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NEW CHARACTERIZATIONS OF FUZZY TOPOLOGY

D. N. Georgiou, A. C. Megaritis and G. A. Prinos

Abstract. Following the generalization of Moore-Smith convergence of nets to fuzzy
topological spaces which was given in Pu Pao-Ming, Liu Ying-Ming, Fuzzy topology I. Neigh-
borhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76
(1980), 571–599, a characterization theorem between fuzzy topologies and fuzzy convergence
classes was introduced in Ying-Ming Liu, On fuzzy convergence classes, Fuzzy Sets and
Systems, 30 (1989), 47–51. Our goal in this paper is to provide modified versions of this
characterization. Specifically, we will introduce the concept of fuzzy semi-convergence class
to give an alternative characterization of fuzzy topology, in relation to the ordinary conver-
gence of fuzzy nets, and then we will introduce the concept of fuzzy ideal convergence class
to obtain analogous results, in relation to the ideal convergence of fuzzy nets.

1. Introduction

The fundamental notion of a fuzzy set, introduced by Zadeh [27] in 1965, provided the
natural framework for generalizing many of the concepts of general topology to the
fuzzy setting. It was in 1968, that Chang [5] made the first “grafting” of the notion
of a fuzzy set onto general topology, by defining the notion of fuzzy topological space.
Since then, much research has been carried out in the area of fuzzy topology (see,
for instance, [18–20, 26]). Especially, all the theorems concerning the neighborhood
structure of a point and the theory of convergence in Chapters I and II of [12] are
generalized to fuzzy topological spaces (see [19]). In [18], using the notions of the
fuzzy point and its quasi-coincidence neighborhood (see [19]), a designation of fuzzy
topology via fuzzy convergence classes has been given.

On the other hand, the concept of statistical convergence, based on the notion
of the asymptotic density, was first introduced by Fast [9] and Steinhaus [24], inde-
pendently. Statistical convergence has been investigated and generalized from various
points of view (see for example, in summability theory [6, 10, 23, 24], number theory
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and mathematical analysis [1, 2, 21], topological and function spaces [4, 8], topologi-
cal groups [3] and fuzzy mathematical analysis [22]). Using the notion of the ideal I,
Kostyrko et al. [14] introduced the concept of the I-convergence which is a natural gen-
eralization of the ordinary convergence and statistical convergence. In the last years,
researchers investigate convergence in metric and topological spaces via an ideal I (for
an extensive view of this subject we refer for example to [7, 11, 13, 14, 16, 17]). The
concepts of I-convergence, I∗-convergence and I-Cauchyness for sequences of fuzzy
numbers where defined and studied in [15]. The fuzzified notion of I-convergence of
fuzzy nets in a fuzzy topological spaces was given in [25]. In this paper we introduce
and study the notions of fuzzy semi-convergence class and fuzzy ideal convergence
class in order to obtain new characterizations of fuzzy topology.

The rest of this paper is organized as follows. Section 2 contains preliminaries.
In Section 3 we give a modification of [18, Theorem 2] by considering the notion of
a fuzzy semi-convergence class. In Section 4 we introduce the notion of fuzzy ideal
convergence class and develop its correlation with fuzzy topology. Particularly, we
characterize fuzzy topology via fuzzy ideal convergence classes.

2. Preliminaries

In this section, we recall basic notions in fuzzy set theory and topology, which will
be needed in the sequel and we refer the reader to [5, 18, 19, 27] for more details.
Throughout this paper, we use the symbols I and IX to represent the unit closed
interval [0, 1] and the set of all functions with domain the non-empty (ordinary) set
X and codomain I, respectively. A function A : X → I is called a fuzzy set in X
(due to Zadeh [27]) i.e. a fuzzy set in X is an element of IX . For every x ∈ X,
A(x) is called the grade of membership of x in A. X is called the carrier of the fuzzy
set A. The set {x ∈ X : A(x) > 0} is called the support of A. If A takes only the
values 0, 1, then A is called a crisp set in X. Particularly, the crisp set which always
takes the value 1 on X is denoted by Xfuzzy, and the crisp set which always takes
the value 0 on X is denoted by ∅fuzzy. Also if A,B are fuzzy sets in X we say that
A is contained in B, which we will denote by A ≤fuzzy B, if A(x) ≤ B(x), for every
x ∈ X.

Let Λ be an indexed set, and A = {Aλ : λ ∈ Λ} be a family of fuzzy sets in X.
Then, the union ∨A and the intersection ∧A of the members of the family are fuzzy
sets, defined respectively by the following rules:

(∨A)(x) = sup{Aλ(x) : λ ∈ Λ}, x ∈ X

(∧A)(x) = inf{Aλ(x) : λ ∈ Λ}, x ∈ X.

For a fuzzy set A, the complement A′ of A is a fuzzy set, defined by the formula:
A′(x) = 1−A(x), x ∈ X. The following De Morgan’s laws also hold:

(∨{Aλ : λ ∈ Λ})′ = ∧ {A′
λ : λ ∈ Λ}

(∧{Aλ : λ ∈ Λ})′ = ∨ {A′
λ : λ ∈ Λ}.
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A family δ of fuzzy sets in X is called a fuzzy topology for X (due to Chang [5]) if
(i) ∅fuzzy, Xfuzzy ∈ δ

(ii) A ∧B ∈ δ, whenever A,B ∈ δ, and

(iii) ∨{Aλ : λ ∈ Λ} ∈ δ, whenever Aλ ∈ δ, for each λ ∈ Λ.
Moreover, the pair (X, δ) is called a fuzzy topological space or fts, for short. Every
member of δ is called a δ-open (or simply open) fuzzy set. The complement of a
δ-open fuzzy set is called δ-closed (or simply closed) fuzzy set. Let δ1 and δ2 be two
fuzzy topologies for X. We say that δ2 is finer than δ1 and δ1 is coarser than δ2 if
the inclusion relation δ1 ⊆ δ2 holds.

In this paper we adopted the definition of a fuzzy point from [19]. A fuzzy set in
X is called a fuzzy point if it takes the value 0 for all y ∈ X except one, say, x ∈ X.
If its value at x is λ ∈ (0, 1] we denote the fuzzy point by xλ, where the point x is
called its support. The set of all the fuzzy points in X is denoted by FP(X). The
fuzzy point xλ is said to be contained in a fuzzy set A or to belong to A, denoted by
xλ ∈fuzzy A, if λ ≤ A(x). Evidently, every fuzzy set A can be expressed as the union
of all the fuzzy points which belong to A.

