МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 75, 2 (2023), 134–137 June 2023

research paper оригинални научни рад DOI: 10.57016/MV-woXu7919

THE σ -POINT-FINITE *cn*-NETWORKS (*ck*-NETWORKS) OF PIXLEY-ROY HYPERSPACES

Luong Quoc Tuyen and Ong Van Tuyen

Abstract. In this paper, we study the relation between a space X satisfying certain generalized metric properties and the Pixley-Roy hyperspace $\mathcal{F}[X]$ over X satisfying the same properties. We prove that if X has a σ -point-finite *cn*-network (resp., *ck*-network), then $\mathcal{F}[X]$ also has a σ -point-finite *cn*-network (resp., *ck*-network).

1. Introduction and preliminaries

The generalized metric properties on Pixley-Roy hyperspaces have been studied by many authors [1, 2, 5-10]. They considered several generalized metric properties and studied the relation between a space X satisfying such property and its Pixley-Roy hyperspaces satisfying the same property.

Throughout this paper, all spaces are assumed to be T_1 and regular, \mathbb{N} denotes the set of all positive integers. Moreover, if \mathcal{P} is a family of subsets of a space X and $G \subset X$, denote $(\mathcal{P})_G = \{P \in \mathcal{P} : P \cap G \neq \emptyset\}$.

The Pixley-Roy hyperspace $\mathcal{F}[X]$ over a space X, defined by C. Pixley and P. Roy in [8], is the set of all non-empty finite subsets of X with the topology generated by the sets of the form $[F, V] = \{G \in \mathcal{F}[X] : F \subset G \subset V\}$, where $F \in \mathcal{F}[X]$ and V is an open subset in X containing F. It is known that $\mathcal{F}[X]$ is always zero-dimensional, completely regular (see [2]).

For each $F \in \mathcal{F}[X]$ and $A \subset X$, denote $[F, A] = \{H \in \mathcal{F}[X] : F \subset H \subset A\}$.

DEFINITION 1.1. A family \mathcal{P} of subsets of a space X is said to be:

(i) a *network* [3] for X, if for any neighborhood U of a point $x \in X$, there exists a set $P \in \mathcal{P}$ such that $x \in P \subset U$.

(ii) a *cn-network* [4] for X, if for any neighborhood U of a point $x \in X$, the set $\bigcup \{P \in \mathcal{P} : x \in P \subset U\}$ is a neighborhood of x.

²⁰²⁰ Mathematics Subject Classification: $54B20,\,54D20$

Keywords and phrases: Pixley-Roy; hyperspace; cn-network; ck-network; σ -point-finite.

(iii) a *ck-network* [4] for X, if for any neighborhood U of a point $x \in X$, there is a neighborhood U_x of x such that for each compact subset $K \subset U_x$, there exists a finite subfamily $\mathcal{F} \subset \mathcal{P}$ satisfying $x \in \bigcap \mathcal{F}$ and $K \subset \bigcup \mathcal{F} \subset U$.

(iv) point-finite [3], if the family $\{P \in \mathcal{P} : x \in P\}$ is finite for each $x \in X$.

(v) σ -point-finite, if \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is point-finite, and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$.

REMARK 1.2 ([4]). ck-networks $\implies cn$ -networks \implies networks.

In this paper, we study the relation between a space X satisfying certain generalized metric properties and the Pixley-Roy hyperspace $\mathcal{F}[X]$ over X satisfying the same properties. We prove that if X has a σ -point-finite *cn*-network (resp., *ck*-network), then $\mathcal{F}[X]$ also has a σ -point-finite *cn*-network (resp., *ck*-network).

2. Main results

THEOREM 2.1. Let X be a space. If X has a σ -point-finite cn-network (resp., ck-network), then so does $\mathcal{F}[X]$.

