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CONSTACYCLIC CODES OVER LIPSCHITZ INTEGERS

Murat Güzeltepe, Gökçen Çetinel and Nükhet Sazak

Abstract. In this paper, the goal is to obtain constacyclic codes over Lipschitz integers
in terms of Lipschitz metric. A decoding procedure is proposed for these codes, some of
which have been shown to be perfect codes. Performance of constacyclic codes over Lipschitz
integers is investigated over Additive White Gaussian Channel (AWGN) by means of symbol
error rates and coding gain. According to the achieved results, these codes can be used
in coded modulation schemes based on Quadrature Amplitude Modulation (QAM)-type
constellations. Furthermore, it is shown that the Lipschitz metric is more suitable than
Hamming metric and Lee metric for QAM type two dimensional constellations.

1. Introduction

Huber defined the Mannheim distance and the Mannheim weight over Gaussian in-
tegers in 1992 [11]. In this study, the author proposed block codes over Gaussian
integers constructed for the Mannheim distance which are convenient for QAM sig-
nals. The results of the study showed that the Mannheim distance was much better
suited for coding over two dimensional signal space than the Hamming distance. Fan
and Gao obtained one error-correcting linear codes over algebraic integer rings [7].
In [9], perfect Mannheim, Lipschitz, and Hurtwitz codes are analyzed. The perfor-
mance of Lipschitz integer constellations for transmission over the AWGN channel by
means of the constellation figure of merit and a construction of sets of Lipschitz inte-
gers that leads to a better constellation figure of merit compared to ordinary Lipschitz
integer constellations were examined in [8]. A partition of the ring into multiplicative
cosets of a subgroup of a group of units was used to construct check matrices for
1-perfect codes over Lipschitz integers in [9]. Unlike this study, in [12] the ring has
zero divisors was considered. The ring is similar to the ring Z4, which is the basic
ring for the 1-perfect additive codes studied in [4].

This paper is organized as follows. In Section 2, some fundamental algebraic
concepts, and the definitions of Lipschitz integers and Lipschitz distance are given.
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In Section 3, the construction of codes which are able to correct errors of Lipschitz
weight one is discussed. Also, double error correcting codes which have minimum
distance four or more are proposed and decoding procedure for these codes is given.
In Section 4, constacyclic codes over Lipschitz integers are presented. Finally, Sec-
tion 5 compares the constacylic codes over Lipschitz integers and codes from Gaussian
integers.

2. Lipschitz integers and Lipschitz distance

Definition 2.1 ( [5]). The Hamilton Quaternion Algebra over the set of the real
numbers (R), denoted byH(R), is the associative unital algebra given by the following
representation:
(i) H(R) is the free R module over the symbols 1, i, j, k, that is, H(R) = {a0 + a1i+
a2j + a3k : a0, a1, a2, a3 ∈ R};
(ii) 1 is the multiplicative identity;

(iii) i2 = j2 = k2 = −1;

(iv) ij = −ji = k, ki = −ik = j, jk = −kj = i.

Let Z denote the set of all integers. Then, the set Lipschitz integers is defined
by H(Z) = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z}. The set H(Z) is of the form a
subring of real quaternions H(R) under the addition and multiplication. The conju-
gate of a Lipschitz integer q = a0 + a1i+ a2j + a3k is q⋆ = a0 − a1i− a2j − a3k. The
norm of q is N(q) = qq⋆ = a20 + a21 + a22 + a23. The elements ±1,±i,±j,±k are units
of H(Z). The product of two Lipschitz integers is not commutative in general. If the
vector parts of two Lipschitz integers are parallel to each other, then their product
is commutative. The vector part of the Lipschitz integer q = a0 + a1i+ a2j + a3k is
a1i+ a2j + a3k.

Definition 2.2 ([5]). (i) A Lipschitz integer q is odd (respectively, even) if N(q) is
an odd (respectively, even) rational integer.

(ii) A Lipschitz integer q is prime if q is not a unit in H(Z), and if, whenever q = q1q2
in H(Z), then either q1 or q2 is a unit.

