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Abstract. In this paper, we study some basic properties of the zero-divisor graph of
ring Fpl ×Fqm ×Frn , where Fpl , Fqm and Frn are fields of order pl, qm and rn, respectively,
p, q and r are primes (not necessarily distinct) and l,m, n ≥ 1 are positive numbers. Also,
we discuss some topological indices of the graph Γ(Fpl × Fqm × Frn).

1. Introduction

In 1988, Beck [9] began to investigate the possibility of coloring a commutative ring
R by associating a zero-divisor graph on R, whose vertices are the elements of R, with
two distinct elements x and y being adjacent if and only if xy = 0. While I. Beck
concentrated on the connection between the clique number and the chromatic number
of the graph, various works inspired by this construction have focused on the interplay
of commutative rings and their zero-divisor graph. However, in 1999, Anderson and
Livingston [6] modified and studied the zero-divisor graph whose vertices are the
nonzero zero-divisors of the commutative ring.

Sharma et al. [13] studied adjacency matrices for zero-divisor graph over finite
commutative rings of direct product Zp × Zp, where p is a prime. In [2] Akgunes et
al. examined graph parameters of zero-divisor graphs obtained from the ring Zp×Zq,
where p and q are distinct primes. In [8] Aykac and Akgunes presented some basic
properties for zero-divisor graphs obtained from the ring Zp2 ×Zq2 , where p and q are
distinct primes. In [3] Akgunes and Nacaroglu studied graph theoretical properties
and topological index of zero-divisor graphs obtained from the ring Zp × Zq × Zr,
where p, q and r are primes. We will include basic definitions from graph theory as
needed from [11].

Throughout the paper, we use the ring Fpl × Fqm × Frn , where Fpl , Fqm and Frn

are fields of order pl, qm and rn, respectively, p, q and r are primes (not necessarily
distinct) and l,m, n ≥ 1 are positive numbers.
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88 Properties of zero-divisor graph

In this paper, we will first study the degree sequence, irregularity index, chromatic
number, diameter, girth, radius, maximum and minimum degrees, domination number
and clique number of the zero-divisor graph Γ(Fpl × Fqm × Frn). After that, we will
discuss some topological indices of the graph Γ(Fpl × Fqm × Frn).

2. Properties of Γ(Fpl × Fqm × Frn)

In this section, we will discuss some basic properties of the graph Γ(Fpl ×Fqm ×Frn).
We begin our discussion with the definition of adjacent vertices of Γ(Fpl ×Fqm ×Frn).

Definition 2.1. The adjacent vertices of the graph Γ(Fpl ×Fqm ×Frn) are as follows:

� (a, 0, 0) ∼ (0, b, c), where 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm or 0 ̸= c ∈ Frn ,

� (0, b, 0) ∼ (a, 0, c), where 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm or 0 ̸= c ∈ Frn ,

� (0, 0, c) ∼ (a, b, 0), where 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm or 0 ̸= c ∈ Frn ,

where p, q and r are primes (not necessarily distinct) and l,m, n ≥ 1 are positive
numbers.

Let G(V,E) be a graph and v ∈ V (G). The degree of a vertex v in G, denoted by
deg (v), is the number of vertices adjacent to it. The minimum and maximum degrees
are denoted by δ(G) and ∆(G), respectively.

In the following theorem, we calculate the degree of every possible vertex of the
graph Γ(Fpl × Fqm × Frn).

Theorem 2.2. The degrees of vertices of the graph Γ(Fpl × Fqm × Frn) are given by
(i) deg (a, 0, 0) = qmrn − 1, where 0 ̸= a ∈ Fpl ,

(ii) deg (0, b, 0) = plrn − 1, where 0 ̸= b ∈ Fqm ,

(iii) deg (0, 0, c) = plqm − 1, where 0 ̸= c ∈ Frn ,

(iv) deg (a, b, 0) = rn − 1, where 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm ,

(v) deg (0, b, c) = pl − 1, where 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn ,

(vi) deg (a, 0, c) = qm − 1, where 0 ̸= a ∈ Fpl and 0 ̸= c ∈ Frn ,
where p, q and r are primes and l,m, n ≥ 1 are positive numbers.