Two fuzzy sets A,B in X are said to be intersecting if there exists a point x ∈ X
such that (A∧B)(x) ̸= 0. For such a case, we say that A and B intersect at x. Given
an fts (X, δ), a fuzzy set A in X is called a neighborhood of fuzzy point xλ if there
exists a B ∈ δ such that xλ ∈fuzzy B ≤fuzzy A; a neighborhood A is said to be open
if A is open. The family consisting of all the neighborhoods of xλ is called the system
of neighborhoods of xλ. A fuzzy point xλ is said to be quasi-coincident with the fuzzy
set A, denoted by xλ qA, if λ > A′(x), or λ + A(x) > 1. A is said to be quasi-
coincident with B, denoted by A qB, if there exists x ∈ X such that A(x) > B′(x),
or A(x)+B(x) > 1. In this case, we also say that A and B are quasi-coincident (with
each other) at x. It is clear that if A and B are quasi-coincident at x, both A(x)
and B(x) are not zero and hence A and B intersect at x. If A is not quasi-coincident
with B, then we write A qB. Given an fts (X, δ), a fuzzy set A in X is called a
Q-neighborhood of xλ if there exists a B ∈ δ such that xλ qB ≤fuzzy A. The family
consisting of all the Q-neighborhoods of xλ, is called the system of Q-neighborhoods
of xλ. A Q-neighborhood of a fuzzy point generally does not contain the fuzzy point
itself.

Let (X, δ) be an fts and A be a fuzzy set in X. The intersection of all δ-closed
fuzzy sets containing A is called the (fuzzy) closure of A, denoted by A, or by clδ A.

Obviously, A is the smallest δ-closed fuzzy set containing A and (A) = A.
A map f : IX → IX is called a fuzzy closure operator on X if f satisfies the

following Kuratowski closure axioms:
(FCO1) f(∅fuzzy) = ∅fuzzy, (FCO2) A ≤fuzzy f(A),

(FCO3) f(f(A)) = f(A) and (FCO4) f(A ∨B) = f(A) ∨ f(B).
In a fuzzy topological space, the map g : IX → IX defined by g(A) = A is a fuzzy
closure operator on X. Conversely, any fuzzy closure operator on X can determine
some fuzzy topology for X. For this, we have:
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Proposition 2.1 ([19]). Let f be a fuzzy closure operator on X and let δ = {A′ :
A ∈ δ′}, where δ′ = {A ∈ IX : f(A) = A}. The family δ is a fuzzy topology for X
and for every B ∈ IX , clδ B = f(B). The topology δ will be called the fuzzy topology
associated with the fuzzy closure operator f .

A partially preordered set (D,⩾) (simply denoted D) is called directed if every
two elements of D have an upper bound in D. If {(Ed,⩾d)}d∈D is a family of directed
sets, the cartesian product

∏
d∈D Ed of the family is directed by ⩾, where f ⩾ g iff

f(d) ⩾d g(d), for all d ∈ D.
A fuzzy net in X is an arbitrary function s : D → FP(X) where D is directed. If

we set s(d) = sd, for all d ∈ D, then the fuzzy net s will be denoted by (sd)d∈D.
A fuzzy net t = (tλ)λ∈Λ in X is said to be a fuzzy semisubnet of the fuzzy net

s = (sd)d∈D in X if there exists a function φ : Λ → D such that t = s ◦ φ, i.e.
tλ = sφ(λ) for every λ ∈ Λ. We write (tλ)

φ
λ∈Λ to indicate the fact that φ is the

function mentioned above.
A fuzzy net t = (tλ)λ∈Λ in X is said to be a fuzzy subnet of the fuzzy net

s = (sd)d∈D in X if t is a fuzzy semisubnet of the fuzzy net s and for every d ∈ D
there exists λ0 ∈ Λ such that φ(λ) ⩾ d whenever λ ∈ Λ with λ ⩾ λ0.

Let A be a fuzzy set in X. A fuzzy net s = (sd)d∈D in X is said to be
(i) quasi-coincident with A if for each d ∈ D, sd is quasi-coincident with A,

(ii) eventually quasi-coincident with A if there is an element d0 ∈ D, such that, if
d ∈ D and d ⩾ d0, then sd is quasi-coincident with A,

(iii) frequently quasi-coincident with A if for each d ∈ D there is a d′ ∈ D such that
d′ ⩾ d and sd′ is quasi-coincident with A and

(iv) in A if for each d ∈ D, sd ∈fuzzy A.
We say that a fuzzy net s = (sd)d∈D in an fts (X, δ) converges to a fuzzy point e

in X, relative to δ, if s is eventually quasi-coincident with each Q-neighborhood of e.
In this case we write limd∈D sd = e.

Proposition 2.2 ([19, Theorem 11.1]). In an fts (X, δ), a fuzzy point e ∈fuzzy A iff
there is a fuzzy net s = (sd)d∈D in A such that s converges to e.

Suppose that D is a directed set, and for each d ∈ D there are a directed set Ed

and a fuzzy net sd = (sd(n))n∈Ed . Then, under product ordering we have a directed
set F = D ×

∏
d∈D Ed and a fuzzy net s defined by s(d, f) = sd(f(d)), d ∈ D,

f ∈
∏

d∈D Ed. The fuzzy net s is called induced net (associated with D and each sd).
In what follows, let X be a non-empty set and let G be a class consisting of pairs

(s, e), where s = (sd)d∈D is a fuzzy net in X and e is a fuzzy point in X.

Definition 2.3 ([18]). We say that G is a fuzzy convergence class for X if it satisfies
the conditions listed below. For convenience, we say that s converges (G) to e or that
limd∈D sd ≡ e(G) if (s, e) ∈ G.
(G1) If s is such that sd = e, for each d ∈ D, then s converges (G) to e.
(G2) If s converges (G) to e, then so does each fuzzy subnet of s.



122 New characterizations of fuzzy topology

(G3) If s does not converge (G) to e, then there exists a fuzzy subnet t of s, no fuzzy
subnet of which converges (G) to e.

