y

j −γsj0y
i)

+
[
α2(α− β)e

β
α βr00 − 2α4e

β
α βs0 − 2α4 γ s̄0

]
(biyj − bjyi).

By separating it in rational and irrational terms of yi, we obtain two equations as
follows:

2(α2 + b2α2)e
β
αBij = −2α2βe

β
α (βsi0y

j −βsj0y
i)− 2α2β(γsi0y

j −γsj0y
i)

+ α2e
β
α βr00(b

iyj − bjyi). (56)

and −2β(2α2 + b2α2 − β2)e
β
αBij = 2α2(α2 + b2α2 − β2)e

β
α (βsi0y

j −βsj0y
i)

+ 2α2(α2 + b2α2 − β2)(γsi0y
j −γsj0y

i)

+
[
− α2βe

β
α βr00 − 2α4e

β
α βs0 − 2α4 γ s̄0

]
(biyj − bjyi). (57)

Eliminating Bij from (56) and (57) yields

(α2−b2α2)
{
2α2(α2+b2α2−β2)e

β
α (βsi0y

j−βsj0y
i)+2α2(α2+b2α2−β2)(γsi0y

j−γsj0y
i)

+
[
−α2βe

β
α βr00−2α4e

β
α βs0−2α4 γ s̄0

]
(biyj−bjyi)

}
=

−β(2α2−b2α2−β2)
{
−2α2βe

β
α (βsi0y

j−βsj0y
i)−2α2β(γsi0y

j−γsj0y
i)+α2e

β
α βr00(b

iyj−bjyi)
}
.
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By simplifying this equation one implies that

2
[
(α2+b2α2−β2)2−α2β2

]
e

β
α (βsi0y

j−βsj0y
i)+2

[
(α2+b2α2−β2)2−α2β2

]
(γsi0y

j−γsj0y
i) (58)

+
[
−(α2+b2α2)

(
βe

β
α

βr00+2α2e
β
α

βs0+2α2 γ s̄0
)
+βe

β
α

βr00(2α
2+b2α2−β2)

]
(biyj−bjyi)=0.

By contracting it with biyj , we get

2α2(α2−β2)(α2+b2α2−β2)(e
β
α βs0+

γs̄0)+β(α
2−β2)(b2α2−β2)e

β
α βr00=0. (59)

The term of (59) which does not contain α2 is −β3e
β
α βr00. Notice that −β3e

β
α is not

divisible by α2, then βr00 = k(x)α2 and we can consider two cases.

Case 1: k(x) = 0. Substituting βr00 = 0 into (59) implies that

2α2(α2 + b2α2 − β2)(e
β
α βs0 +

γ s̄0) = 0

If α2 + b2α2 − β2 = 0, then the term which does not contain α2 is β2. This implies
that β2 = 0 which leads to a contradiction. Hence

e
β
α βs0 +

γ s̄0 = 0. (60)

Putting βr00 = 0 and (60) into (58) leads to[
(α2 + b2α2 − β2)2 − α2β2

][
e

β
α (βsi0y

j −βsj0y
i) + (γsi0y

j −γsj0y
i)
]
= 0.

By a similar argument, we get (α2 + b2α2 − β2)2 − α2β2 ̸= 0. Therefore

e
β
α (βsi0y

j −βsj0y
i) + (γsi0y

j −γsj0y
i) = 0. (61)

Contracting (61) with yj yields

e
β
α βsi0 +

γ si0 = 0 =⇒ e
β
α βsi0 +

γ si0 = 0. (62)

Differentiating (62) with respect to yj and yk and multiplying it by α2 imply that

−(αjhk + αkhj − sααjk)
βsi0 + hjhk

βsi0 + αhj
βsik + αhk

βsij = 0.

Contracting it with bjbk yields

(b2 − s2)
[
(−3s+ b2 − s2) βsi0 − 2α βsi

]
= 0. (63)

Contracting (63) with bi leads to (−3s+ b2 − s2) βs0 = 0. If −3s+ b2 − s2 = 0, then
−3αβ + b2α2 − β2 = 0. By separating it in rational and irrational terms of yi, we
get β = 0. But this leads to a contradiction. Then βs0 = 0, that is βsi = 0. Putting
βsi = 0 in (63) yields βsi0 = 0. Substituting it into (62) implies that γsi0 = 0. From
βsi0 = 0 and γsi0 = 0, we get βsij = 0, γsij = 0.

Case 2: k(x) ̸= 0. Let βr00 = k(x)α2. Putting βr00 = k(x)α2 into (59) implies
that

2(α2 + b2α2 − β2)(e
β
α βs0 +

γ s̄0) + β(b2α2 − β2)e
β
α k(x) = 0. (64)

The term of (64) which does not contain α2 is −2β2(e
β
α βs0 +

γ s̄0)− β3e
β
α k(x). Then

we have 2(e
β
α βs0 +

γ s̄0) = −βe
β
α k(x). Putting it into (64) yields −α2βe

β
α k(x) = 0.

This implies that k(x) = 0, then βr00 = 0. Therefore similar to Case 1, we can
conclude that βsij =

γ sij = 0. □
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