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Abstract. In this paper, by some group action, we introduce a new type of weighted
Orlicz spaces LΦ

w,v(Ω), where w and v are weights on Ω and Φ is a Young function. We
study conditions under which LΦ

w,v(G) is a convolution Banach algebra, where G is a locally
compact group.

1. Introduction and preliminaries

Let p ≥ 1 and (Ω,A, µ) be a measure space and w : Ω → (0,∞) be a measurable
function. It is well-known that a complex-valued measurable function f on Ω belongs
to the weighted Lebesgue space Lp

w(Ω) whenever
∫
Ω
|wf |p dµ < ∞. If Lp

w(Ω) denotes
the set of all measurable functions f : Ω → C with∫

Ω

|f |p w dµ < ∞, (1)

then easily, Lp
w(Ω) = Lp

wp(Ω). This fact trivially follows from the equality Φp(xy) =
Φp(x) Φp(y), where Φp(·) := | · |p. In some papers, researchers prefer to consider the
relation (1) for weighted Lebesgue spaces; for example see [8]. On the other hand, the
situation is different for Orlicz spaces. As a natural way in [5] a measurable function
f : Ω → C belongs to the weighted Orlicz space LΦ

w(Ω) if and only if wf ∈ LΦ(Ω),
where Φ is a Young function. By considering a version of the relation (1) for the
case of Orlicz spaces, we give a new version of weighted Orlicz spaces which are more
complicated from the previous known one. Although these two classes are the same
in the case of Lebesgue spaces, they are different for general Orlicz ones.

Definition 1.1. Let G be a locally compact group, Ω be a locally compact Hausdorff
space, and µ be a Borel nonnegative measure on Ω. A continuous function G×Ω −→
Ω, (s, x) 7→ sx, (s ∈ G, x ∈ Ω) is called an action of G on the measure space (Ω, µ) if
(i) for each x ∈ Ω, ex = x, where e is the identity element of G;
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(ii) for each s, t ∈ G and x ∈ Ω, s(tx) = (st)x;

(iii) for each s ∈ G, the self-mapping x 7→ sx on Ω is Borel measurable and measure-
preserving, that is, for each s ∈ G and Borel subset E ⊆ Ω, sE := {sx : x ∈ E} is
also a Borel subset of Ω and µ(sE) = µ(E).
In this case, we simply say that G acts on (Ω, µ), and write G ↷ (Ω, µ).

Throughout, we assume that G is a locally compact group and (Ω, µ) is a Borel
measure space with finite subset property. Also, we assume that G ↷ (Ω, µ). The set
of all Borel measurable complex-valued functions on Ω is denoted by M0. Also, we
denote the set of all nonnegative functions in M0 by M+

0 .
Let G act on a locally compact Hausdorff space Ω, and f : Ω → C. Then, for each

x ∈ Ω and y ∈ G we define Lyf(x) := f(yx).
We note that if Ω = G is a locally compact group, then G acts naturally on (G,λ)

where λ is the left Haar measure of G.

Example 1.2. Let G be a locally compact group, and H be a closed subgroup of G
such that ∆G|H = ∆H , where ∆ is the related modular function. Then G naturally
acts on the quotient space G/H, and there is a Borel measure µ on G/H such that
for each x ∈ G and each Borel set E ⊆ G/H, we have µ(xE) = µ(E). Indeed,
G ↷ (G/H,µ).

2. Weighted Orlicz type spaces

A convex mapping Φ : [0,∞) → [0,∞) is called a Young function if Φ(0) =
limx→0 Φ(x) = 0 and limx→∞ Φ(x) = ∞. The complementary of a Young function Φ
is defined by Ψ(x) := sup{xy − Φ(y) : y ≥ 0}, (x ≥ 0). In this paper Φ is a Young
function and Ψ is its complimentary. Also, we assume that Φ(x) = 0 implies that
x = 0. For every x, y ≥ 0 we have the Young’s inequality :

xy ≤ Φ(x) + Ψ(y). (2)

In this paper, v and w are two continuous positive functions on Ω (called weight
functions).

We write w−1 := 1
w . In the sequel we assume that w, v satisfy the condition

M := sup

{∫
Ω

χF Ly(wv) dµ : y ∈ G and F ⊆ Ω with µ(F ) < ∞
}

< ∞. (3)

Put Sw,v
Ψ :=

{
h ∈ M0 :

∫
Ω

Ly(wv)Ψ(|h|) dµ ≤ 1 for all y ∈ G

}
.