(G4) We consider the following:

(i) D is a directed set.

(ii) Ed is a directed set, for each d ∈ D.

(iii) sd = (sd(n))n∈Ed
is a fuzzy net in X, converging (G) to sd, for each d ∈ D and

the fuzzy net (sd)d∈D, thus obtained, converges (G) to e.

Then, the induced net (associated with D and each sd), converges (G) to e.

(G5) For each point x ∈ X and real directed set D ⊆ (0, 1], if r ⩽ supD, then the
fuzzy net (xd)d∈D converges (G) to xr.
The class of all fuzzy convergence classes for X is denoted by Con(X).

Theorem 2.4 ([18]). Let (X, δ) be a fuzzy topological space. Then, the class of pairs
{(s, e) : the fuzzy net s converges to e} is a fuzzy convergence class, denoted by ϕ(δ).

Proposition 2.5 ([18]). Let Ω be a family of fuzzy points in X and A = ∨Ω. Let the
class of pairs G satisfy the conditions (G4) and (G5). If a fuzzy net s in A converges
(G) to e, then there exists a fuzzy net s that consists of fuzzy points in Ω and converges
(G) to e.

Theorem 2.6 ([18, Theorem 2], fuzzy convergence classes theorem). We consider a
map c : IX → IX induced as follows: for each A ∈ IX , we define

G(A) ={e : for some fuzzy net s in A, (s, e) ∈ G} c(A) = ∨G(A).
Now if G is a fuzzy convergence class for X, then the following hold:

(i) The correspondence A 7→ c(A) is a fuzzy closure operator and the fuzzy topology
thus obtained, will be denoted by ψ(G),

(ii) ϕ(ψ(G)) = G and

(iii) ψ(ϕ(δ)) = δ, for a fuzzy topology δ on X.

Therefore, there exists a bijective map between the set of all fuzzy topologies δ for X
and the set of all fuzzy convergence classes G for X. Moreover, this map is order-
reversing, i.e. if δ1 ⊇ δ2, then ϕ(δ1) ⊆ ϕ(δ2).

If δ1 and δ2 are two fuzzy topologies on X, then the following two statements are
equivalent:

(i) δ1 = δ2.

(ii) If (sd)d∈D is a fuzzy net in X and e a fuzzy point in X, then limd∈D sd = e with
respect to δ1 iff limd∈D sd = e with respect to δ2.
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3. A new characterization of fuzzy topology, relative to the ordinary
convergence

In this section we aim to give a modification of Theorem 2.6 by considering the notion
of a fuzzy semi-convergence class.

Proposition 3.1. Let (X, δ) be an fts and s = (sd)d∈D be a fuzzy net that fails to
converge to a fuzzy point e in X. Then there exists an open Q-neighborhood U of e
and a fuzzy subnet t = (tm)m∈E of s such that tm is not quasi-coincident with U for
each m ∈ E and hence any fuzzy semisubnet of t does not converge to e.

Proof. The proof of [19, Proposition 14.1] establishes this stronger result. □

In what follows let X be a non-empty set and let C be a class consisting of pairs
(s, e), where s = (sd)d∈D is a fuzzy net in X and e is a fuzzy point in X.

Definition 3.2. We say that C is a fuzzy semi-convergence class for X if it satisfies
the conditions listed below. For convenience, we say that s semi-converges (C) to e
or that limd∈D sd ≡ e(C) if (s, e) ∈ C.
(G′1) If s is such that sd = e, for each d ∈ D, then s semi-converges (C) to e.
(G′2) If s semi-converges (C) to e, then so does each fuzzy subnet of s.

(G′3) If s does not semi-converge (C) to e, then there exists a fuzzy subnet t of s, no
fuzzy semisubnet of which semi-converges (C) to e.
(G′4) We consider the following:

(i) D is a directed set.

(ii) Ed is a directed set, for each d ∈ D.

(iii) sd = (sd(n))n∈Ed
is a fuzzy net in X, semi-converging (C) to sd, for each d ∈ D

and the fuzzy net (sd)d∈D, thus obtained, semi-converges (C) to e.
Then, the induced net (associated with D and each sd), semi-converges (C) to e.
(G′5) For each point x ∈ X and real directed set D ⊆ (0, 1], if r ⩽ supD, then the
fuzzy net (xd)d∈D semi-converges (C) to xr.
The class of all semi-convergence classes for X is denoted by Cons(X).

Note that Definitions 3.2 and 2.3 differ only in the third axiom.

Theorem 3.3. Let (X, δ) be a fuzzy topological space. Then, the class of pairs {(s, e) :
the fuzzy net s converges to e} is a fuzzy semi-convergence class, denoted by ϕ′(δ).

Proof. It follows from Proposition 3.1 and Theorem 2.4. □

An immediate observation is that Con(X) ⊆ Cons(X). Indeed, let G ∈ Con(X).
By Theorem 2.6 we have that G = {(s, e) : the fuzzy net s converges to e with respect
to ψ(G)}, which, by Theorem 3.3, is a member of Cons(X). Moreover ϕ(δ) = ϕ′(δ).
(However, we will continue to use different symbolism for the map ϕ′ till the end of
this section.)

The proof of the following proposition follows from Proposition 2.5.
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Proposition 3.4. Let Ω be a family of fuzzy points in X and A = ∨Ω. Let the
class of pairs C satisfy the conditions (G′4) and (G′5). If a fuzzy net s in A semi-
converges (C) to e, then there exists a fuzzy net s that consists of fuzzy points in Ω
and semi-converges (C) to e.

The following theorem sets up a one-to-one correspondence between the fuzzy
topologies for a non-empty set X and the fuzzy semi-convergence classes on it.

Theorem 3.5 (fuzzy semi-convergence classes theorem). Let C be a fuzzy semi-con-
vergence class for a non-empty set X. We consider a map cl : IX → IX induced
as follows: for each A ∈ IX , we define cl(A) ∈ IX to be such that a fuzzy point
e ∈fuzzy cl(A) iff there exists a fuzzy net s in A such that s semi-converges (C) to e,
i.e. (s, e) ∈ C.
(i) The correspondence A 7→ cl(A) is a fuzzy closure operator and the topology thus
obtained, will be denoted by ψ′(C),
(ii) ϕ′(ψ′(C)) = C and

(iii) ψ′(ϕ′(δ)) = δ, for a fuzzy topology δ on X.
Therefore, there exists a bijective map between the set of all fuzzy topologies δ for
X and the set of all fuzzy semi-convergence classes C for X. Moreover, this map is
order-reversing, i.e. if δ1 ⊇ δ2, then ϕ

′(δ1) ⊆ ϕ′(δ2).