Proof. (i) One can see that (a, 0, 0) ∼ (0, b, c) because (a, 0, 0) · (0, b, c) = (0, 0, 0) for
0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Similarly, for 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm

(a, 0, 0) ∼ (0, b, 0) because (a, 0, 0) ·(0, b, 0) = (0, 0, 0). We also have (a, 0, 0) ∼ (0, 0, c)
because (a, 0, 0) · (0, 0, c) = (0, 0, 0) for 0 ̸= a ∈ Fpl and 0 ̸= c ∈ Frn . As a result, the
degree of the vertex (a, 0, 0) is given by deg (a, 0, 0) = (qm−1)(rn−1)+qm−1+rn−1 =
qmrn − 1.
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(ii) For 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn , since (0, b, 0) ·(a, 0, c) = (0, 0, 0)
we have (0, b, 0) ∼ (a, 0, c). Also, (0, b, 0) ∼ (a, 0, 0) because (0, b, 0)·(a, 0, 0) = (0, 0, 0)
for 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm . In addition, as (0, b, 0) · (0, 0, c) = (0, 0, 0) we have
(0, b, 0) ∼ (0, 0, c) for 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Therefore, the degree of vertex
(0, b, 0) is given by deg (0, b, 0) = (pl − 1)(rn − 1) + pl − 1 + rn − 1 = plrn − 1.

(iii) One can see that for 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn , (0, 0, c) ∼
(a, b, 0) because (0, 0, c) · (a, b, 0) = (0, 0, 0). Also, since (0, 0, c) · (a, 0, 0) = (0, 0, 0)
we have (0, 0, c) ∼ (a, 0, 0) for 0 ̸= a ∈ Fpl and 0 ̸= c ∈ Frn . In addition, as
(0, 0, c) ·(0, b, 0) = (0, 0, 0) we have (0, 0, c) ∼ (0, b, 0) for 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn .
Therefore, the degree of vertex (0, 0, c) is given by deg (0, 0, c) = (pl − 1)(qm − 1) +
pl − 1 + qm − 1 = plqm − 1.

(iv) Since (a, b, 0) · (0, 0, c) = (0, 0, 0) for 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸=
c ∈ Frn , (a, b, 0) ∼ (0, 0, c). As a result, the degree of the vertex (a, 0, 0) is given by
deg (a, b, 0) = rn − 1.

(v) For 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn , as (0, b, c) · (a, 0, 0) =
(0, 0, 0) we have (0, b, c) ∼ (a, 0, 0). Therefore, the degree of vertex (0, b, c) is given
by deg (0, b, c) = pl − 1.

(vi) For 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn , since (a, 0, c) · (0, b, 0) =
(0, 0, 0) we have (a, 0, c) ∼ (0, b, 0). Therefore, the degree of vertex (a, 0, c) is given
by deg (a, 0, c) = qm − 1. □

Theorem 2.3. The maximum degree of the graph Γ(Fpl × Fqm × Frn) is given by

∆(Γ(Fpl × Fqm × Frn)) = max{plqm − 1, qmrn − 1, plrn − 1}.

Proof. By Theorem 2.2, we have deg (a, 0, 0) = qmrn − 1, deg (0, b, 0) = plrn − 1 and
deg (0, 0, c) = plqm − 1, where 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Hence, the
maximum degree of Γ(Fpl × Fqm × Frn) is

∆(Γ(Fpl × Fqm × Frn)) = max{plqm − 1, qmrn − 1, plrn − 1}.

Theorem 2.4. The minimum degree of the graph Γ(Fpl × Fqm × Frn) is given by

δ(Γ(Fpl × Fqm × Frn)) = min{pl − 1, qm − 1, rn − 1}.

Proof. By Theorem 2.2, we have deg (a, b, 0) = rn − 1, deg (0, b, c) = pl − 1, and
deg (a, 0, c) = qm − 1, where 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Hence, the
minimum degree of the graph Γ(Fpl × Fqm × Frn) is

δ(Γ(Fpl × Fqm × Frn)) = min{pl − 1, qm − 1, rn − 1}.
The degree sequence of a graph G, denoted by DS(G), is a sequence of degrees

of vertices of G. Also, the irregularity index of a graph G, denoted by t(G), is the
number of distinct terms in the degree sequence of G.