Remark 2.1. (i) The relation (3) implies that the set Sw,v
Ψ is non-empty.

(ii) If wv ∈ L1(µ), then easily (3) holds.

Because of the way we have defined Sw,v
Ψ by left translations, we have the following
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property:

h ∈ Sw,v
Ψ if and only if Lyh ∈ Sw,v

Ψ for all y ∈ G. (4)

This fact plays a key role in Section 3 while we discuss on convolution Banach algebras.

Definition 2.2. The space of all complex valued measurable functions f on Ω with
∥f∥Φ,(w,v)<∞, is denoted by LΦ

w,v(Ω), where ∥f∥Φ,(w,v):= sup
{∫

Ω
|fh|w dµ : h ∈ Sw,v

Ψ

}
.

Remark 2.3. The above structure covers the classical weighted Orlicz spaces [5]
because LΦ

w, 1
w

(Ω) = LΦ
w(Ω).

Theorem 2.4.
(
LΦ
w,v(Ω), ∥ · ∥Φ,(w,v)

)
is a Banach space.

Proof. For each f ∈ M+
0 denote ρ(f) := sup

{∫
Ω
f |h|w dµ : h ∈ Sw,v

Ψ

}
. Clearly,

ρ(0) = 0. Conversely, let 0 ̸= f ∈ M+
0 and ρ(f) = 0. Set E := {x ∈ Ω :

f(x) > 0}. Then, since µ has the finite subset property, there exists a subset
F of E such that 0 < µ(F ) < ∞. Now, since w, v satisfy (3), by properties of
Φ, setting α := max{1,M Ψ(1)} we have h0 := χF

α ∈ Sw,v
Ψ . This implies that∫

Ω
fh0w dµ = 1

α

∫
F
fw dµ = 0 and so µ(F ) = 0. This contradiction shows that

f = 0 a.e. Moreover, easily ρ is subadditive and for each a ≥ 0, ρ(af) = aρ(f). Also,
for each increasing sequence {fn}∞n=1 ⊆ M+

0 , if fn ↑ f , by Monoton Convegence The-
orem we have ρ(fn) ↑ ρ(f). So, by [11, Section 30, Theorem 2]

(
LΦ
w,v(Ω), ∥ · ∥Φ,(w,v)

)
is a Banach space. □

The following definition gives a version of Luxembourg norm for LΦ
w,v(Ω) (see [6,

page 54] for more details).

Definition 2.5. For each f ∈ M0 we define

Nw,v
Φ (f) := inf

{
λ > 0 :

f

λ
∈ Sw,v

Φ

}
= inf

{
λ > 0 : sup

y∈G

∫
Ω

Ly(wv)Φ(
|f |
λ
) dµ ≤ 1

}
.

Since Φ is increasing, we have

Nw,v
Φ (f) ≤ 1 if and only if f ∈ Sw,v

Φ . (5)

Also,

if Nw,v
Φ (f) ̸= 0, then

∫
Ω

Ly(wv)Φ(
|f |

Nw,v
Φ (f)

) dµ ≤ 1 for all y ∈ G. (6)

Proposition 2.6. For each f, g ∈ M0 we have

(i) Hölder’s inequality ∫
Ω

Ly(wv)|fg| dµ ≤ 2Nw,v
Φ (f)Nw,v

Ψ (g) (7)

for all y ∈ G.

(ii) If v ≥ 1, then ∥f∥Φ,(w,v) ≤ 2Nw,v
Φ (f).
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Proof. (i) If Nw,v
Φ (f) = 0 or Nw,v

Ψ (g) = 0, then both sides of the inequality (7) are
zero. Otherwise, by the Young’s inequality (2) for all y ∈ G we have

Ly(wv)
|f |

Nw,v
Φ (f)

|g|
Nw,v

Ψ (g)
≤ Ly(wv)

[
Φ(

|f |
Nw,v

Φ (f)
) + Ψ(

|g|
Nw,v

Ψ (g)
)

]
.

So by (6),

∫
Ω

Ly(wv)
|f |

Nw,v
Φ (f)

|g|
Nw,v

Ψ (g)
dµ ≤ 2, and the proof is complete.