Proof. (i) We first prove that the map cl is well-defined. Let A ∈ IX , the set

C(A) = {e : there exists a fuzzy net s in A, where (s, e) ∈ C},
and put cl(A) = ∨C(A). It is enough to prove that for each fuzzy point e ∈fuzzy cl(A)
there exists a fuzzy net s in A such that s semi-converges (C) to e. Let e ∈fuzzy cl(A)
and denote the support point and the membership grade of e, by x and λ ∈ (0, 1]
respectively i.e. e = xλ. Set

R = {r ∈ (0, 1] : there exists a fuzzy net sr in A, such that (sr, xr) ∈ C}.
Clearly R ̸= ∅ and supR ⩾ λ. Therefore from (G′5) the fuzzy net (xr)r∈R semi-
converges (C) to e. Now from the definition of R there exists a fuzzy net sr in A, such
that sr semi-converges (C) to xr, for each r ∈ R. It follows from (G′4) that there
exists an induced fuzzy net in A, that semi-converges (C) to e.

We next verify the conditions of a fuzzy closure operator.
(FCO1) is clear.
(FCO2) Let A ∈ IX and e ∈fuzzy A. By (G′1) the constant fuzzy net (sd)d∈D with
value e semi-converges (C) to e. Therefore, e ∈fuzzy cl(A).
(FCO3) Let A,B ∈ IX . Then, clearly cl(A) ≤fuzzy cl(A ∨ B) and cl(B) ≤fuzzy

cl(A∨B). Therefore, cl(A)∨ cl(B) ≤fuzzy cl(A∨B). We prove that cl(A∨B) ≤fuzzy

cl(A)∨ cl(B). Let e ∈fuzzy cl(A∨B). Then there exists a fuzzy net (sd)d∈D in A∨B
that semi-converges (C) to e. Denote

DA = {d ∈ D : sd ∈fuzzy A} and DB = {d ∈ D : sd ∈fuzzy B}.
Then at least one of DA, DB is cofinal in D, since DA ∪ DB = D. Without loss of
generality assume that this is DA. Then, we get a fuzzy subnet (sd)d∈DA

of (sd)d∈D,
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in A, which by (G′2) semi-converges (C) to e. Thus, e ∈fuzzy cl(A). It follows that
e ∈fuzzy cl(A) ∨ cl(B).
(FCO4) Let A ∈ IX . We prove that cl(cl(A)) = cl(A). We have A ≤fuzzy cl(A) and so
cl(A) ≤fuzzy cl(cl(A)). We prove that cl(cl(A)) ≤fuzzy cl(A). Let e ∈fuzzy cl(cl(A)).
Then, there exists a fuzzy net (td)d∈D in cl(A) that semi-converges (C) to e. Since
td ∈fuzzy cl(A) for every d ∈ D, there exists a directed set Ed and a fuzzy net
(sd(n))n∈Ed

in A, that semi-converges (C) to td. By condition (G′4) there exists an
induced fuzzy net in A, that semi-converges (C) to e. Hence, e ∈fuzzy cl(A).

(ii) We prove that if the fuzzy net s = (sd)d∈D semi-converges (C) to e, then
(sd)d∈D converges to e with respect to the fuzzy topology ψ′(C). Suppose that (sd)d∈D

semi-converges (C) to e and does not converge to e with respect to ψ′(C). By Propo-
sition 3.1, there exists an open Q-neighborhood U of e such that there exists a fuzzy
subnet t of s in U ′, which in view of (G′2), semi-converges (C) to e. But U ′ is closed,
and therefore e ∈fuzzy cl(U ′) = U ′. This contradicts the fact that e is quasi-coincident
with U .

We prove that if the fuzzy net s = (sd)d∈D converges to e with respect to the
fuzzy topology ψ′(C), then s semi-converges (C) to e. Suppose that s converges to
e with respect to ψ′(C), and does not semi-converge (C) to e. By condition (G′3)
of the Definition 3.2, there exists a fuzzy subnet t = (tλ)λ∈Λ of s such that no
fuzzy semisubnet of t semi-converges (C) to e. By Theorem 2.5, t converges to e, with
respect to ψ′(C). Set A = ∨{tλ : λ ∈ Λ}. The fuzzy net t is in A so by Proposition 2.2,
e ∈fuzzy cl(A). By the definition of cl(A), there exists a fuzzy net w in A such that w
semi-converges (C) to e. By Proposition 3.4, there exists a fuzzy net w that consists
of fuzzy points in {tλ : λ ∈ Λ} (so w is a fuzzy semisubnet of t), that semi-converges
(C) to e, which is a contradiction.

Thus, we have proved that ϕ′(ψ′(C)) = C.
(iii) Let δ be a fuzzy topology onX. By Proposition 2.2, the fuzzy closure operator

induced by ϕ′(δ) coincides with the one associated with δ. Therefore, ψ′(ϕ′(δ)) = δ.
Finally, if δ1 ⊇ δ2 then it is clear that ϕ′(δ1) ⊆ ϕ′(δ2). □

Proposition 3.6. Let X be a non-empty set. Then, Con(X) = Cons(X).

Proof. It remains to show that Cons(X)⊆Con(X). Let C∈Cons(X). By Theorem 3.5
we have that C={(s, e) : the fuzzy net s converges to e with respect to ψ′(C)}, which,
by Theorem 2.4, is a member of Con(X). □

Corollary 3.7. Let X be a non-empty set. Then, ϕ′ = ϕ and ψ′ = ψ.

4. A new characterization of fuzzy topology, relative to the I-convergence

In this section our purpose is to give a generalization of Theorem 2.6 for the case of
fuzzy ideal convergence of fuzzy nets.

Let D be a non-empty set. A family I of subsets of D is called ideal if I has the
following properties:
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(i) ∅ ∈ I.

