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SOME PINCHING RESULTS FOR STATISTICAL SUBMANIFOLDS
IN COSYMPLECTIC STATISTICAL MANIFOLDS

Mohd Aquib, Mohd Aslam and Michel Nguiffo Boyom

Abstract. In this article, we discuss the curvature properties of statistical submani-
folds in cosymplectic statistical manifolds with constant curvature. We also establish some
pinching results for such submanifolds and hypersurfaces in cosymplectic statistical man-
ifolds having constant curvature. As an application of the main result we also obtain an
obstruction condition for such immersion.

1. Introduction

In 1993, B. Y. Chen [6] established the simple relationships between the invariants
namely, the main extrinsic invariants and the main intrinsic invariants of submani-
folds. The development of such relations is one of the most interesting fields of research
in differential geometry. B. Y. Chen established bound for squared mean curvature
∥H∥2 in terms of the intrinsic invariant δM for submanifold M of a real space form
M̃(c). This inequality also holds good in case of anti-invariant submanifold of com-
plex space form [10]. Motivated by this result, a similar inequality is also obtained for
C-totally real submanifolds by taking Sasakian space form as an ambient space [11].
The starting work of Chen revolves around the development of inequalities among
squared mean curvature, sectional curvature and scalar curvature of a submanifold
in a real space form. He also obtained the inequalities between the squared mean
curvature, the shape operator and k-Ricci curvature for the submanifolds in the real
space forms [9]. After that many geometers obtained similar inequalities for different
submanifolds and ambient spaces [2, 3, 7, 8, 14,17,18].

Aydin et al. [5] derived a Chen-Ricci inequality for statistical submanifolds of a
statistical manifold of constant curvature. Mihai and Mihai [19] established a Chen-
Ricci inequality with respect to a sectional curvature of the ambient Hessian manifold.

2020 Mathematics Subject Classification: 53B05, 53B20, 53C40

Keywords and phrases: Chen-Ricci inequality; dual connections; statistical manifolds; cosym-
plectic statistical manifolds.

106



M. Aquib, M. Aslam, M. N. Boyom 107

Recently, M. Aquib [1] obtained the inequality for statistical submanifolds of quater-
nion Kaehler-like statistical space forms.

Here, our aim is to derive Chen-Ricci inequality for statistical submanifolds in
cosymplectic manifolds having constant curvature. We also obtain a non-existence
result as an application of the obtained result.

2. Statistical manifolds and statistical submanifolds

In 1987, the notation of statistical manifolds was introduced by Lauritzen [15].

Definition 2.1. A statistical manifold is a triple (M̃, g̃, ∇̃) formed of a Rieman-
nian manifold (M̃, g̃) and a torsion free connection subject to the following identity
(∇̃E g̃)(F,G) = (∇̃F g̃)(E,G), for E,F,G ∈ Γ(TM̃).

Given a statistical manifold (M̃, g̃, ∇̃), the g-dual connection of ∇̃, namely ∇̃∗ is
defined by the following identity g̃(∇̃∗

EF,G) = Eg̃(F,G) − g̃(F, ∇̃∗
EG), ∀E,F,G ∈

Γ(TM). It is easy to check that ∇̃∗ is torsion free, too, and that (M̃, g̃, ∇̃∗) is a
statistical structure. The Levi Civita connection of (M̃, g̃), namely ∇̃◦ is linked with
(∇̃, ∇̃∗) in a following manner: ∇̃◦ = 1

2

(
∇̃+ ∇̃∗).

Let R̃ and R̃∗ be Riemannian curvature tensor fields with respect to ∇̃ and ∇̃∗,
respectively. Then we have [20]:

g̃(R̃(E,F )G,W ) =g̃(R(E,F )G,W )

+ g̃(h(E,G), h∗(F,W ))− g̃(h∗(E,W ), h(F,G)), (1)

and g̃(R̃∗(E,F )G,W ) =g̃(R∗(E,F )G,W )

+ g̃(h∗(E,G), h(F,W ))− g̃(h(E,W ), h∗(F,G)), (2)

where h and h∗ are second fundamental forms for ∇̃ and ∇̃∗, respectively.
The relation between second fundamental forms h and the shape operators A are

given as {
g̃(ANE,F ) = g̃(h(E,F ), N),

g̃(A∗
NE,F ) = g̃(h∗(E,F ), N),

(3)

for any N ∈ Γ(TM̃⊥) and E,F ∈ Γ(TM̃).
Let K be a difference (1,2)-tensor on a statistical manifold (M̃, g̃, ∇̃). Then [13],

KEF = K(E,F ) = ∇̃EF − ∇̃◦
EF, KEF = KFE and g̃(KEF,G) = g̃(F,KEG).