Theorem 2.5. The degree sequence and irregularity index of the graph Γ(Fpl ×Fqm ×
Frn) are given by

DS(Γ(Fpl × Fqm × Frn)) =

{
pl − 1︸ ︷︷ ︸

(qm−1)(rn−1)times

, qm − 1︸ ︷︷ ︸
(pl−1)(rn−1)times

, rn − 1︸ ︷︷ ︸
(pl−1)(qm−1)times

,



90 Properties of zero-divisor graph

plqm − 1︸ ︷︷ ︸
(rn−1)times

, plrn − 1︸ ︷︷ ︸
(qm−1)times

, qmrn − 1︸ ︷︷ ︸
(pl−1)times

}
and t(Γ(Fpl × Fqm × Frn)) = 6, where p, q and r are distinct primes and l,m, n ≥ 1
are positive numbers.

Proof. It is clear from Theorem 2.2 that deg (a, 0, 0) = qmrn−1 and the number of
vertices of the form (a, 0, 0) is pl−1, where 0 ̸= a ∈ Fpl . Also, deg (0, b, 0) = plrn−1
and the number of these types of vertices is qm−1, for 0 ̸= b ∈ Fqm . Moreover, the
number of vertices of the form (0, 0, c) is rn−1 and degree of these vertices is plqm−1,
where 0 ̸= c ∈ Frn .

Again by Theorem 2.2, for 0 ̸= a ∈ Fpl and 0 ̸= b ∈ Fqm , deg (a, b, 0) = rn−1 and
the number of these form of vertices is (pl−1)(qm−1). Similarly, for 0 ̸= b ∈ Fqm and
0 ̸= c ∈ Frn , deg (0, b, c) = pl−1 and the number of vertices of the form (0, b, c) is
(qm−1)(rn−1). Moreover, the number of vertices of the types (a, 0, c) is (pl−1)(rn−1)
and deg (a, 0, c) = qm−1, where 0 ̸= a ∈ Fpl and 0 ̸= c ∈ Frn . Also, one can see that
irregularity index of the graph Γ(Fpl × Fqm × Frn) is 6. □

Let G(V,E) be a graph and u, v ∈ V (G). The distance between u and v, denoted
by d(u, v), is the length of the shortest path connecting u and v, if such a path exists,
otherwise, we set d(u, v) = ∞. The diameter of G, denoted by diam (G), is defined
as diam (G) = max{d(u, v) : u, v ∈ V (G)}. The eccentricity of a vertex x is defined
by e(x) = max{d(x, y) : y ∈ V (G)}. The radius of a graph G is rad (G) = min{e(x) :
x ∈ V (G)}. Note that diam (G) = max{e(x) : x ∈ V (G)}.

By Definition 2.1, we can find the distance between any two vertices of the graph
Γ(Fpl × Fqm × Frn) as shown in the following theorem.

Theorem 2.6. The distance between any two vertices of the graph Γ(Fpl ×Fqm ×Frn)
is as follows:

� d((a1, 0, 0), (a2, 0, 0)) = 2, where 0 ̸= a1, a2 ∈ Fpl ,

� d((a1, 0, 0), (a2, b, 0)) = 2, where 0 ̸= a1, a2 ∈ Fpl and 0 ̸= b ∈ Fqm ,

� d((a1, 0, 0), (a2, 0, c)) = 2, where 0 ̸= a1, a2 ∈ Fpl and 0 ̸= c ∈ Frn ,

� d((0, b1, 0), (0, b2, 0)) = 2, where 0 ̸= b1, b2 ∈ Fqm ,

� d((0, b1, 0), (a, b2, 0)) = 2, where 0 ̸= a ∈ Fpl and 0 ̸= b1, b2 ∈ Fqm ,

� d((0, b1, 0), (0, b2, c)) = 2, where 0 ̸= b1, b2 ∈ Fqm and 0 ̸= c ∈ Frn ,

� d((0, 0, c1), (0, 0, c2)) = 2, where 0 ̸= c1, c2 ∈ Frn ,

� d((0, 0, c1), (a, 0, c2)) = 2, where 0 ̸= a ∈ Fpl and 0 ̸= c1, c2 ∈ Frn ,

� d((0, 0, c1), (0, b, c2)) = 2, where 0 ̸= b ∈ Fqm and 0 ̸= c1, c2 ∈ Frn ,

� d((a1, b1, 0), (a2, b2, 0)) = 2, where 0 ̸= a1, a2 ∈ Fpl and 0 ̸= b1, b2 ∈ Fqm ,
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� d((0, b1, c1), (0, b2, c2)) = 2, where 0 ̸= b1, b2 ∈ Fqm and 0 ̸= c1, c2 ∈ Frn ,

� d((a1, 0, c1), (a2, 0, c2)) = 2, where 0 ̸= a1, a2 ∈ Fpl and 0 ̸= c1, c2 ∈ Frn ,

� d((a1, b, 0), (a2, 0, c)) = 3, where 0 ̸= a1, a2 ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn ,

� d((a, b1, 0), (0, b2, c)) = 3, where 0 ̸= a ∈ Fpl , 0 ̸= b1, b2 ∈ Fqm and 0 ̸= c ∈ Frn ,

� d((0, b, c1), (a, 0, c2)) = 3, where 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c1, c2 ∈ Frn .

The following theorem is a direct corollary of Theorem 2.6.

Theorem 2.7. The diameter of the graph Γ(Fpl × Fqm × Frn) is given by

diam (Γ(Fpl × Fqm × Frn)) = 3.

Theorem 2.8. The radius of the graph Γ(Fpl × Fqm × Frn) is given by

rad (Γ(Fpl × Fqm × Frn)) = 2.

Proof. By using Theorem 2.6, we have

e(a, 0, 0) = e(0, b, 0) = e(0, 0, c) = 2 and e(a, b, 0) = e(0, b, c) = e(a, 0, c) = 3,

for 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Hence,

rad (Γ(Fpl × Fqm × Frn)) = min{e(u) : u ∈ V (Γ(Fpl × Fqm × Frn))} = 2.

The girth of a graph G, denoted by gr (G), is the length of the shortest cycle in
G (gr (G) = ∞ if G contains no cycle).

Theorem 2.9. The girth of the graph Γ(Fpl × Fqm × Frn) is given by

gr (Γ(Fpl × Fqm × Frn)) = 3.

Proof. Since (a, 0, 0) · (0, b, 0) = (0, 0, 0), (0, b, 0) · (0, 0, c) = (0, 0, 0) and (0, 0, c) ·
(a, 0, 0) = (0, 0, 0), for some 0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . Thus,
(a, 0, 0) ∼ (0, b, 0) ∼ (0, 0, c) ∼ (a, 0, 0) is a cycle of length 3 in Γ(Fpl × Fqm × Frn).
Hence, gr (Γ(Fpl × Fqm × Frn)) = 3. □

A set S ⊆ V is a dominating set of a graph G = (V,E) if every vertex in V \ S is
adjacent to at least one vertex in S. The domination number of G, denoted γ(G), is
the minimum cardinality of a dominating set in G. A dominating set S of minimum
cardinality in G is called γ-set of G.

Theorem 2.10. The domination number of the graph Γ(Fpl ×Fqm ×Frn) is given by

γ(Γ(Fpl × Fqm × Frn)) = 3.

Proof. Clearly, S = {(a, 0, 0), (0, b, 0), (0, 0, c)} is a dominating set of Γ(Fpl × Fqm ×
Frn), where a, b and c are fixed nonzero elements of Fpl , Fqm and Frn respectively,
since a nonzero element (x, y, z) is a vertex of Γ(Fpl ×Fqm ×Frn) if and only if at least
one of its component is zero. If we show that no subset T of S with cardinality 2 is a
dominating set of Γ(Fpl×Fqm×Frn), then the proof is complete. Suppose on contrary
that T = {(a, 0, 0), (0, b, 0)} is a dominating set of Γ(Fpl × Fqm × Frn), where a and
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b are fixed nonzero elements of Fpl and Fqm , respectively. Then, (1, 1, 0) is a vertex
of Γ(Fpl × Fqm × Frn), which is not adjacent to any element of T , a contradiction.
Therefore, γ(Γ(Fpl × Fqm × Frn)) = 3. □

A coloring of a graph is an assignment of colors to its vertices so that no two
adjacent vertices have the same color. The set of all points with any of the colors
is independent and is called a color class. An n-coloring of a graph G(V,E) uses
n colors; it thereby partitions V into n color classes. The chromatic number of G,
denoted by χ(G), is the minimum n for which G has an n-coloring.