Proof. Assume that $\mathcal{P} = \bigcup \{\mathcal{P}_k : k \in \mathbb{N}\}$ is a *cn*-network (resp., *ck*-network) for X, where each \mathcal{P}_k is point-finite and $\mathcal{P}_k \subset \mathcal{P}_{k+1}$ for each $k \in \mathbb{N}$. For each $k \in \mathbb{N}$, if we put

 $\mathfrak{P}_k = \Big\{ [F, \bigcup \mathcal{H}] : F \in \mathcal{F}[X] \text{ and } \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P}_k)_F \Big\},\$

then $\mathfrak{P}_k \subset \mathfrak{P}_{k+1}$. Moreover, \mathfrak{P}_k is point-finite for $\mathcal{F}[X]$ for each $k \in \mathbb{N}$. Indeed, for each $k \in \mathbb{N}$, let $F \in \mathcal{F}[X]$ and $\mathcal{W} \in \mathfrak{P}_k$ such that $F \in \mathcal{W}$. Then there exist $G \in \mathcal{F}[X]$ and a finite subfamily $\mathcal{H} \subset (\mathcal{P}_k)_G$ such that $\mathcal{W} = [G, \bigcup \mathcal{H}]$ and $G \subset F \subset \bigcup \mathcal{H}$.

Since $\mathcal{H} \subset (\mathcal{P}_k)_G$, we have $\mathcal{H} \subset (\mathcal{P}_k)_F$. This implies that

 $\{\mathcal{W} \in \mathfrak{P}_k : F \in \mathcal{W}\} \subset \{[G, \bigcup \mathcal{H}] : G \subset F, \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P}_k)_F\}.$

Since \mathcal{P}_k is point-finite for X and the set F is finite, $(\mathcal{P}_k)_F$ is finite and the set $\{G: G \subset F\}$ is finite. Hence, $\{[G, \bigcup \mathcal{H}]: G \subset F, \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P}_k)_F\}$ is finite. Therefore, $\{\mathcal{W} \in \mathfrak{P}_k : F \in \mathcal{W}\}$ is finite. This proves that \mathfrak{P}_k is point-finite for $\mathcal{F}[X]$. Therefore, $\mathfrak{P} = \bigcup \{\mathfrak{P}_k : k \in \mathbb{N}\}$ is a σ -point-finite family for $\mathcal{F}[X]$.

Next, we prove that

 $\mathfrak{P} = \Big\{ [F, \bigcup \mathcal{H}] : F \in \mathcal{F}[X] \text{ and } \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P})_F \Big\}.$

It is clear that $\mathfrak{P} \subset \{[F, \bigcup \mathcal{H}] : F \in \mathcal{F}[X] \text{ and } \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P})_F\}$. Now, take any $\mathcal{W} \in \{[F, \bigcup \mathcal{H}] : F \in \mathcal{F}[X] \text{ and } \mathcal{H} \text{ is a finite subfamily of } (\mathcal{P})_F\}$. Then there exist $F \in \mathcal{F}[X]$ and a finite subfamily $\mathcal{H} = \{P_i : i \leq s\}$ of $(\mathcal{P})_F$ such that $\mathcal{W} = [F, \bigcup \mathcal{H}]$. Since $\mathcal{P} = \bigcup \{\mathcal{P}_k : k \in \mathbb{N}\}$, there exists $k_i \in \mathbb{N}$ such that $P_i \in (\mathcal{P}_{k_i})_F$ for each $i \leq s$. If we put $m = \max\{k_i : i \leq s\}$, then $P_1, \ldots, P_s \in (\mathcal{P}_m)_F$. This implies that $\mathcal{W} \in \mathfrak{P}_m \subset \mathfrak{P}$. 136 The σ -point-finite *cn*-networks (*ck*-networks) of Pixley-Roy hyperspaces

Finally, let $F \in \mathcal{F}[X]$ and \mathcal{U} be an open neighborhood of F in $\mathcal{F}[X]$. Then there is an open set V in X such that $F \in [F, V] \subset \mathcal{U}$.