(ii) By v ≥ 1, Hölder’s inequality (7) and the relation (5) we have

∥f∥Φ,(w,v) = sup

{∫
Ω

|fg|w dµ : g ∈ Sw,v
Ψ

}
≤ 2 sup {Nw,v

Φ (f)Nw,v
Ψ (g) : Nw,v

Ψ (g) ≤ 1} = 2Nw,v
Φ (f).

Next, we show that Nw,v
Φ is a complete norm on LΦ

w,v(Ω).

Theorem 2.7. Let ρ : M+
0 → [0,∞] be defined by

ρ(f) = inf

{
λ > 0 : sup

y∈G

∫
Ω

Ly(wv)Φ(
f

λ
) dµ ≤ 1

}
.

Then, the followings hold.

(a) ρ(f) = 0 if and only if f = 0.

(b) ρ(f1 + f2) ≤ ρ(f1) + ρ(f2) for all f1, f2 ∈ M+
0 .

(c) ρ(αf) = αρ(f) for all α > 0 and f ∈ M+
0 .

(d) If f1, f2 ∈ M+
0 and f1 ≤ f2 µ-a.e., then ρ(f1) ≤ ρ(f2).

If Φ is continuous, then

(e) If {fn}∞n=1 ⊆ M+
0 , f ∈ M+

0 and fn −→ f µ-a.e., then

ρ(f) ≤ lim inf
n

ρ(fn). (8)

(f) If {fn}∞n=1 ⊆ M+
0 and fn ↑ f ∈ M+

0 µ-a.e., then ρ(fn) ↑ ρ(f).

Proof. (a) Clearly ρ(0) = 0. Conversely, let f ∈ M+
0 and ρ(f) = 0. Put E := {x ∈

Ω : |f(x)| > 0}. In contrast, let µ(E) > 0. Then, since µ has finite subset property,
there exists a Borel set F ⊆ E such that 0 < µ(F ) < ∞. By the assumption ρ(f) = 0,
we have ∫

Ω

Ly(wv)Φ(fχF ) dµ =

∫
F

Ly(wv)Φ(f) dµ ≤ λ

∫
F

Ly(wv)Φ(
f

λ
) dµ

≤ λ

∫
Ω

Ly(wv)Φ(
f

λ
) dµ ≤ λ

for all 0 < λ < 1 and y ∈ G. Therefore, ∥wvΦ(f)χF ∥1 = 0 and so χF = 0 µ a.e. or
equivalently µ(F ) = 0, a contradiction. Hence, f = 0.

(b) Let f1, f2 ∈ M+
0 . For each λ1, λ2 > 0 satisfying

sup
y∈G

∫
Ω

Ly(wv)Φ

(
fi
λi

)
≤ 1, (i = 1, 2) (9)
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since Φ is convex we have∫
Ω

Ly(wv)Φ
( f1 + f2
λ1 + λ2

)
dµ ≤

∫
Ω

Ly(wv)

[
λ1

λ1 + λ2
Φ

(
f1
λ1

)
+

λ2

λ1 + λ2
Φ

(
f2
λ2

)]
dµ

≤ λ1

λ1 + λ2
+

λ2

λ1 + λ2
= 1,

for all y ∈ G. This implies that ρ(f1 + f2) ≤ λ1 + λ2. Taking infimum on λ1 and λ2

satisfying (9), we have ρ(f1 + f2) ≤ ρ(f1) + ρ(f2).

(c) and (d) are clear.

(e) Put η := lim infn ρ(fn). If f = 0 or η = ∞ then (8) holds. So let f ̸= 0 and
η < ∞. Without loss generality, we assume that ρ(fn) > 0 for all n ∈ N.

By (a), there is a λ0 > 0 such that for each λ ≤ λ0 we have

sup
y∈G

∫
G

Ly(wv)Φ(
f

λ
) > 1, and so 1 < lim inf

n

(
sup
y∈G

∫
Ω

Ly(wv)Φ(
fn
λ
) dµ

)
,

thanks to Fatou’s Lemma. Hence for each n0 ∈ N there exists some n ≥ n0 such that
1 < supy∈G

∫
G
Ly(wv)Φ(

fn
λ ), and so ρ(fn) ≥ λ0 > 0.