Definition 2.2 ([16]). A cosymplectic statistical manifold is a (2m+1)-dimensional
manifold M̃ carrying a quintuple (g̃, ∇̃, ϕ, ξ, η) where (M̃, g̃, ∇̃) is a statistical mani-
fold, ϕ is (1-1)-tensor on M̃ , η is a differential 1-form, ξ is a vector field. These data
are subject to the following requirements:

ϕ2E = −E + η(E)ξ, η(ξ) = 1, ϕ(ξ) = 0, g̃(ϕE,F ) + g̃(E, ϕF ) = 0, ∇̃◦
Eϕ = 0.

The structure (g̃, ϕ, ξ, η) is called a cosymplectic structure on M̃ , and for any E,F ∈
χ(M̃), KEϕF + ϕKEF = 0.
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For a statistical manifold (M̃, ∇̃, g̃) the statistical curvature tensor field S̃ is defined
as [13]

S̃(E,F )G =
1

2
{R̃(E,F )G+ R̃∗(E,F )G}. (4)

Definition 2.3 ([16]). A cosymplectic statistical manifold (M̃, ∇̃, g̃, ϕ, ξ) is said to
be of constant ϕ-sectional curvature c if

S̃(E,F )G =
c

4
{g̃(F,G)E − g̃(E,G)F + g̃(E, ϕG)ϕF − g̃(F, ϕG)ϕE + 2g̃(E, ϕF )ϕG

+ η(E)η(G)F − η(F )η(G)E + g̃(E,G)η(F )ξ − g̃(F,G)η(E)ξ}, (5)

holds for any E,F,G ∈ χ(M̃).

Suppose that {e1, . . ., en+1=ξ} is an orthonormal basis of TxM and {en+2, . . ., e2m+1}
is an orthonormal basis of T⊥

x M . Then, the mean curvature vector fields H⃗(x), H⃗∗(x),

H⃗◦(x) are given by
H⃗(x) = 1

n+1

∑n+1
α=1 h(eα, eα),

H⃗∗(x) = 1
n+1

∑n+1
α=1 h

∗(eα, eα),

H⃗◦(x) = 1
n+1

∑n+1
α=1 h

◦(eα, eα).

(6)

We also set 
∥h∥2 =

∑n+1
α,β=1 g̃(h(eα, eβ), h(eα, eβ)),

∥h∗∥2 =
∑n+1

α,β=1 g̃(h
∗(eα, eβ), h

∗(eα, eβ)),

∥h◦∥2 =
∑n+1

α,β=1 g̃(h
◦(eα, eβ), h

◦(eα, eβ)).

(7)

Here, it is important to remark that a submanifold is a minimal submanifold if
H⃗◦(x) = 0 (resp. H⃗(x) = 0, or H⃗∗(x) = 0).

If we consider a plane section π ⊂ TpM at a point p on a Riemannian manifold
M and if K(π) denotes the sectional curvature of M , then the scalar curvature τ at p
is defined by τ(p) =

∑
1≤α<β≤n+1 K(eα ∧ eβ), for {e1, . . ., en+1} as the orthonormal

basis of TpM and {en+2, . . . , e2m+1} as the orthonormal basis of T⊥
p M .

The normalized scalar curvature ρ is defined as ρ = 2τ
n(n+1) . We also put hγ

αβ =

g̃(h(eα, eβ), eγ), h
∗γ
αβ = g̃(h∗(eα, eβ), eγ), α, β ∈ 1, . . ., n+ 2, γ ∈ {n+ 2, . . ., 2m+ 1}.