(iii) Two Lipschitz integers q1, q2 are associative if there exist two unit Lipschitz
integers θ, θ′, such that q1 = θq2θ

′.

(iv) δ ∈ H(Z) is a right-hand divisor of q1 ∈ H(Z) if there exists q2 ∈ H(Z) such that
q1 = q2δ.

Lemma 2.3 ([5]). If q is a Lipschitz integer and π is an odd, then, there exist q1,
δ ∈ H(Z), such that q = q1π + δ, N(δ) < N(π).

Definition 2.4. Let π be an odd. If there exists δ ∈ H(Z) such that q1 − q2 = βπ
then q1 is right congruent to q2 modulo π. It is denoted as q1 ≡r q2.
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This equivalence relation is well-defined. We can consider the constellations of
the Lipschitz integers modulo this equivalence relation, which we denote as H(Z)π =
{q (modπ)| q ∈ H(Z)} [4].

Theorem 2.5 ([13]). Let π be an odd. Then H(Z)π has N(π)2 elements.

Definition 2.6 ([13]). Let π ̸= 0 be a Lipschitz integer. Given α, β ∈ H(Z)π, then
the distance between α and β is denoted by dπ(α, β) and defined as dπ(α, β) = |a0|+
|a1|+ |a2|+ |a3|, where α−β≡ra0+a1i+a2j+a3k (mod π), with |a0|+ |a1|+ |a2|+ |a3|
minimum.

Lemma 2.7 ([13]). The distance given in above definition is a metric over H(Z)π.
This distance is called the Lipschitz distance or Lipschitz metric.

The Lipschitz weight of the element γ = a0 + a1i+ a2j + a3k is defined as |a0|+
|a1|+ |a2|+ |a3| and is denoted by wL(γ), where γ = α−β with |a0|+ |a1|+ |a2|+ |a3|
minimum.

More information which are related with the arithmetic properties of H(Z) can
be found in [5, pp. 57-71].

3. Cyclic codes over Lipschitz integers

In this section, we give one error correcting Lipschitz weight codes, shortly OLEC.
The OLEC codes are not perfect.

3.1 One Lipschitz error correcting codes (OLEC)

Let α be an element of H(Z)π such that αp2−1 = 1 and let p be a prime in Z, where
π = a0 + a1i + a2j + a3k is a prime and in Z, p = ππ⋆. By using the element
α, the parity check matrix H and the generator matrix G are obtained as follows,
respectively:

H =
(
α0 α1 · · · α(p2−1)/2−1

)
, G =


−α1 1 0 · · · 0
−α2 0 1 · · · 0
...

...
. . .

...

α(p2−1)/2−1 0 0 1

 .

Hence, the one error correcting codes of length n = p2−1
2 can be constructed by the

parity check matrix H. Then the code C defined by the above parity check matrix H
is able to correct any error of the Lipschitz weight one. A Lipschitz error of weight one
takes on one of the eight values ±1,±i,±j,±k. We now give a decoding procedure
for these codes. Let the received vector r = c + e, where the Lipschitz weight of
the error vector e is 1 and the vector c is a codeword. Then the syndrome of the
received vector r is computed as S(r) = Hrtr, where rtr denotes the transpose of the
received vector r. The value of the error is computed as Sα−l, where l (mod n) leads



M. Güzeltepe, G. Cetinel, N. Sazak 207

how to find the location of the error. Notice that we first compute the syndrome of
the received vector to be decoded. If the syndrome disappears in the powers of the
element α, then the associates of the syndrome are to be checked.

We now consider a simple example with regard to the one Lipschitz error correcting
codes.

Example 3.1. Let π = 2+i+j+k and α = 1−i+j. Then, we obtain the parity check
matrix H by using the primitive element α of H(Z)π as H =

[
1, α, α2, . . . α23

]
.

Let the received vector r be
(
−1− j, 1, 0 , . . . , 0

)
. Then the syndrome S

of r is S(r) = Hrtr = −i = −iα0. This shows that the location of the error is found
0 ≡ 0 (mod 24) and the value of the error is Sα0 = −i. So, the received vector r is
corrected as c = r − e =

(
−1 + i− j, 1, 0, . . . , 0

)
. This code is not a perfect

code since it does not satisfy the sphere packing bound given in [10, p. 48].