(1) Let \mathcal{P} be a *cn*-network for X. Put $\mathcal{Q} = \{P \in (\mathcal{P})_F : P \subset V\}$. Then $\bigcup \mathcal{Q}$ is a neighborhood of F in X. This implies that there exists W open in X such that $F \subset W \subset \bigcup \mathcal{Q}$. Thus, $F \in [F, W] \subset [F, \bigcup \mathcal{Q}]$. Moreover, we have

$$[F, \bigcup \mathcal{Q}] \subset \bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}.$$

Indeed, suppose that $H \in [F, \bigcup Q]$, then $F \subset H \subset \bigcup Q$. Since the set H is finite, there is a finite subfamily $\mathcal{G} \subset Q$ such that $H \subset \bigcup \mathcal{G}$. On the other hand, since $\bigcup \mathcal{G} \subset \bigcup Q \subset V$, it shows that $[F, \bigcup \mathcal{G}] \subset [F, V] \subset \mathcal{U}$. Furthermore, since $\mathcal{G} \subset Q \subset (\mathcal{P})_F$, we have $[F, \bigcup \mathcal{G}] \in \{\mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U}\}$. Since $H \in [F, \bigcup \mathcal{G}]$, this implies that $H \in \bigcup \{\mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U}\}$.

Therefore, $F \in [F, W] \subset [F, \bigcup Q] \subset \bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}.$

Since the set [F, W] is open in $\mathcal{F}[X]$, we conclude that $\bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}$ is a neighborhood of F in $\mathcal{F}[X]$. This shows that \mathfrak{P} is a *cn*-network for $\mathcal{F}[X]$.

(2) Suppose that \mathcal{P} is a *ck*-network for X. Then for each $x \in F$, there exists a neighborhood V_x of x such that $V_x \subset V$ and for each compact subset $A_x \subset V_x$, there exists a finite subfamily \mathcal{A}_x of \mathcal{P} satisfying $x \in \bigcap \mathcal{A}_x$ and $A_x \subset \bigcup \mathcal{A}_x \subset V$. For each $x \in F$, since X is regular, there is an open set O_x in X such that $x \in O_x \subset \overline{O_x} \subset V_x$. Put $\mathcal{V}_F = [F, \bigcup_{x \in F} O_x]$, then for each compact subset $\mathcal{K} \subset \mathcal{V}_F$, we have $\bigcup \mathcal{K} \subset \bigcup_{x \in F} \overline{O_x}$.

Claim $\bigcup \mathcal{K}$ is compact in X.

In fact, take any open cover \mathcal{L} of $\bigcup \mathcal{K}$ in X. Then for each $F \in \mathcal{K}$, we have that $F \subset \bigcup \mathcal{K} \subset \bigcup \mathcal{L}$. Hence, for each $x \in F$, there exists $U_x \in \mathcal{L}$ such that $x \in U_x$. Since $F \in [F, \bigcup_{x \in F} U_x]$ for each $F \in \mathcal{K}$, $\mathfrak{U} = \{[F, \bigcup_{x \in F} U_x] : F \in \mathcal{K}\}$ is an open cover of \mathcal{K} in $\mathcal{F}[X]$. On the other hand, since \mathcal{K} is compact, there exists a finite subfamily \mathfrak{V} of \mathfrak{U} such that $\mathcal{K} \subset \bigcup \mathfrak{V}$. This implies that there exist $F_1, \ldots, F_m \in \mathcal{K}$ such that $\mathfrak{V} \subseteq [F_1, \bigcup_{x \in F_1} U_x], \ldots, [F_m, \bigcup_{x \in F_m} U_x]\}$. Put $\mathcal{V} = \{U_x : x \in F_i, i \leq m\}$. Since each set F_i is finite, \mathcal{V} is a finite subfamily of \mathcal{L} . Thus, we only need to prove that $\bigcup \mathcal{K} \subset \bigcup \mathcal{V}$. Indeed, let $z \in \bigcup \mathcal{K}$, then $z \in A$ for some $A \in \mathcal{K}$. This implies that there exists $i \leq m$ such that $A \in [F_i, \bigcup_{x \in F_i} U_x]$, hence $A \subset \bigcup_{x \in F_i} U_x$. Therefore, $z \in U_x \subset \bigcup \mathcal{V}$ for some $x \in F_i$.