3. Statistical hypersurfaces

Let us consider any two statistical manifolds (M, g,∇) and (M̃, g̃, ∇̃). Then, an
immersion f : M → M̃ is called a statistical immersion if the statistical structure
(∇, g) is the induced statistical structure by f from (g̃, ∇̃) and it satisfies [12] g = f∗g̃,
g(∇EF,G) = g̃(∇̃Ef∗F, f∗G). Further, if we consider such immersion of codimension
one and ς ∈ Γ

(
f∗TM̃

)
is the unit normal vector field of f , then from [12] we have
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the following Gauss and Weingarten formulas:{
∇̃Ef∗F = f∗∇EF + h(E,F )ς,

∇̃∗
Ef∗F = f∗∇EF + h∗(E,F )ς,{

∇̃Eς = −f∗A
∗E + τ∗(E)ς,

∇̃∗
Eς = −f∗AE + τ(E)ς,

where h, h∗ ∈ Γ(TM (0,2)), A,A∗ ∈ Γ(TM (1,1)) and τ, τ∗ ∈ Γ(TM∗) satisfy
h(E,F ) = g(AE,F )

h∗(E,F ) = g(A∗E,F ),

τ(E) + τ∗(E) = 0,

for any E,F ∈ Γ(TM).

Denote by R̃, R̃∗ , R and R∗ the curvature tensor fields of the connections ∇̃, ∇̃∗,
∇ and ∇∗, respectively.

We recall the following results for later use.

Proposition 3.1 ([4]). Consider a statistical submanifold (M, g,∇) of a statistical
manifold (M̃, g̃, ∇̃). Let ∇̃ be the g-dual of ∇, and let ∇ be the g̃-dual of ∇̃. Then,
the Gauss, Codazzi and Ricci equations are given by

R̃(E,F )G =R(E,F )G− h(F,G)A∗E + h(E,G)A∗F + (∇Eh)(F,G)ς

− (∇Fh)(E,G)ς + τ∗(E)h(F,G)ς − τ∗(F )h(E,G)ς,

(R̃(E,F )G)⊥ =(∇Eh)(F,G)ς −∇Fh)(E,G)ς + τ∗(E)h(F,G)ς − τ∗(F )h(E,G)ς,

and R̃(E,F )ς =− (∇EA
∗)F + (∇FA

∗)E − τ∗(F )A∗E

+ τ∗(E)A∗F − h(E,A∗F )ς + h(A∗E,F )ς + dτ∗(E,F )ς,

respectively.

Proposition 3.2 ([4]). Consider a statistical submanifold (M, g,∇∗) of a statistical
manifold (M̃, g̃, ∇̃∗). Let ∇̃∗ be the g-dual of ∇∗, and let ∇∗ be the g̃-dual of ∇̃∗.

Then, the Gauss, Codazzi and Ricci equations are given by

R̃∗(E,F )G =R∗(E,F )G− h∗(F,G)AE + h∗(E,G)AF + (∇∗
Eh

∗)(F,G)ς

− (∇∗
Fh

∗)(E,G)ς + τ(E)h∗(F,G)ς − τ(F )h∗(E,G)ς,(
R̃∗(E,F )G

)⊥
=(∇∗

Eh
∗)(F,G)ς − (∇∗

Fh
∗)(E,G)ς

+ τ(E)h∗(F,G)ς − τ(F )h∗(E,G)ς

and R̃∗(E,F )ς =− (∇∗
EA)F + (∇∗

FA)E − τ(F )AE + τ(E)AF − h∗(E,AF )ς

+ h∗(AE,F )ς + dτ(E,F )ς,

respectively.
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4. General inequality for cosymplectic statistical submanifolds

Consider a (n+ 1)-dimensional statistical submanifold M of a (2m+ 1)-dimensional
cosymplectic statistical manifold M̃(c). Then for curvature tensor fields R and R∗ of
∇ and ∇∗, respectively, we use the notation{

R(E,F,G,W ) = g(R(E,F )G,W ),

R∗(E,F,G,W ) = g(R∗(E,F )G,W ).

Also, the mean curvature vector fields are defined as

H =
1

n+ 1

n+1∑
α=1

h
(
eα, eα

)
=

1

n+ 1

2m+1∑
t=n+2

( n+1∑
α=1

ht
αα

)
et,

ht
αβ =g̃

(
h(eα, eβ), et

)
,

and H∗ =
1

n+ 1

n+1∑
α=1

h∗(eα, eα) = 1

n+ 1

2m+1∑
t=n+2

( n+1∑
α=1

h∗t
αα

)
et,

h∗t
αβ =g̃

(
h∗(eα, eβ), et

)
,

for {e1, . . . , en+1} and {en+2, . . . , e2m+1} as orthonormal tangent and normal frames,
respectively, on M .

Now, we prove the following result.