4. Constacyclic codes over Lipschitz integers

The purpose of this section is to define constacyclic codes over H(Z)π obtained from
Lipschitz integers. The definitions of these codes depend on the cardinality of the
group of units in H(Z). Berlekamp’s definition [2] can be used to define the consta-
cyclic codes over algebraic numbers.

Definition 4.1. A linear code C over H(Z)π is said to be a constacyclic code or a
θ-cyclic code if, whenever a codeword c0, c1, . . . , cn−1 is in C, then so is (θcn−1, c0, . . . ,
cn−2), where θ is some element of the set {±i,±j,±k}.

4.1 One Lipschitz error correcting constacyclic codes (OLECC)

Let α be an element of H(Z) such that α(p2−1)/8 = ±i,±j,±k, where p is a prime
in Z, π = a0 + a1i + a2j + a3k is a Lipschitz prime, and p = ππ⋆. The null-space C

of the parity-check matrix H =
(
1, α, α2, · · · , α(p2−1)/8−1

)
is a one Lipschitz

error correcting constacyclic code (OLECC).

An OLECC code C of length n = p2−1
8 is able to correct any error of Lipschitz

weight one. A code that attains the sphere packing bound is said to be a perfect
code. Let [n, k, 3] denote a linear code C of length n and minimum distance 3 over
a ring or field with p2 elements, then, the sphere packing bound is calculated as
p2n ≥ p2k + p2ktn, where k denotes the dimension of the code C and t denotes the
number of errors which Lipschitz weight is one. The dimension of an OLECC code
is n − 1. In Lipschitz metric, t = 8. It is important that an OLECC code is perfect
since it satisfies the sphere packing bound. Take an OLECC code with parameters

[n, k, 3], then we have p2k + p2ktn = p2(n−1) + p2(n−1)8p2−1
8 = p2n.

Example 4.2. Let π = 2 + i + j + k and α = 1 + i. Then, we obtain the parity
check matrix H as H =

(
1 α α2 α3 α4 α5

)
. Let the received vector r be
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(
1 + i− k, 1, 1, j, 0, 0

)
. Then, the syndrome S of r computes as S(r) =

rHtr = 3+ i−j+k ≡ −i+k (mod π) = jα3. Hence, we obtain the corrected vector
as c = r − e = (1 + i− k, 1, 1, 0, 0, 0). The powers of α are given in Table 1. This
[6, 5, 3] code is able to correct any error of the Lipschitz weight one. The number of
all words is (72)6 = 712, the number of all codewords is (72)5 = 710 and the number
of words having one Lipschitz error is equal to the product of 48 and 710. It is clear
that the [6, 5, 3] code is perfect.

4.2 Double error correcting constacyclic codes

Let p = 4n + 1 ≥ 17 be a prime in Z which is factored as ππ, where π is a prime
in H(Z). Let γ denote an element of H(Z)π of order 4n. We consider the code C
defined by the following parity check matrix H:

H =


γ0 γ1 · · · γn−1

γ0 γ5 · · · γ5(n−1)

...
...

. . .
...

γ0 γ4t+1 · · · γ(4t+1)(n−1)

 ,

where t < n is a nonnegative integer. A word c = (c0, c1, . . . , cn−1) ∈ H(Z)nπ is a

codeword of C if and only if cHtr = 0. If c(x) =
∑n−1

r=0 crx
r is a code polynomial, we

get c(γ4s+1) = 0, for s = 0, 1, . . . , t. The polynomial g(x) = (x − γ)(x − γ5) . . . (x −
γ4t+1) is the generator polynomial of C, and C = ⟨g(x)⟩ is a (left or right) ideal of
H(Z)π[x]/ ⟨xn + 1⟩. If multiplying the code polynomial c(x) by x(mod (xn + 1)), we
get xc(x) = c0x+ c1x

2 + . . .+ cn−1x
n−1. But we known that xn = ±i,±j,±k. It is

shown that these codes belong to the class of constacyclic codes. If c(x) ∈ C, then
xc(x) ∈ C. Thus, multiplying c(x) by x (mod (xn + 1)) means the shifting of c(x)
cyclically one position to the right.