By Claim, $K_x = (\bigcup \mathcal{K}) \cap \overline{O}_x$ is compact in X and $K_x \subset V_x$ for each $x \in F$. This implies that there is a finite subfamily $\mathcal{F}_x \subset \mathcal{P}$ such that $x \in \bigcap \mathcal{F}_x$ and $K_x \subset \bigcup \mathcal{F}_x \subset V$. Suppose that $\mathcal{H} = \bigcup_{x \in F} \mathcal{F}_x$ and $\mathfrak{F} = \{[F, \bigcup \mathcal{G}] \neq \emptyset : \mathcal{G} \subset \mathcal{H}\}$. Then $F \in \bigcap \mathfrak{F}$ and $\bigcup \mathfrak{F} \subset [F, V]$. On the other hand, since the set F is finite and $\mathcal{H} \subset (\mathcal{P})_F$, the family \mathfrak{F} is a finite subfamily of \mathfrak{P} . Furthermore, we have $\mathcal{K} \subset \bigcup \mathfrak{F}$. In fact, take any $H \in \mathcal{K}$, then $H \subset \bigcup \mathcal{K}$. For each $y \in H$, since $\bigcup \mathcal{K} = \bigcup_{x \in F} K_x$, there exists $x_y \in F$ such that $y \in K_{x_y} \subset \bigcup \mathcal{F}_{x_y}$.

 $y \in K_{x_y} \subset \bigcup \mathcal{F}_{x_y}.$ Put $\mathcal{G} = \bigcup_{y \in H} \mathcal{F}_{x_y}.$ Then since $H \in \mathcal{K} \subset \mathcal{V}_F, F \subset H.$ This implies that $H \in [F, \bigcup \mathcal{G}] \in \mathfrak{F}.$ Hence, $H \in \bigcup \mathfrak{F}.$ It shows that $\mathcal{K} \subset \bigcup \mathfrak{F}.$ Thus, $\mathcal{K} \subset \bigcup \mathfrak{F} \subset [F, V] \subset \mathcal{U}.$ Therefore, \mathfrak{P} is a *ck*-network for $\mathcal{F}[X].$ **Question:** Let X be a space. If $\mathcal{F}[X]$ has a σ -point-finite *cn*-network (resp., *ck*-network), then does X have a σ -point-finite *cn*-network (resp., *ck*-network)?

References

- A. Bella, M. Sakai, Compactifications of a Pixley-Roy hyperspace, Topology Appl., 196 (2015), 173–182.
- [2] E. van Douwen, The Pixley-Roy topology on spaces of subsets, Set-theoretic topology, Academic Press, New York, 1977, 111–134.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [4] S. S. Gabriyelyan, J. Kakol, On P-spaces and related concepts, Topology Appl., 191 (2015), 178–198.
- [5] Lj. D. R. Kočinac, The Pixley-Roy topology and selection principles, Quest. Answers Gen. Topology, 19 (2001), 219–225.
- [6] Lj. D. R. Kočinac, L. Q. Tuyen, O. V. Tuyen, Some results on Pixley-Roy hyperspaces, J. Math., 2022 (2022), 1–8.
- [7] D. J. Lutzer, *Pixley-Roy topology*, Topology Proc., **3** (1978), 139–158.
- [8] C. Pixley, P. Roy, Uncompletable Moore spaces, Proc. Auburn Univ. Conf. (Auburn, Alabama, 1969), ed. by W. R. R. Transue, 1969, 75–85.
- [9] M. Sakai, The Fréchet-Urysohn property of Pixley-Roy hyperspaces, Topology Appl., 159 (2012), 308–314.
- [10] H. Tanaka, Metrizability of Pixley-Roy hyperspaces, Tsukuba J. Math., 7(2) (1983), 299-315.

(received 20.09.2021; in revised form 09.03.2022; available online 18.01.2023)

Department of Mathematics, Da Nang University of Education, 459 Ton Duc Thang Street, Da Nang City, Vietnam

E-mail: tuyendhdn@gmail.com

Hoa Vang High School, 101 Ong Ich Duong Street, Da Nang City, Vietnam *E-mail*: tuyenvan612dn@gmail.com