Proposition 4.1. Let M̃(c) be a (2m+1)-dimensional cosymplectic statistical mani-
fold of constant curvature c ∈ R and M an (n+1)-dimensional statistical submanifold
of M̃(c) such that ξ is tangent to M . Then the Ricci tensor Q satisfies

Q(E,F ) =
c

4

[
(n−1)g(E,F )+3g(ϕE, ϕF )−(n−1)η(E)η(F )

]
−1

2

2m+1∑
t=n+2

[
g(AetF,A

∗
etE)+g(A∗

etF,AetE)−g(AetE,F )trA∗
et−g(A∗

etE,F )trAet

]
, (8)

where At and A∗
t are linear transformations defined by (3).

Proof. We know that

Q(E,F ) =

n+1∑
β=1

g(S(eβ , E)F, eβ). (9)

Combining (9) with (1), (2), and (4) yields

Q(E,F ) =

n+1∑
β=1

g(S̃(eβ , E)F, eβ)

−1

2

n+1∑
β=1

[
g̃(h(eβ , F ), h∗(E, eβ))−g̃(h∗(eβ , eβ), h(E,F ))

+g̃(h∗(eβ , F ), h(E, eβ))−g̃(h(eβ , eβ), h
∗(E,F ))

]
. (10)
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Using (5) in (10), we get

Q(E,F ) =
c

4
{g(E,F )g(eβ , eβ)−g(eβ , F )g(E, eβ)+g(eβ , ϕF )g(ϕE, eβ)

−g(E, ϕF )g(ϕeβ , eβ)+2g(eβ , ϕE)g(ϕF, eβ)+η(eβ)η(F )g(E, eβ)

−η(E)η(F )g(eβ , eβ)+g(eβ , F )η(E)g(ξ, eβ)−g(E,F )η(eβ)g(ξ, eβ)}

−1

2

n+1∑
β=1

[
g̃(h(eβ , F ), h∗(E, eβ))−g̃(h∗(eβ , eβ), h(E,F ))

+g̃(h∗(eβ , F ), h(E, eβ))−g̃(h(eβ , eβ), h
∗(E,F ))

]
=
c

4

[
(n−1)g(E,F )+3g(ϕE, ϕF )−(n−1)η(E)η(F )

]
−1

2

n+1∑
β=1

[
g̃(h(eβ , F ), h∗(E, eβ))−g̃(h∗(eβ , eβ), h(E,F ))

+g̃(h∗(eβ , F ), h(E, eβ))−g̃(h(eβ , eβ), h
∗(E,F ))

]
. (11)

On the other hand we have

g̃(h∗(eβ , eβ), h(E,F )) =

2m+1∑
t=n+2

g(AetE,F )g(A∗
eteβ , eβ) (12)

and g̃(h(eβ , F ), h∗(E, eβ)) =

2m+1∑
t=n+2

g(A∗
etE, eβ)g(AetF, eβ). (13)

Applying (12) and (13) into (11), we get

Q(E,F ) =
c

4

[
(n− 1)g(E,F ) + 3g(ϕE, ϕF )− (n− 1)η(E)η(F )

]
− 1

2

n+1∑
β=1

2m+1∑
t=n+2

[
g(A∗

etE, eβ)g(AetF, eβ)g(AetE,F )− (A∗
eteβ , eβ)

+ g(A∗
etF, eβ)g(AetE, eβ)− g(Aeteβ , eβ)g(A

∗
etE,F )

]
=
c

4

[
(n− 1)g(E,F ) + 3g(ϕE, ϕF )− (n− 1)η(E)η(F )

]
− 1

2

2m+1∑
t=n+2

[
g(AetF,A

∗
etE) + g(A∗

etF,AetE)

− g(AetE,F )trA∗
et − g(A∗

etE,F )trAet

]
,

which is the required equality (8). □
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5. Inequalities for cosymplectic hypersurfaces

Proposition 5.1. Let M̃(c) be a (2m+1)-dimensional cosymplectic statistical man-
ifold. Let M be a hypersurface of M̃(c) of a constant curvature c ∈ R. Then

2τ ≥ c

4

[
4m2 − 6m+ 2 + 3∥P∥2

]
+ 4m2g̃(H,H∗)− ∥h◦∥2 (14)

and the equality in the inequality holds if

h2m+1
αβ = h∗2m+1

αβ ,∀α, β = 1, . . . , 2m. (15)

Proof. From (1), (2), (4) and (5) we have

g(S(E,F )G,W ) =
c

4

{
g(F,G)g(E,W )− g(E,G)g(F,W ) + g(E, ϕG)g(ϕF,W )