Theorem 4.3. Let C be the code defined by above parity check matrix H. Then,
C is able to correct some error pattern of the form e(x) = esx

s + etx
t, where 0 ≤

wL (es) , wL (es) ≤ 1.

Proof. Suppose that double error occurs at two different components l1, l2 of the
received vector r. Let the error vectors be e1, e2, where 0 ≤ wL (e1) , wL (e2) ≤ 1.
We compute the syndrome S of r as S(r) = rHtr = (s1, s5). Since the product of
the powers of γ must be commutative, we change from the syndromes s1, s2 to the
syndromes θ1s

′
1, θ1s

′
5, respectively, where θ1 ∈ {1, i, j, k}. The polynomial σ(z), which

helps us to find the locations of the errors and the values of the errors, is computed
as follows: σ(z) = (z − γl1)(z − γl2) = z2 − s′1z + ε, where ε is determined from the
syndromes. From s′1 = γl1 + γl2 , s′5 = γ5l1 + γ5l2 and ε = γl1+l2 , we get

ε2 − (s′1)
2
ε+

(s′1)
5 − s′5
5s′1

= 0.

Thus, the roots of the polynomial σ(z) lead us to find the locations of the errors and
their values. If γl1 , γl2 are the roots of the polynomial σ(z), then the locations of the
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errors are l1 (mod n) with the value θ1β
l1/βl1( mod n) and l2 (mod n) with the value

θ1β
l2/βl2( mod n). Hence, we can distinguish three situations:

(i) No error: s′1 = s′5 mod π.

(ii) One error: (s′1)
5 = s′5 ̸= 0.

(iii) Two errors: (s′1)
5 ̸= s′5 and s′1 ̸= 0.

Example 4.4. Let π = 4 + k and let γ = 1 + k. Let C be the code defined by the
parity check matrix

H =

(
γ0 γ1 γ2 γ3

γ0 γ5 γ10 γ15

)
.

The powers of γ are shown in Table 2. Let the received vector r be (−2, −2k, 1−i, i).
We now apply the decoding procedure for the code in Theorem 4.3.

(i) Calculating the syndrome: S(r) = rHtr =
(
−2i, −i+ j

)
(mod π). Take θ1 =

i. One can verify that (s′1)
5 ̸= s′5, which shows that two errors have occurred.

(ii) Using the formula

ε2 − (s′1)
2
ε+

(s′1)
5 − s′5
5s′1

= 0 ⇒ (1 + 2k) ε2 + k (1 + 2k) ε+ 1 = 0 (mod π)

we obtain ε = 1 − k (mod π) and the roots of the polynomial σ(z) are γ3, γ10 (see
Table 4). Therefore, the locations of the errors are l1 = 3 ≡ 3 (mod 4) with the value
θ1γ

3/γ3 = i and l2 = 2 ≡ 10 (mod 4) with the value θ1γ
10/γ2 = −i. Hence, we

obtain the corrected vector c = r − e = (−2, −2k, 1, 0).

Theorem 4.5. Let p = 6n + 1 ≥ 31 be a prime and γ be an element of H(Z)π with
order 6n. The code C having the following parity check matrix:

H =


1 γ γ2 · · · γn−1

1 γ7 γ14 · · · γ7(n−1)

1 γ13 γ26 · · · γ13(n−1)

1 γ19 γ38 · · · γ19(n−1)

 ,

can correct any error pattern of the form e(x) = esx
s+etx

t, where 0 ≤ wL (es) , wL (et) ≤
dmax. Here, we define dmax as dmax = max {wL(q)| q ∈ H(Z)}.