(ii) If A ∈ I and B ⊆ A, then B ∈ I.

(iii) If A,B ∈ I, then A ∪B ∈ I.
The ideal I is called proper if D /∈ I.

Suppose that (tλ)
φ
λ∈Λ is a fuzzy semisubnet of the fuzzy (sd)d∈D in X. For every

ideal I of the directed set D, the family {A ⊆ Λ : φ(A) ∈ I} is an ideal of the directed
set Λ, which will be denoted by IΛ(φ).

Let D be a directed set. For all d ∈ D we set Md = {d′ ∈ D : d′ ⩾ d} (see [17]).

Definition 4.1 ([25]). A proper ideal I of a directed set D is called admissible, if
D \Md ∈ I, for all d ∈ D.

In what follows we recall the concept of convergence of fuzzy nets in an fts via
ideal I. We emphasize that although in [25, Section 3] the ideals are supposed to be
admissible and therefore proper, the proofs are formulated for arbitrary proper ideals.

Definition 4.2 ([25]). Let (X, δ) be an fts and I an ideal of a directed set D. We
say that a fuzzy net (sd)d∈D I-converges to a fuzzy point e in X, relative to δ, if for
every open Q-neighborhood U of e, we have {d ∈ D : sd qU} ∈ I. In this case we
write I − limd∈D sd = e and we say that e is the I-limit of the fuzzy net (sd)d∈D.

Let (X, δ) be a fuzzy T2 (Hausdorff) topological space. If a fuzzy net I-converges,
where I is a proper ideal of D, to two distinct fuzzy points, then their supports are
the same (see [25]).

Proposition 4.3 ( [17, 25]). Let (X, δ) be an fts, e a fuzzy point in X, and D a
directed set. Then, I0(D) = {A ⊆ D : A ⊆ D \Md for some d ∈ D} is a proper ideal
of D. Moreover, a fuzzy net (sd)d∈D converges to e iff (sd)d∈D I0(D)-converges to e.

Proposition 4.4 ([25, Theorem 3.5]). Let (X, δ) be an fts and A a fuzzy set in X.
If there is a fuzzy net (sd)d∈D in A that I-converges to the fuzzy point e in X, where
I is a proper ideal of D, then e ∈fuzzy clδ(A).

In addition, the converse part of Proposition 4.4 also holds, if we take into account
Propositions 2.2 and 4.3.

In what follows (X, δ) is an fts, e a fuzzy point in X, (sd)d∈D is a fuzzy net in X,
and I is an ideal of the directed set D.

Proposition 4.5. If (sd)d∈D is a fuzzy net such that sd = e for every d ∈ D, then
I − limd∈D sd = e.

Proof. For every open Q-neighborhood U of e we have {d ∈ D : sd qU} = ∅ ∈ I.
Thus, I − limd∈D sd = e. □

Proposition 4.6. If I − limd∈D sd = e, then for every fuzzy semisubnet (tλ)
φ
λ∈Λ of

the fuzzy net (sd)d∈D we have IΛ(φ)− limλ∈Λ tλ = e.
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Proof. Let (tλ)
φ
λ∈Λ be a fuzzy semisubnet of the fuzzy net (sd)d∈D and U be an open

Q-neighborhood of e. We shall prove that {λ ∈ Λ : tλ qU} ∈ IΛ(φ).
Let A = {λ ∈ Λ : tλ qU}. It suffices to prove that φ(A) ∈ I. The case A = ∅ is

clear. Let A ̸= ∅. Since (tλ)
φ
λ∈Λ is a fuzzy semisubnet of the fuzzy net (sd)d∈D, for

the function φ : Λ → D we have that tλ = sφ(λ) for every λ ∈ Λ. Let φ(λ) ∈ φ(A),
where λ ∈ A. Since tλ qU and, therefore, sφ(λ) qU , we have φ(λ) ∈ {d ∈ D : sd qU}
which means that φ(A) ⊆ {d ∈ D : sd qU}. However, I − limd∈D sd = e. So, we have
{d ∈ D : sd qU} ∈ I and, therefore, φ(A) ∈ I. □

Proposition 4.7. If I− limd∈D sd=e, where I is a proper ideal of D, then there exists
a fuzzy semisubnet (tλ)λ∈Λ of the fuzzy net (sd)d∈D such that I0(Λ)− limλ∈Λ tλ=e.

Proof. Let A = ∨{sd : d ∈ D}. Since (sd)d∈D is a fuzzy net in A I-converging
to e and the ideal I is proper, by Proposition 4.4 we have that e ∈fuzzy clδ(A).
Therefore, there exists a fuzzy net w in A converging to e (see Proposition 2.2). By
Proposition 2.5, there exists a fuzzy net w = (tλ)λ∈Λ that consists of fuzzy points in
{sd : d ∈ D} (so w is a fuzzy semisubnet of the fuzzy net (sd)d∈D) and converges to e.
By Proposition 4.3, we have I0(Λ)− limλ∈Λ tλ = e. □

Proposition 4.8. If the fuzzy net (sd)d∈D does not ID-converge to e, where ID is
a proper ideal of D, then there exists a fuzzy semisubnet (tλ)

φ
λ∈Λ of the fuzzy net

(sd)d∈D such that:
(i) Λ ⊆ D.

(ii) φ(λ) = λ, for every λ ∈ Λ.

(iii) No fuzzy semisubnet (rk)
f
k∈K of the fuzzy net (tλ)

φ
λ∈Λ IK-converges to e, for

every proper ideal IK of K.

(iv) IΛ(φ) is a proper ideal of Λ.

Proof. Since the fuzzy net (sd)d∈D does not ID-converge to e, there exists an open
Q-neighborhood U of the fuzzy point e such that {d ∈ D : sd qU} /∈ ID. Let
Λ = {d ∈ D : sd qU} ⊆ D and φ : Λ → D be the inclusion map. We can consider Λ
as directed by ⩾Λ (regardless ⩾D), therefore the map t = s ◦φ as a fuzzy semisubnet
of s, where IΛ(φ) is a proper ideal of Λ, because φ(Λ) = Λ /∈ ID.