In the following theorem, we deternine the chromatic number of the graph Γ(Fpl ×
Fqm × Frn).

Theorem 2.11. The chromatic number of the graph Γ(Fpl × Fqm × Frn) is given by

χ(Γ(Fpl × Fqm × Frn)) = 3.

Proof. Consider the vertex (1, 0, 0) of Γ(Fpl × Fqm × Frn) and assign color t1 to this
vertex. Observe that this vertex is not adjacent to (a, 0, 0), (a, b, 0), and (a, 0, c), for
0 ̸= a ∈ Fpl , 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn . So we can assign the same color t1 to all
these types of vertices.

Similarly, consider the vertex (0, 1, 0) and assign a color t2 to this vertex. Also,
this vertex is not adjacent to (0, b, 0) and (0, b, c), for 0 ̸= b ∈ Fqm and 0 ̸= c ∈ Frn .
Again, we can assign the same color t2 to all these types of vertices.

Now, choose the vertex (0, 0, 1) and use the color t3 for this vertex. The vertex
(0, 0, 1) is not adjacent to (0, 0, c), for 0 ̸= c ∈ Frn . Therefore, we can assign the same
color t3 to these types of vertices. Thus, all vertices of the graph Γ(Fpl × Fqm × Frn)
are colored by at most 3 different colors. Hence, χ(Γ(Fpl × Fqm × Frn)) = 3. □

A graph is said to be complete if all its vertices are adjacent with each other. A
complete graph with n vertices is denoted by Kn. The clique number of a graph G,
denoted ω(G), is the maximum number of vertices in a complete subgraph of G.

Theorem 2.12. The clique number of the graph Γ(Fpl × Fqm × Frn) is given by

ω(Γ(Fpl × Fqm × Frn)) = 3.

Proof. Observe that the vertex (1, 0, 0) is adjacent to (0, 1, 0). Also, the vertex (0, 1, 0)
is adjacent to (0, 0, 1). In addition, the vertex (0, 0, 1) is adjacent to (1, 0, 0). We can
see that the graph (1, 0, 0) ∼ (0, 1, 0) ∼ (0, 0, 1) ∼ (1, 0, 0) is the maximal complete
subgraph of Γ(Fpl × Fqm × Frn). Hence, ω(Γ(Fpl × Fqm × Frn)) = 3. □

Remark 2.13. From Theorems 2.11 and 2.12, we can say that

ω(Γ(Fpl × Fqm × Frn)) = χ(Γ(Fpl × Fqm × Frn)) = 3,

which proves the perfectness property of the graph Γ(Fpl × Fqm × Frn).
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(1,0,0) (2,0,0)

(1,0,2) (1,1,0)

(1,0,1) (2,2,0)

(1,1,0) (1,2,0)

(0,1,0) (0,2,0)

(2,0,2) (0,2,1)

(2,0,1) (0,2,2)

(0,1,1) (0,1,2)

(0,0,1) (0,0,2)

Figure 1: The zero-divisor graph of the ring Z3 ×Z3 ×Z3

Example 2.14. All the properties of Γ(Z3 × Z3 × Z3), shown in Figure 1, are the
following:

(i) diam (Γ(Z3 ×Z3 ×Z3)) = 3,

(ii) rad (Γ(Z3 ×Z3 ×Z3)) = 2,

(iii) gr (Γ(Z3 ×Z3 ×Z3)) = 3,

(iv) ∆(Γ(Z3 ×Z3 ×Z3)) = 8,

(v) δ(Γ(Z3 ×Z3 ×Z3)) = 2,

(vi) DS(Γ(Z3 × Z3 × Z3)) =
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8},
(vii) t(Γ(Z3 ×Z3 ×Z3)) = 2,

(viii) γ(Γ(Z3 ×Z3 ×Z3)) = 3,

(ix) χ(Γ(Z3 ×Z3 ×Z3)) = 3,

(x) ω(Γ(Z3 ×Z3 ×Z3)) = 3.