Proof. Let we receive the vector r = c+ e. Let two errors occur at different locations
l1, l2. Then syndrome of r is

S(r) = (rHtr)tr =


S1

S7

S13

S19

 =


γL1 + γL2

γ7L1 + γ7L2

γ13L1 + γ13L2

γ19L1 + γ19L2

 ,
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where l1=L1 (mod n) and l2=L2 (mod n). Let θt ∈ {±1,±i,±j,±k} for 0≤t≤8.
Consider S′(r)

S′(r) =


S′
1

S′
7

S′
13

S′
19

 =


θ1S1θ2
θ3S7θ4
θ5S13θ6
θ7S19θ8


Here, the syndromes S′

1, S
′
7, S

′
13, S

′
19 equal to some of the power of γ. From the

syndromes and ϵ = γL1+L2 we get

S′
1S

′
13 − (S′

7)
2
= ϵZ2 − 4ϵ7,

S′
1S

′
19 − S′

7S
′
13 = ϵZ3 − 4ϵ7Z,

S′
7S

′
19 − (S′

13)
2 = ϵ6(Z2 − 4ϵ7),

where Z = γL1 + γ6L2 . Using these equations, we have

Z =
S1

′S19
′ − S7

′S13
′

S1
′S13

′ − (S7
′)2

, ϵ =
S7

′S19
′ − (S13

′)2

S1
′S13

′ − (S7
′)2

.

The roots of the equation x2 − Zx + ϵ6 = 0 give the locations and the values of
errors. □

5. Comparison between constacyclic codes from Lipschitz integers and
codes from Gaussian integers

In this section, the codes over H(Z)π and codes over Gaussian integers presented
in [11] are compared in terms of coding gain and symbol error probability, when the
alphabets being considered have the same cardinality. Gaussian integers Z[i] forms a
square lattice. Figure 1 shows the complex plane and square points in Figure 1 are
the elements of the set Z[i]2+i = {0,±1,±i}.
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● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ■ ■
■

■
■-15 -10 -5 5 10 15

-15

-10

-5

5

10

15

Figure 1: Gaussian integers form a square lattice
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Lipschitz integers H(Z) also form a lattice. Each Lipschitz integer is represented
in four dimensions. Figure 2 demonstrates some Lipschitz integers. In Figure 2,
big points represent the set H(Z)1+i+j = {0,±1,±i,±j,±k}. To better understand
Figure 2, we give only one point 0 = 0 + 0i + 0j + 0k = (0, 0, 0, 0) in Figure 3, and
two points 0 = 0 + 0i+ 0j + 0k = (0, 0, 0, 0) and 1 = 1 + 0i+ 0j + 0k = (1, 0, 0, 0) in
Figure 4, respectively. In Figure 4, big points represent Lipschitz integer 0 and small
points represent Lipschitz integer 1.

Figure 2: Lipschitz integers form a lattice

Figure 3: One point 0 = 0 + 0i+ 0j + 0k = (0, 0, 0, 0)

Figure 4: Two points 0 = 0 + 0i+ 0j + 0k = (0, 0, 0, 0), 1 = 1 + 0i+ 0j + 0k = (1, 0, 0, 0)

A basic communication system consits of three components: modulator, commu-
nication channel, and demodulator. In this paper, Binary Shift Keying (BPSK) and
Quadriphase Shift Keying (QPSK) digital modulation schemes are considered to in-
vestigate the performance of the proposed codes. BPSK is a digital communication
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scheme in which data is transmitted over a communication channel by changing the
phase of a carrier. The BPSK waveform contains phase shift of ±pi radians. In
other words, the modulation occurs by varying the sine and cosine inputs at a pre-
cise time. The constellation points of BPSK are usually located at uniform angular
spacing around a circle. In this way, maximum phase separation between adjacent
points are achieved and noise immunity is increased. BPSK is widely used in wireless
Local Area Networks (LANs), Radio Frequency Identification (RFID) and Bluetooth
communications. QPSK is also a phase modulation scheme in which two information
bits are modulated at once, selecting one of four possible carrier phase shift states.
QPSK has four constellation points equispaced around the circle and is utilized for
satellite transmission of MPEG2 video, cable modems, video conferencing, cellular
phone systems and other forms of digital communication over an RF carrier [6, 15].