− g(F, ϕG)g(ϕE,W ) + 2g(E, ϕF )g(ϕG,W ) + η(E)η(G)g(F,W )

− η(F )η(G)g(E,W ) + g(E,G)η(F )g(ξ,W )− g(F,G)η(E)g(ξ,W )
}

− 1

2

[
g̃(h(E,G), h∗(F,W ))− g̃(h∗(E,W ), h(F,G))

+ g̃(h∗(E,G), h(F,W ))− g̃(h(E,W ), h∗(F,G))
]
, (16)

where E, F , G and W ∈ (TM). Substituting E = W = eα, F = G = eβ , it is easy to
see that

g(S(eα, eβ)eβ , eα) =
c

4

{
g(eβ , eβ)g(eα, eα)− g(eα, eβ)g(eβ , eα) + g(eα, ϕeβ)g(ϕeβ , eα)

− g(eβ , ϕeβ)g(ϕeα, eα) + 2g(eα, ϕeβ)g(ϕeβ , eα) + η(eα)η(eβ)g(eβ , eα)

− η(eβ)η(eβ)g(eα, eα) + g(eα, eβ)η(eβ)g(ξ, eα)− g(eβ , eβ)η(eα)g(ξ, eα)
}

− 1

2

[
g̃(h(eα, eβ), h

∗(eβ , eα))− g̃(h∗(eα, eα), h(eβ , eβ))

+ g̃(h∗(eα, eβ), h(eβ , eα))− g̃(h(eα, eα), h
∗(eβ , eβ))

]
. (17)

If we consider {e1, . . ., e2m = ξ} as an orthonormal frame of M and e2m+1 as a unit
normal vector to M , then by applying summation over 1 ≤ α, β ≤ 2m, (17) reduces to

2τ =
1

4

[
4m2 − 6m+ 2 + 3∥P∥2

]
− g̃(h(eα, eβ), h

∗(eβ , eα))

+
1

2
g̃(h∗(eα, eα), h(eβ , eβ)) +

1

2
g̃(h(eα, eα), h

∗(eβ , eβ)). (18)

On the other hand, in this case the mean curvature vector fields H and H∗ can be
given as

H =
1

2m

( 2m∑
α=1

hαα

)
e2m+1, hαβ = g̃

(
h(eα, eβ), e2m+1

)
(19)

and H∗ =
1

2m

( 2m∑
α=1

h∗
αα

)
e2m+1, h

∗
αβ = g̃

(
h∗(eα, eβ), e2m+1

)
. (20)
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Combining (18), (19) and (20), a straightforward computation gives

2τ =
c

4

[
4m2 − 6m+ 2 + 3∥P∥2

]
+ 4m2g(H,H∗)− ∥h◦∥2 + 1

4

2m∑
α,β=1

(h2m+1
αβ − h∗2m+1

αβ )2

≥ c

4

[
4m2 − 6m+ 2 + 3∥P∥2

]
+ 4m2g(H,H∗)− ∥h◦∥2,

which gives the required inequality (14) and the equality in the inequality holds if it
satisfies (15). □

Theorem 5.2. Let M̃(c) be a (2m+1)-dimensional cosymplectic statistical manifold.
Let M be a hypersurface of M̃(c). Then, for each E ∈ Tp(M), we have

Ric(E) =
c

4

[
(2(m− 1) + 3∥P∥2

]
+m[g̃(h∗(E,E), H) + g̃

(
h(E,E), H∗]−

2m∑
α=1

hα1h
∗
α1.

Proof. Let us consider the orthonormal frame {e1, . . . , e2m = ξ} such that E = G = e1
and F = W = eα, α = 2, . . . , 2m. With the help of (16), we have

g(S(E, eα)eα, E) =
c

4
{g(eα, eα)g(E,E)− g(E, eα)g(eα, E) + g(E, ϕeα)g(ϕeα, E)

− g(eα, ϕeα)g(ϕE,E) + 2g(E, ϕeα)g(ϕeα, E) + η(E)η(eα)g(eα, E)

− η(eα)η(eα)g(E,E) + g(E, eα)η(eα)g(ξ, E)− g(eα, eα)η(E)g(ξ, E)}

− 1

2
[g̃(h(E, eα), h

∗(eα, E))− g̃(h∗(E,E), h(eα, eα))

+ g̃(h∗(E, eα), h(eα, E))− g̃(h(E,E), h∗(eα, eα))].