In contrast, let η = 0. Then, there is a subsequence {fnk
}∞k=1 of {fn}∞n=1 such

that limk→∞ ρ(fnk
) = 0. So there is k0 ∈ N such that ρ(fnk

) ≤ 1 for all k ≥ k0. So,

1

ρ(fnk
)

∫
Ω

Ly(wv)Φ(fnk
) dµ ≤

∫
Ω

Ly(wv)Φ(
fnk

Nw,v
Φ (fnk

)
) dµ ≤ 1 (10)

for all k ≥ k0 and y ∈ G thanks to convexity of Φ and (6). Using the Fatou’s Lemma
we have,

0 ≤
∫
Ω

Ly(wv)Φ(f) dµ ≤ lim inf
k→∞

∫
Ω

Ly(wv)Φ(fnk
) dµ ≤ lim inf

k→∞
ρ(fnk

) = 0

for all y ∈ G. Therefore,
∫
Ω
wvΦ(f) dµ = 0 and so Φ(f) = 0 µ-a.e. or equivalently

f = 0 µ-a.e., a contradiction. So, 0 < η < ∞. In this situation for each γ > η,
ρ(fn) < η for sufficiently large n. Therefore for each y ∈ G,∫

Ω

Ly(wv)Φ(
fn
γ
) dµ ≤

∫
Ω

Ly(wv)Φ(
fn

ρ(fn)
) dµ ≤ 1. (11)

From here, using the Fatou’s Lemma and (11), we get

sup
y∈G

∫
Ω

Ly(wv)Φ(
f

γ
) dµ ≤ sup

y∈G

(
lim inf
n→∞

∫
Ω

Ly(wv)Φ(
fn
γ
) dµ

)
≤ 1.

So, by the definition of ρ, we have ρ(f) ≤ γ. This implies that ρ(f) ≤ η =
lim infn→∞ ρ(fn).

(f) Let {fn}∞n=1 ⊆ M+
0 and fn ↑ f ∈ M+

0 µ-a.e. Then, by (d) and (e) we have
ρ(f) ≤ lim infn→∞ ρ(fn) ≤ lim supn→∞ ρ(fn) ≤ ρ(f). This completes the proof. □

Proposition 2.8. Let Φ be a continuous Young function. Then,
(
LΦ
w,v(Ω),N

w,v
Φ

)
is

a Banach space.

Proof. Thanks to [11, Section 30, Theorem 2], the proof is directly obtained by the
parts (a), (b), (c) and (f) of Theorem 2.7. □
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Let p > 0. We define Φp(x) := xp for each x > 0. Then, we denote Lp
w,v := LΦp

w,v.

Easily, for each f ∈ M0 we have Nw,v
p (f) := Nw,v

Φp
(f) = supy∈G

(∫
Ω
Ly(vw) |f |p dµ

) 1
p

for all f ∈ Lp
(w,v).

Next, we give some equivalent conditions for inclusion of these weighted Lebesgue
type spaces. Note that the first condition is independent of the choice of p, q.

Theorem 2.9. Let G ↷ (Ω, µ). Then, the following statements are equivalent:

(i) inf
{
supy∈G

∫
E
Ly(vw) dµ : E ∈ A, µ(E) > 0

}
> 0.

(ii) For each p > 0, Lp
w,v ⊆ L∞(Ω, µ).

(iii) For each p, q > 0 with p < q we have Lp
w,v ⊆ Lq

w,v.

Proof. (i) =⇒ (ii): Let the condition (i) hold. Let p > 0 and f ∈ Lp
(w,v). For each

n ∈ N we put En := {x ∈ Ω : |f(x)| > n}. Then, nχFEn ≤ |f |, and so

n sup
y∈G

(∫
En

Ly(vw) dµ

) 1
p

≤ Nw,v
p (f).

This implies that limn→∞ supy∈G

(∫
En

Ly(vw) dµ
)
= 0. Therefore, by (i), for some

n ∈ N we have µ(En) = 0 i.e. f ∈ L∞(Ω).

(ii) =⇒ (iii): Let (ii) hold. Let 0 < p < q and f ∈ Lp
w,v. Then, by (ii), there is

some k > 0 such that |f | ≤ k a.e. Therefore,

sup
y∈G

(∫
Ω

Ly(vw)
|f |q

kq
dµ

)
≤ sup

y∈G

(∫
Ω

Ly(vw)
|f |p

kp
dµ

)
< ∞,

because 0 ≤ |f |
k < 1. This shows that f ∈ Lq

w,v.