We prove that no fuzzy semisubnet (rk)
f
k∈K of (tλ)λ∈Λ IK-converges to e, where

IK is a proper ideal of K. Let (rk)
f
k∈K be a fuzzy semisubnet of (tλ)λ∈Λ and IK

a proper ideal of K. Then, the function f : K → Λ is such that rk = tf(k) for
every k ∈ K. It suffices to prove that {k ∈ K : rk qU} /∈ IK . Indeed, let k ∈ K.
Then, rk = tf(k) = sφ(f(k)) = sf(k). Since f(k) ∈ Λ, from the definition of Λ we
have sf(k) qU . Hence, {k ∈ K : rk qU} = K. Since IK is a proper ideal of K,
{k ∈ K : rk qU} = K /∈ IK . □

Proposition 4.9. We consider the following:
(i) D is a directed set.

(ii) I0(D) is a proper ideal of D (see Proposition 4.3).
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(iii) Ed is a directed set, for each d ∈ D.

(iv) I0(Ed) is a proper ideal of Ed, for each d ∈ D.

(v) (s(d, e))e∈Ed
is a fuzzy net in X, for each d ∈ D.

(vi) I0(D)−limd∈D td = e (e is a fuzzy point in X), where I0(Ed)− lime∈Ed
s(d, e) = td

(td is a fuzzy point in X), for every d ∈ D.
Then, the fuzzy net r : D ×

∏
d∈D Ed → X, where r(d, f) = s(d, f(d)), for every

(d, f) ∈ D ×
∏

d∈D Ed, I0(D ×
∏

d∈D Ed)-converges to e.

Proof. It is actually the ideal version of [19, Theorem 12.2] taking into account Propo-
sition 4.3. □

Proposition 4.10. For each point x ∈ X and real directed set D ⊆ (0, 1], if r ⩽ supD,
then the fuzzy net (xd)d∈D I0(D)-converges to xr.

Proof. It is actually the ideal version of [18, Definition 2, condition (G5)] taking into
account Proposition 4.3. □

The following result is evident.

Proposition 4.11. If (sd)d∈D is a fuzzy net in X, then P(D) − limd∈D sd = e, for
every fuzzy point e in X, where P(D) denotes the powerset of D.

Definition 4.12. Let X be a non-empty set and let H be a class consisting of triads
(s, e, I), where s = (sd)d∈D is a fuzzy net in X, e is a fuzzy point in X and I is an
ideal of D. We say that H is a fuzzy ideal convergence class for X if it satisfies the
conditions listed below. For convenience, we say that s I-converges (H) to e or that
I − limd∈D sd ≡ e(H) if (s, e, I) ∈ H.
(C′1) If (sd)d∈D is a fuzzy net such that sd = e for every d ∈ D and I is an ideal of
D, then I − limd∈D sd ≡ e(H).

(C′2) If I− limd∈D sd ≡ e(H), where I is an ideal of D, then for every fuzzy semisub-
net (tλ)

φ
λ∈Λ of the fuzzy net (sd)d∈D we have IΛ(φ)− limλ∈Λ tλ ≡ e(H).

(C′3) If I−limd∈D sd ≡ e(H), where I is a proper ideal of D, then there exists a fuzzy
semisubnet (tλ)

φ
λ∈Λ of the fuzzy net (sd)d∈D such that I0(Λ)− limλ∈Λ tλ ≡ e(H).

(C′4) Let D be a directed set and ID a proper ideal of D. If the fuzzy net (sd)d∈D

does not ID-converge (H) to e, then there exists a fuzzy semisubnet (tλ)
φ
λ∈Λ of the

fuzzy net (sd)d∈D such that:

(i) No fuzzy semisubnet (rk)
f
k∈K of (tλ)

φ
λ∈Λ IK-converges (H) to e, for every proper

ideal IK of K.

(ii) IΛ(φ) is a proper ideal of Λ.

(C′5) We consider the following:

(i) D is a directed set.

(ii) I0(D) is a proper ideal of D.
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(iii) Ed is a directed set, for each d ∈ D.

(iv) I0(Ed) is a proper ideal of Ed, for each d ∈ D.

(v) (s(d, e))e∈Ed
is a fuzzy net in X for each d ∈ D.

(vi) I0(D)−limd∈D td ≡ e(H) (e is a fuzzy point inX), where I0(Ed)−lime∈Ed
s(d, e) ≡

td(H) (td is a fuzzy point in X), for every d ∈ D.

Then, the fuzzy net r : D ×
∏

d∈D Ed → X, where r(d, f) = s(d, f(d)), for every
(d, f) ∈ D ×

∏
d∈D Ed, I0(D ×

∏
d∈D Ed)-converges (H) to e.

(C′6) For each point x ∈ X and real directed set D ⊆ (0, 1], if r ⩽ supD, then the
fuzzy net (xd)d∈D I0(D)-converges (H) to xr.

(C′7) If (sd)d∈D is a fuzzy net in X, then P(D)− limd∈D sd ≡ e(H), for every fuzzy
point e ∈ X.
The class of all fuzzy ideal convergence classes for X is denoted by ConI(X).

Remark 4.13. Let (X, δ) be a fuzzy topological space. Then, the class consisting of
triads ((sd)d∈D, e, I), where (sd)d∈D is a fuzzy net in X, e is a fuzzy point in X, I is
an ideal of D and (sd)d∈D I-converges to X, relative to δ, is a fuzzy ideal convergence
class, denoted by Φ(δ), since it satisfies all the conditions of Definition 4.12. We say
that the fuzzy topology δ generates the fuzzy ideal convergence class Φ(δ).

Proposition 4.14. Let Ω be a family of fuzzy points in X and A = ∨Ω. Let the class
of triads H satisfy the conditions (C′3), (C′5) and (C′6). If a fuzzy net s = (sd)d∈D

in A I-converges (H) to e, where I is a proper ideal of D, then there exists a fuzzy
net s = (sk)k∈K that consists of fuzzy points in Ω and I0(K)-converges (H) to e.