Applying summation over 2 ≤ α ≤ 2m in the above equation, we compute

Ric(E) =
c

4

[
(2m− 1) + 3

2m∑
α=2

g2
(
ϕE, eα

)
−

2m∑
α=2

η2(eα)

]
−

2m∑
α=2

g̃(h(E, eα), h
∗(eα, E))

+
1

2

2m∑
α=2

g̃(h∗(E,E), h(eα, eα)) +
1

2

2m∑
α=2

g̃(h(E,E), h∗(eα, eα))

=
c

4

[
2(m− 1) + 3∥P∥2

]
−

2m∑
α=2

g(h(E, eα), h
∗(eα, E))

+
1

2

[
2mg(h∗(E,E), H)− 2g̃(h∗(E,E), h(e1, e1)) + 2mg(h(E,E), H∗)

]
=
c

4

[
2(m− 1) + 3∥P∥2

]
−

2m∑
α=1

hα1h
∗
α1 +m

[
g(h∗(E,E), H) + g(h(E,E), H∗)

]
.

This completes the proof. □
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6. Chen-Ricci inequality for cosymplectic statistical manifolds

In this section we mainly prove the following result.

Theorem 6.1. Let M̃(c) be a (2m+1)-dimensional cosymplectic statistical manifold.
Let M be an (n+1)-dimensional statistical submanifold of M̃(c). Then for each unit
E ∈ TpM , we have

Ric(E) ≥2Ric◦(E)− (n+ 1)2

8
g̃(H,H)− (n+ 1)2

8
g̃(H∗, H∗)

+
c

8

[
2(n− 1) + 3(∥P∥2 − ∥P1∥2)

]
− 2(n)max K̃◦(E ∧ .),

where ∥P1∥2 =
∑

2≤α̸=β≤n+1 g̃
2(ϕeβ , eα). The equality holds if 2

∑2m+1
t=n+2 h

∗t
11 = nH∗.

Proof. Let {e1, . . . , en+1 = ξ} be an orthonormal frame of M and {en+2, . . . , e2m+1}
a normal frame to M . Then by summing over 1 ≤ α, β ≤ n+ 1, it follows from (17)
that:

2τ =
c

4

[
n(n−1)+3∥P∥2

]
+(n+1)2g̃(H,H∗)+

n+1∑
α,β=1

g̃
(
h(eα, eβ), h

∗(eβ , eα)
)
. (21)

Using the fact 2H◦ = H +H∗ in (21), we derive

2τ =
c

4

[
n(n− 1) + 3∥P∥2

]
+ 2(n+ 1)2g̃(H◦, H◦)

− (n+ 1)2

2
g̃(H,H)− (n+ 1)2

2
g̃(H∗, H∗)− 2∥h◦∥2 + 1

2

(
∥h∥2 + ∥h∗∥2

)
. (22)

On the other hand, one has

∥h∥2 =

2m+1∑
t=n+1

[
(ht

11)
2 + (ht

22 + . . .+ ht
nn)

2 + 2
∑

1≤α<β≤n

(ht
αβ)

2

]

−
2m+1∑
t=n+1

∑
2≤α ̸=β≤n

ht
ααh

t
ββ

=
1

2

2m+1∑
t=n+1

[(
ht
11 + ht

22 + . . .+ ht
nn

)2
+

(
ht
11 − ht

22 − . . .− ht
nn

)2]

+ 2

2m+1∑
t=n+1

∑
1≤α<β≤n

(ht
αβ)

2 −
2m+1∑
t=n+1

∑
2≤α ̸=β≤n

ht
ααh

t
ββ

≥n2

2
∥H∥2 −

2m+1∑
t=n+1

∑
2≤α̸=β≤n

[
ht
ααh

t
ββ − (ht

αβ)
2
]
. (23)

Similarly, we have

∥h∗∥2 ≥ n2

2
∥H∗∥2 −

2m+1∑
t=n+1

∑
2≤α ̸=β≤n

[
h∗t
ααh

∗t
ββ − (h∗t

αβ)
2
]
. (24)
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Combining (23) and (24) with (22), we find

2τ ≥ c

4

[
n(n− 1) + 3∥P∥2

]
+ 2(n+ 1)2g̃(H◦, H◦)− (n+ 1)2

2
g̃(H,H)