(iii) =⇒ (i) Let (iii) hold. Then, there exists a constant C > 0 such that for each
f ∈ Lp

w,v,

Nw,v
q (f) ≤ CNw,v

p (f). (12)

Assume that E ∈ A, µ(E) > 0 and supy∈G Ly(vw) dµ < ∞. So, χE ∈ Lp
w,v, and

by the relation (12), 0 < C
pq

p−q ≤ supy∈G

(∫
E
Ly(vw) dµ

)
, and this completes the

proof. □

The next result is a weighted version of [10, Theorem 1] which can be concluded
directly from Theorem 2.9 by taking G := {e} and v ≡ 1.

Corollary 2.10. The following conditions are equivalent.

(i) Lp
w(µ) ⊆ Lq

w(µ) for some p, q with 0 < p < q < ∞.

(ii) inf{
∫
E
w dµ : E ∈ A with µ(E) > 0} > 0.

(iii) Lp
w(µ) ⊆ Lq

w(µ) for all p, q with 0 < p < q < ∞.
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3. Weighted Orlicz type convolution algebras

Let G be a locally compact group with a left Haar measure λ. In this section, we set
Ω := G and consider the natural act of G on itself. The space LΦ

w,v(G) is called a

convolution Banach algebra if there exists a constant c > 0 such that f ∗ g ∈ LΦ
w,v(G)

and ∥f ∗ g∥Φ,(w,v) ≤ c ∥f∥Φ,(w,v) ∥g∥Φ,(w,v), for all f, g ∈ LΦ
w,v(G).

Next, we give some sufficient condition for a weighted Orlicz space(
LΦ
w,v(G), ∥ · ∥Φ,(w,v)

)
to be a convolution Banach algebra.

Theorem 3.1. Let (Φ,Ψ) be a complementary pair of Young functions and v, w be
weight functions with w satisfying (3). If w is submultiplicative then LΦ

w,v(G) is an
L1
w-module.

Proof. Let f, g ∈ LΦ
w,v(G). Then since w is submultiplicative,

∥f ∗ g∥Φ,(w,v) = sup

{∫
G

|f ∗ g||h|w dλ(x) : h ∈ Sw,v
Ψ

}
≤ sup

{∫
G

∫
G

|f(y)||g(y−1x)||h(x)|w(x) dλ(x) : h ∈ Sw,v
Ψ

}
= sup

{∫
G

|f(y)|
∫
G

|g(x)||Ly−1h(x)|w(yx) dλ(x) : h ∈ Sw,v
Ψ

}
≤ sup

{∫
G

|f(y)|w(y)(
∫
G

|g(x)||Ly−1h(x)|w(x)) dλ(x) : h ∈ Sw,v
Ψ

}
≤ ∥f∥1,w∥g∥Φ,(w,v),

following from (4). □

Corollary 3.2. Let (Φ,Ψ) be a complementary pair of Young functions and v, w
be weight functions with w satisfying (3). If w is submultiplicative and LΦ

w,v(G) ⊆
L1
w(G), then

(
LΦ
w,v(G), ∥ · ∥Φ,(w,v)

)
is a convolution Banach algebra.

Proof. By Theorem 3.1, for all f, g ∈ LΦ
w,v(G) we have ∥f∗g∥Φ,(w,v) ≤ ∥f∥1,w∥g∥Φ,(w,v).

Now by the assumption LΦ
w,v(G) ⊆ L1

w(G), there exists a c > 0 such that ∥f∥1,w ≤
c∥f∥Φ,(w,v). So for all f, g ∈ LΦ

w,v(G) we have, ∥f ∗ g∥Φ,(w,v) ≤ c∥f∥Φ,(w,v)∥g∥Φ,(w,v).

Hence
(
LΦ
w,v(G), ∥ · ∥Φ,(w,v)

)
is a convolution Banach algebra. □

Definition 3.3. Let E be a topological vector space. We say that a relation ∼ on E
has property (D) if the following conditions hold:

(i) If (xn) is a sequence in E such that xn ∼ xm for all distinct index m,n, then for
each finite subsets A,B of N we have

∑
n∈A αnxn ∼

∑
m∈B βmxm, where αn and

βm’s are arbitrary scalars.

(ii) If a sequence (xn) converges to x in E and for some y ∈ E , xn ∼ y for all n ∈ N,
then x ∼ y.
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We recall the following result from [1]. Note that a subset S of a Banach space X
is called spaceable if the set S ∪ {0} contains a closed infinite-dimensional subspace
of X.