3. Some topological indices of Γ(Fpl × Fqm × Frn)

In this section, we will discuss some topological indices of the graph Γ(Fpl×Fqm×Frn).
A topological index of a graph G denoted by Top (G), is a number with the property
that for every graph H isomorphic to G, Top (G) = Top (H).

Some of the topological indices are define as follows:

Definition 3.1. The Zagreb group indices of a graph G denoted by M1(G) (first Za-
greb index ) and M2(G) (second Zagreb index ) are defined as M1(G) =

∑
u∈V (G) d

2(u)

and M2(G) =
∑

uv∈E(G) d(u)d(v), where d(u) denotes the degree of the vertex u.
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Definition 3.2. TheWeiner index W (G) of a graph G is defined as the sum of half of
the distances between every pair of vertices ofG. W (G) = 1

2

∑
u∈V (G)

∑
v∈V (G) d(u, v),

where d(u, v) is the distance between u and v.

Theorem 3.3. First Zagreb index of the graph Γ(Fpl × Fqm × Frn) is given as

M1(Γ(Fpl × Fqm × Frn)) =∑
i,j,k∈{pl,qm,rn}

i̸=j ̸=k

(ij − 1)2(k − 1) + (pl − 1)(qm − 1)(rn − 1)(pl + qm + rn + 3),

where p, q and r are primes and l,m, n ≥ 1 are positive numbers.

Proof. From Theorem 2.5, we have

M1(Γ(Fpl × Fqm × Frn)) =
∑

u∈V (G)

d2(u)

=(pl − 1)2(qm − 1)(rn − 1) + (qm − 1)2(pl − 1)(rn − 1) + (rn − 1)2(pl − 1)(qm − 1)

+ (plqm − 1)2(rn − 1) + (plrn − 1)2(qm − 1) + (qmrn − 1)2(pl − 1)

=
∑

i,j,k∈{pl,qm,rn}
i ̸=j ̸=k

(ij − 1)2(k − 1) + (pl − 1)(qm − 1)(rn − 1)(pl + qm + rn + 3).

Theorem 3.4. Second Zagreb index of the graph Γ(Fpl × Fqm × Frn), where p, q and
r are primes and l,m, n ≥ 1 are positive numbers, is given as

M2(Γ(Fpl × Fqm × Frn)) = (6P + 3)(P −Q) +R(P +Q−R+ 2) +Q2,

where P = plqmrn, Q = plqm + qmrn + rnpl and R = pl + qm + rn.

Proof. From Definition 2.1, we have

M2(Γ(Fpl × Fqm × Frn)) =
∑

(a,0,0)∼(0,b,0)

d(a, 0, 0)d(0, b, 0) +
∑

(a,0,0)∼(0,0,c)

d(a, 0, 0)d(0, 0, c)

+
∑

(0,b,0)∼(0,0,c)

d(0, b, 0)d(0, 0, c) +
∑

(a,0,0)∼(0,b,c)
b̸=c

d(a, 0, 0)d(0, b, c)

+
∑

(0,b,0)∼(a,0,c)
a̸=c

d(a, 0, 0)d(0, b, c) +
∑

(0,0,c)∼(a,b,0)
a ̸=b

d(a, 0, 0)d(0, b, c).

By applying Theorem 2.2, we get

M2(Γ(Fpl × Fqm × Frn)) = (qmrn − 1)(plrn − 1)(pl − 1)(qm − 1)

+ (qmrn − 1)(plqm − 1)(pl − 1)(rn − 1) + (qmrn − 1)(pl − 1)(pl − 1)(qm − 1)(rn − 1)

+ (plrn − 1)(plqm − 1)(qm − 1)(rn − 1) + (plrn − 1)(qm − 1)(qm − 1)(pl − 1)(rn − 1)

+ (plqm − 1)(rn − 1)(rn − 1)(pl − 1)(qm − 1).