The performance of the coding schemes for digital communication systems can
be compared with commonly used criteria. Two of these criteria are coding gain
and symbol error probability. Coding gain is a significant criterion to evaluate the
performance of coding schemes. It can be defined as the difference between Signal-
to-Noise Ratio (SNR) levels of the uncoded system and coded system required to the
same Bit Error Rate (BER) levels. Coding gain, usually given in decibels, represents
the improvement for a coding scheme and is a function of minimum distance and
code rate. For a given code, the best code is the code which provides the highest
minimum distance [14]. BER is also an important evaluation parameter for digital
communication channels that measures the amount of errors will appear in the data
at the receiver end of the communication system. It can be expressed as the ratio of
the number of errors to the total number of transmitted bits.

α0 = 1 α1 = 1 + i α2 = 1− j + k
α3 = −i− k α4 = −i− j α5 = i+ j
α6 = −i α7 = αα6 α8 = α2α6

Table 1: Powers of the element α = 1 + i which is root of x6 + i

γ0 = 1 γ1 = 1 + k γ2 = 2k γ3 = −1− 2k γ4 = k

Table 2: Powers of the element γ = 1 + k which is root of x4 − k

In this section, various tables and figures are prepared to explain the advantages
of the proposed codes over AWGN channels. Table 3 provides data about the signal
energy per symbol Es, the energy per bit Eb =

Es

Log2p2 , and the BPSK/QPSK reference

value 10 log (4Eb) [8]. The reference value must be subtracted from the coding gain
to see the improvement over BPSK/QPSK as given in Example 5.1. Furthermore,
Table 4 demonstrate coding gains achieved by the proposed constacyclic codes over
Lipschitz integers for different p values under BPSK/QPSK modulation scenarios.
Improvement values given in Table 4 are calculated by substracting the reference
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values (Table 3 the last column) from obtained coding gains for different p values.
In the following example, we explain the calculation of coding gain that is used to
construct Table 4.

p π Es Eb 10 log (4Eb)

7 2 + i+ j + k 2.9388 0.523 3.2056 dB
13 2 + 2i+ 2j + k 4.4308 0.582 3.670 dB
17 4 + i 5.6480 0.691 4.414 dB
29 5 + 2i 9.6560 0.994 5.993 dB
37 6 + i 12.324 1.183 6.75 dB
41 5 + 4i 13.658 1.275 7.075 dB
53 7 + 2i 17.660 1.542 7.9 dB
61 6 + 5i 20.328 1.714 8.36 dB
73 8 + 3i 24.328 1.956 8.955 dB
89 8 + 5i 29.662 2.290 9.62 dB

Table 3: Es,Eb,10 log (4Eb) table for the proposed codes

p Coding Gain Improvement

7 9.834 dB 6.628 dB
13 11.005 dB 7.335 dB
41 14.504 dB 7.429 dB

Table 4: The coding gain and improvement

Example 5.1. Consider [20, 7, dH = 11] Reed-Solomon code with respect to Ham-
ming metric over GF (7) [1] and the [6, 5, 3] OLECC code over π = 2+ i+ j + k that
leads to a coding gain of G = 10 log

(
7
20

5
6 33

)
= 9.834 dB.

Note that, we should subtract 10 log (4Eb)=3.2056 dB from obtained coding gain
to exhibit the improvement. According to the achieved value, we can say that the
proposed coding provides about 6.628 dB improvement on coding gain for p = 7 (see
Table 4, first row). In general, the improvement attained by the proposed coding
method is between [6 dB-10 dB].

In addition to the coding gain, bit or symbol error probability can be referred as
another criterion to evaluate the performance of digital communication systems. For
a fixed bit or symbol error rate, SNR difference between two coding schemes indicates
the achievement of the scheme that provides lower error rate [3]. As can be seen from
Figure 3, the proposed coding scheme gives lower SNR values in comparison with the
coding method investigated in reference [11]. To plot Figure 3, SNR values are varied
in [−5 dB,−20 dB] interval and the corresponding Ps values are calculated by using
the equations given in reference [14].
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Figure 5: Symbol error rates versus SNR values for transmission over AWGN channel for
p = 61 in comparison with Reference [11]
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