Proof. Suppose that a fuzzy net s = (sd)d∈D in A I-converges (H) to e, where I is a
proper ideal ofD. Then by condition (C′3) there exists a fuzzy semisubnet t = (tλ)

φ
λ∈Λ

of the fuzzy net (sd)d∈D such that I0(Λ)-converges (H) to e. From this point we
continue as in the proof of Proposition 2.5. For each λ ∈ Λ, let y and r be the support
point and the membership grade, respectively, of tλ i.e. tλ = yr. Since yr ∈fuzzy A
we can consider the family of fuzzy points {yrn} ⊆ Ω, such that yr ≤fuzzy ∨{yrn}.
If we denote by Eλ the set of reals rn, we get a fuzzy net tλ = (yrn)rn∈Eλ . Since
r ≤ supEλ, by condition (C′6) we have that tλ I0(Eλ)-converges (H) to yr = tλ.
Now condition (C′5) applies and we get the desired fuzzy net. □

The following theorem sets up a one-to-one correspondence between the fuzzy
topologies for a non-empty set X and the fuzzy ideal convergence classes on it.

Theorem 4.15 (fuzzy ideal convergence classes theorem). Let H be a fuzzy ideal
convergence class for a non-empty set X. We consider a map cl : IX → IX induced
as follows: for each A ∈ IX , we define cl(A) ∈ IX to be such that a fuzzy point
e ∈fuzzy cl(A) iff for some fuzzy net (sd)d∈D in A and a proper ideal I of the directed
set D, (sd)d∈D I-converges (H) to e i.e. (s, e, I) ∈ H. Then, cl is a fuzzy closure
operator for a fuzzy topology denoted by Ψ(H) on X and ((sd)d∈D, e, I) ∈ H iff
(sd)d∈D I-converges to e with respect to Ψ(H).
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Proof. We first prove that the map cl is well defined. Let C(A) be the set of all fuzzy
points e in X for which there exists a fuzzy net s = (sd)d∈D in A and I be a proper
ideal of D such that (s, e, I) ∈ H and put cl(A) = ∨C(A). It is enough to prove
that for each fuzzy point e ∈fuzzy cl(A) there exists a fuzzy net s = (sd)d∈D in A
such that s I-converges (H) to e, where I is a proper ideal of D. Let e ∈fuzzy cl(A)
and denote the support point and the membership grade of e, by x and λ ∈ (0, 1],
respectively i.e. e = xλ. Let R be the set of all r ∈ (0, 1] for which there exists
a fuzzy net sr = (sr(m))m∈Mr in A, and I be a proper ideal of Mr, such that
(sr, xr, I) ∈ H. Clearly R ̸= ∅ and supR ⩾ λ. Therefore, from (C′6) the fuzzy net
(xr)r∈R I0(R)-converges (H) to e. Now from the definition of R there exists a fuzzy
net sr = (sr(m))m∈Mr in A, and a proper ideal I of Mr, such that sr I-converges
(H) to xr, for each r ∈ R. By condition (C′3) of the Definition 4.12, there exists a
fuzzy semisubnet tr = (tr(n))n∈Nr of sr, in A, such that tr I0(Nr)-converges (H) to
xr, for each r ∈ R. It follows from (C′5) that there exists a fuzzy net in A such that
I0(R×

∏
r∈RN

r)-converges (H) to e.

Next we prove that cl is a fuzzy closure operator on X.

(FCO1) is clear.

(FCO2) Let A ∈ IX and e ∈fuzzy A. We consider the fuzzy net (sd)d∈D in A,
where sd = e for every d ∈ D. By condition (C′1) of the Definition 4.12, we have
I − limd∈D sd ≡ e(H) for every proper ideal I of the directed set D. Therefore,
e ∈fuzzy cl(A).

(FCO3) Let A,B ∈ IX . Then, clearly cl(A) ≤fuzzy cl(A ∨ B) and cl(B) ≤fuzzy

cl(A∨B). Therefore, cl(A)∨ cl(B) ≤fuzzy cl(A∨B). We prove that cl(A∨B) ≤fuzzy

cl(A)∨ cl(B). Let e ∈fuzzy cl(A∨B). Then there exists a fuzzy net (sd)d∈D in A∨B
and a proper ideal I of the directed set D such that (sd)d∈D I-converges (H) to e.
Denote

DA = {d ∈ D : sd ∈fuzzy A} and DB = {d ∈ D : sd ∈fuzzy B}.
Then, we have DA /∈ I or DB /∈ I, otherwise DA ∪ DB = D ∈ I, which is a
contradiction. Without loss of generality assume that DA /∈ I. We can consider the
set DA as directed by ⩾A (regardless ⩾D). Let the following function and fuzzy net

(i) φA : DA → D, where φA(d) = d, for every d ∈ DA.

(ii) (tAd )d∈DA
, where tAd = sφA(d).

Obviously, (tAd )d∈DA
is a fuzzy semisubnet of (sd)d∈D inA. Since (sd)d∈D I-converges

(H) to e, by condition (C′2) of the Definition 4.12 we have that (tAd )d∈DA
IDA

(φA)-
converges (H) to e. Moreover, the ideal IDA

(φA) of DA is proper, since φA(DA) =
DA /∈ I. Thus, e ∈fuzzy cl(A) and therefore e ∈fuzzy cl(A) ∨ cl(B).

(FCO4)We prove that cl(cl(A)) = cl(A). We haveA ≤fuzzy cl(A) and so cl(A) ≤fuzzy

cl(cl(A)). We prove that cl(cl(A)) ≤fuzzy cl(A). Let e ∈fuzzy cl(cl(A)). Then, there
exists a fuzzy net t = (td)d∈D in cl(A) and a proper ideal ID of the directed set D such
that (td)d∈D ID-converges (H) to e. Then, from (C′3) there is a fuzzy semisubnet
(wn)n∈N of t (in cl(A)), such that I0(N)-converges (H) to e. Therefore, for every
n ∈ N there exist a directed set En, a fuzzy net (s(n, ϵ))ϵ∈En

in A and a proper
ideal IEn

of the directed set En such that (s(n, ϵ))ϵ∈En
IEn

-converges (H) to wn.
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Then, from (C′3) and for every n ∈ N there is a fuzzy semisubnet (σ(n,m))m∈Mn of
(s(n, ϵ))ϵ∈En

, in A, such that I0(Mn)-converges (H) to wn. By condition (C′5) of the
Definition 4.12 there exists a fuzzy net in A, such that I0(N ×

∏
n∈N Mn)-converges

(H) to e. Hence, e ∈fuzzy cl(A).