Theorem 3.4. Let (E , ∥ · ∥) be a Banach space, ∼ be a relation on E with property
(D), and B be a nonempty subset of E. Assume that:
(i) there is a constant k > 0 such that ∥x+ y∥ ≥ k ∥x∥ for all x, y ∈ E with x ∼ y;

(ii) B is a cone;

(iii) if x, y ∈ E such that x+ y ∈ B and x ∼ y then x, y ∈ B;

(iv) there is an infinite sequence {xn}∞n=1 ⊆ E−B such that for each distinct m,n ∈ N,
xm ∼ xn.
Then, E −B is spaceable in E.

Theorem 3.5. Let G be a compactly generated non-compact abelian group. Let Φ be
a Young function such that for two nonnegative sequences (αn) and (βn) we have

∞∑
n=1

Φ(αn) < ∞,

∞∑
n=1

Φ(βn) < ∞ and

∞∑
n=1

αnβn = ∞. (13)

Then, the set {(f, g) : |f | ∗ |g| /∈ LΦ
w,v} is spaceable in LΦ

w,v × LΦ
w,v.

Proof. We consider the cone B := {(f, g) ∈ LΦ
w,v × LΦ

w,v : |f | ∗ |g| ∈ LΦ
w,v}. For

each fi, gi ∈ LΦ
w,v (i = 1, 2) we say that (f1, g1) ∼ (f2, g2) whenever λ(σ(f1) ∩

σ(f2)) = λ(σ(g1) ∩ σ(g2)) = 0, where σ(h) := {x ∈ Ω : h(x) ̸= 0} for each function
h : G → C. One can easily see that the relation ∼ satisfies Definition 3.3 and
by solidity, the conditions (1) and (3) in Theorem 3.4 hold. Let U be a compact
symmetric neighborhood of e in G and V be a compact symmetric neighborhood of
e with V V ⊆ U . By [3, 9.26(b)] and [2, Lemma 1.1] there are an element a ∈ G
and some k ∈ N such that for each n ≥ k, U ∩ Uan = ∅. By (13), there is an
infinite partition P of N whose elements are infinite subsets of N such that for each
N ∈ P,

∑
n∈N Φ(αn) < 1

M λ(V ) and
∑

n∈N Φ(βn) < 1
M λ(V V ) , where M is defined

as (3). Define fN (x) :=
∑

n∈N αnχV a−nk(x) and g(x) :=
∑

n∈N βnχV V ank(x), for all
x ∈ G. So, for each y ∈ G,∫

G

Ly(wv)(x)Φ(fN (x)) dλ(x) =

∫
⋃

n∈N V a−nk

Ly(wv)(x) Φ(fN (x)) dλ(x)

=
∑
n∈N

∫
V a−nk

Ly(wv)(x) Φ(fN (x)) dλ(x) =
∑
n∈N

∫
V a−nk

Ly(wv)(x) Φ(αn) dλ(x)

=M λ(V )
∑
n∈N

Φ(αn) < 1.

Similarly, supy∈G

∫
G
Ly(wv)(x) Φ(gN (x)) dλ(x) = M λ(V V )

∑
n∈N Φ(βn) < 1. So,

f, g ∈ LΦ
w,v(G). But, for each x ∈ V ,

(fN ∗ gN )(x) =
∑
n∈N

αn

∫
V a−nk

∑
m∈N

βmχV V amk(y−1x) dλ(y)



146 A new type of weighted Orlicz spaces

=
∑
n∈N

αn

∫
V a−nk

βn dλ(y) = λ(V )
∑
n∈N

αnβn = ∞.

This implies that {(fN , gN )}N∈P is an infinite sequence in (LΦ
w,v×LΦ

w,v)−B. Trivially,
for each distinct N,N ′ ∈ P we have (fN , gN ) ∼ (fN ′ , gN ′). Therefore, by Theorem 3.4
the proof is complete. □

Remark 3.6. Following the same proof, one can see that the above result holds if we
replace the norm ∥ · ∥Φ,(w,v) by Nw,v

Φ .

Since the Young function Φp for each p ≥ 1 satisfies the sequence condition (13)
in Theorem 3.5, we deduce the next result.

Corollary 3.7. Let G be a compactly generated non-compact abelian group and
p ≥ 1. Then, for each p > 1, the set {(f, g) : |f | ∗ |g| /∈ Lp

w,v} is spaceable in
Lp
w,v × Lp

w,v.
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