If we take P = plqmrn, Q = plqm + qmrn + rnpl and R = pl + qm + rn, then

M2(Γ(Fpl × Fqm × Frn)) = (6P + 3)(P −Q) +R(P +Q−R+ 2) +Q2.
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Theorem 3.5. The Weiner index of the graph Γ(Fpl × Fqm × Frn), where p, q and r
are primes and l,m, n ≥ 1 are positive numbers, is given as

W (Γ(Fpl × Fqm × Frn)) = A+ 4B + 9D + E(3C − 5)− 3
∑

i,j,k∈{pl,qm,rn}

i2(j − k) + 3,

where A=pl
2

qm
2

+pl
2

rn
2

+qm
2

rn
2

, B=pl
2

+qm
2

+rn
2

, C=plqmrn D=plqm+plrn+qmrn,
and E=pl+qm+rn.

Proof. From Theorem 2.6, we have

W (Γ(Fpl × Fqm × Frn)) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v)

=
1

2

[ ∑
(a,b,c)∈

V (Γ(F
pl

×Fqm×Frn ))

d((a1, 0, 0), (a, b, c)) +
∑

(a,b,c)∈
V (Γ(F

pl
×Fqm×Frn ))

d((0, b1, 0), (a, b, c))

+
∑

(a,b,c)∈
V (Γ(F

pl
×Fqm×Frn ))

d((0, 0, c1), (a, b, c)) +
∑

(a,b,c)∈
V (Γ(F

pl
×Fqm×Frn ))

d((a1, b1, 0), (a, b, c))

+
∑

(a,b,c)∈
V (Γ(F

pl
×Fqm×Frn ))

d((a1, 0, c1), (a, b, c)) +
∑

(a,b,c)∈
V (Γ(F

pl
×Fqm×Frn ))

d((0, b1, c1), (a, b, c))

]

=
1

2

[
(pl−1)

{
2(pl−1) + 1(qm−1) + 1(rn−1) + 2(pl−1)(qm−1) + 2(pl−1)(rn−1)

+ 1(qm−1)(rn−1)

}
+ (qm−1)

{
1(pl−1) + 2(qm−1) + 1(rn−1) + 2(pl−1)(qm−1)

+ 1(pl−1)(rn−1) + 2(qm−1)(rn−1)

}
+ (rn−1)

{
1(pl−1) + 1(qm−1) + 2(rn−1)

+ 1(pl−1)(qm−1) + 2(pl−1)(rn−1) + 2(qm−1)(rn−1)

}
+ (pl−1)(qm−1)

{
2(pl−1)

+ 2(qm−1) + 1(rn−1) + 2(pl−1)(qm−1) + 3(pl−1)(rn−1) + 3(qm−1)(rn−1)

}
+ (qm−1)(rn−1)

{
1(pl−1) + 2(qm−1) + 2(rn−1) + 3(pl−1)(qm−1)

+ 3(pl−1)(rn−1) + 2(qm−1)(rn−1)

}
+ (pl−1)(qm−1)

{
2(pl−1) + 1(qm−1)

+ 2(rn−1) + 3(pl−1)(qm−1) + 2(pl−1)(rn−1) + 3(qm−1)(rn−1)

}]
.

On solving, we get

W (Γ(Fpl × Fqm × Frn)) = (pl
2

qm
2

+ pl
2

rn
2

+ qm
2

rn
2

) + 4(pl
2

+ qm
2

+ rn
2

)

+ 9(plqm + plrn + qmrn) + (pl + qm + rn)(3plqmrn − 5) + 3
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− 3pl
2

(qm + rn)− 3qm
2

(pl + rn)− 3rn
2

(pl + qm).

Take A=pl
2

qm
2

+pl
2

rn
2

+qm
2

rn
2

, B=pl
2

+qm
2

+rn
2

, C=plqmrn, D=plqm+plrn+qmrn

and E=pl+qm+rn, then

W (Γ(Fpl × Fqm × Frn)) = A+ 4B + 9D + E(3C − 5)− 3
∑

i,j,k∈{pl,qm,rn}

i2(j − k) + 3.
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[1] N. Akgüneş, Analyzing special parameters over zero-divisor graphs, AIP Conference Proceed-
ing, 1479(1) (2012), 390–392.
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