By Proposition 4.11 and condition (C′7) of the Definition 4.12, it is enough to
show that ideal convergence (H), over proper ideals, coincides with ideal convergence
with respect to the fuzzy topology Ψ(H).

We prove that if the fuzzy net (sd)d∈D ID-converges (H) to the fuzzy point e in
X, where ID is a proper ideal of D, then (sd)d∈D ID-converges to e with respect
to Ψ(H). Suppose that (sd)d∈D ID-converges (H) to e and does not ID-converge
to e with respect to Ψ(H). By Proposition 4.8 and its proof there exist an open
Q-neighborhood U of e and a fuzzy semisubnet (tλ)

φ
λ∈Λ of the fuzzy net (sd)d∈D such

that:

(i) Λ ⊆ D.

(ii) φ(λ) = λ, for every λ ∈ Λ.

(iii) No fuzzy semisubnet (rk)
f
k∈K of (tλ)

φ
λ∈Λ IK-converges to e with respect to Ψ(H),

for every proper ideal IK of K.

(iv) IΛ(φ) is a proper ideal of Λ.

(v) tλ ∈fuzzy U
′, for every λ ∈ Λ.

Since (sd)d∈D ID-converges (H) to e, by condition (C′2) of the Definition 4.12,
(tλ)λ∈Λ IΛ(φ)-converges (H) to e. Therefore, e ∈fuzzy cl(U ′) = U ′. This contradicts
the fact that e is quasi-coincident with U .

We prove that if the fuzzy net (sd)d∈D ID-converges to the fuzzy point e in X,
with respect to Ψ(H), where ID is a proper ideal of D, then (sd)d∈D ID-converges
(H) to e. Suppose that (sd)d∈D ID-converges to e with respect to Ψ(H), where ID
is a proper ideal of D, and does not ID-converge (H) to e. By condition (C′4) of the
Definition 4.12, there exists a fuzzy semisubnet t = (tλ)

φ
λ∈Λ of the fuzzy net (sd)d∈D

such that no fuzzy semisubnet (rk)
f
k∈K of t IK-converges (H) to e, for every proper

ideal IK of K, where IΛ(φ) is a proper ideal of Λ. From Proposition 4.6, (tλ)λ∈Λ

IΛ(φ)-converges to e, with respect to Ψ(H). Set A = ∨{tλ : λ ∈ Λ}. The fuzzy net t
is in A so by Proposition 4.4, e ∈fuzzy cl(A). By the definition of cl(A), there exists a
fuzzy net w = (wn)n∈N in A such that w IN -converges (H) to e, where IN is a proper
ideal of N . By Proposition 4.14, there exists a fuzzy net w = (wk)k∈K that consists
of fuzzy points in {tλ : λ ∈ Λ} (so w is a fuzzy semisubnet of t), that I0(K)-converges
(H) to e, which is a contradiction. □

Corollary 4.16. Let H be a fuzzy ideal convergence class and δ be a fuzzy topology
for a non-empty set X. We have the following:

(i) Φ(Ψ(H)) = H and (ii) Ψ(Φ(δ)) = δ.

Therefore, there exists a bijective map between the set of all fuzzy topologies δ for X
and the set of all fuzzy ideal convergence classes H for X. Moreover, this map is
order-reversing, i.e. if δ1 ⊇ δ2, then Φ(δ1) ⊆ Φ(δ2).
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Proof. (i) It follows directly from the fact that a fuzzy net (sd)d∈D ID-converges (H)
to the fuzzy point e in X, where ID is a proper ideal of D, iff (sd)d∈D ID-converges
to e with respect to Ψ(H), which was proved in the Theorem 4.15.

(ii) Let δ be a fuzzy topology on X. By Proposition 4.4, the fuzzy closure operator
induced by Φ(δ) coincides with the one associated with δ (note that the converse part
of Proposition 4.4 also holds). Therefore Ψ(Φ(δ)) = δ.

Finally, if δ1 ⊇ δ2 then it is clear that Φ(δ1) ⊆ Φ(δ2). □

Proposition 4.17. Let X be a non-empty set. There exists a one-to-one map m of
ConI(X) onto Con(X) such that for every H ∈ ConI(X) the following properties
hold:
(i) Ψ(H) = ψ(m(H)),

(ii) m(H) can be considered as a subclass of the class H in the sense that there exists
a one-to-one map ε : m(H) → H and each ((sd)d∈D, e) ∈ m(H) is identified with
ε((sd)d∈D, e) ∈ H.

Proof. We define a map m : ConI(X) → Con(X) as follows:

m(H) = {((sd)d∈D, e) : ((sd)d∈D, e, I0(D)) ∈ H}, for every H ∈ ConI(X).

The map m is well-defined, that is, for each H ∈ ConI(X) the class m(H) is a fuzzy
convergence class. Indeed, we have the following equivalences: ((sd)d∈D, e)∈m(H) iff
((sd)d∈D, e, I0(D)) ∈ H iff I0(D)− limd∈D sd=e with respect to Ψ(H) iff limd∈D sd=e
with respect to Ψ(H). Hence, m(H) is the fuzzy convergence class generated from the
fuzzy topology Ψ(H), that is m(H) = ϕ(Ψ(H)) (see Theorem 2.4). We shall prove
that the map m is onto. Let G ∈ Con(X) and Φ(ψ(G)) be the fuzzy ideal convergence
class generated from the topology ψ(G) (see Remark 4.13). Then, m(Φ(ψ(G))) = G.

(i) Let H ∈ ConI(X). We have ψ(m(H)) = ψ(ϕ(Ψ(H))) = Ψ(H).
(ii) Let H ∈ ConI(X). Then, ((sd)d∈D, e) ∈ m(H) iff ((sd)d∈D, e, I0(D)) ∈ H.

Therefore, we can define a one-to-one map ε : m(H) → H as follows: ε((sd)d∈D, e) =
((sd)d∈D, e, I0(D)). So, we can consider the class m(H) as a subclass of the class H
by identifying m(H) with its image ε(m(H)).

Finally, we prove that m is one-to-one. Let H1,H2 ∈ ConI(X) and assume that
m(H1) = m(H2). Then, ψ(m(H1)) = ψ(m(H2)) and so, by property (i), Ψ(H1) =
Ψ(H2). By Theorem 4.15 we have H1 = H2. □
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