− (n+ 1)2

2
g̃(H∗, H∗)− 2∥h◦∥2 − 2

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

h◦t
ααh

◦t
ββ

+

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

ht
ααh

∗t
ββ +

1

2

2m+1∑
t=n+2

∑
2≤α ̸=β≤n+1

[
(ht

αβ)
2 + (h∗t

αβ)
2
]
. (25)

Further, we obtain∑
2≤α ̸=β≤n+1

g̃
(
S(eα,eβ)eα, eβ

)
=

c

4

(
n2 − 3n+ 2 + 3∥P2∥2

)
+

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

(
ht
ααh

∗t
ββ − ht

αβh
∗t
αβ

)
. (26)

From (25) and (26), we reduce to

2τ ≥ c

4

[
n(n− 1) + 3∥P∥2

]
+ 2(n+ 1)2g̃(H◦, H◦)− (n+ 1)2

2
g̃(H,H)

− (n+ 1)2

2
g̃(H∗, H∗)− 2∥h◦∥2 − 2

2m+1∑
t=n+2

∑
2≤α ̸=β≤n+1

h◦t
ααh

◦t
ββ

+
∑

2≤α̸=β≤n+1

g̃
(
S(eα, eβ)eα, eβ

)
− c

4

[
n2 − 3n+ 2 + 3∥P2∥2

]

+

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

ht
αβh

∗t
αβ +

1

2

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

[
(ht

αβ)
2 + (h∗t

αβ)
2
]
.

Then, a direct computation gives

Ric(E) ≥ c

8
[2(n−1)+3(∥P∥2−∥P1∥2)+(n+1)2g̃(H◦, H◦)

− (n+1)2

8

[
g̃(H,H)+g̃(H∗, H∗)

]
−∥h◦∥2−

2m+1∑
t=n+2

∑
2≤α ̸=β≤n+1

[
h◦t
ααh

◦t
ββ−(h◦t

αβ)
2
]
. (27)

Equation (1) for Levi-Civita connection yields∑
1≤α ̸=β≤n+1

R̃◦(eα, eβ , eα, eβ) =2τ◦ − (n+ 1)2g̃(H◦, H◦) + ∥h◦∥2, (28)

and
∑

2≤α ̸=β≤n+1

R̃◦(eα, eβ , eα, eβ) = ∑
2≤α̸=β≤n+1

R◦(eα, eβ , eα, eβ)
−

2m+1∑
t=n+2

∑
2≤α̸=β≤n+1

(
h◦t
ααh

◦t
ββ − (h◦t

αβ)
2
)
. (29)
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Making use of (28) and (29) in (27), it is easy to see that

Ric(E) ≥ c

8

[
2(n− 1) + 3(∥P∥2 − ∥P1∥2)

]
+ 2τ◦

−
∑

1≤α ̸=β≤n+1

g̃(R̃◦(eα, eβ)eβ , eα)− (n+ 1)2

8

[
g̃(H,H) + g̃(H∗, H∗)

]
−

∑
2≤α ̸=β≤n+1

g̃(R̃◦(eα, eβ)eβ , eα)+ ∑
2≤α̸=β≤n

g̃(R◦(eα, eβ)eβ , eα).
Finally, we conclude that

Ric(E) ≥2Ric◦(E) +
c

8

[
2(n− 1) + 3(∥P∥2 − ∥P1∥2)

]
− (n+ 1)2

8

[
g̃(H,H) + g̃(H∗, H∗)

]
− 2

n∑
α=2

K̃◦(E ∧ eα)

where K̃◦(E ∧ .) is the maximum of the sectional curvature function of M̃(c). □

As a consequence of the above theorem we have the following obstruction result.

Corollary 6.2. Let M̃(c) be a (2m+ 1)-dimensional cosymplectic statistical mani-
fold. Let M be an (n+1)-dimensional statistical submanifold of M̃(c). Then for each
unit E ∈ TpM , if

Ric(E) <2Ric◦(E) +
c

8

[
2(n− 1) + 3(∥P∥2 − ∥P1∥2)

]
+

(n+ 1)2

4
g̃(H,H∗)− 2(n)max K̃◦(E ∧ .),

then M cannot be minimally immersed in M̃(c).

Proof. Proof of the result directly follows from the above theorem. If M is a min-
imal submanifold, we have H◦ = 0. This implies that H + H∗ = 0. Using this in
Theorem 6.1 we have the required result. □
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