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TWO-WEIGHTED INEQUALITIES FOR RIESZ POTENTIAL AND
ITS COMMUTATORS IN GENERALIZED WEIGHTED MORREY

SPACES
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Abstract. In this paper we find the conditions for the boundedness of Riesz potential
Iα and its commutators from the generalized weighted Morrey spaces Mp,φ1

ω1
(Rn) to the

generalized weighted Morrey spaces Mq,φ2
ω2

(Rn), where 0 < α < n, 1 < p < n
α
, 1

p
− 1

q
= α

n
,

(ω1, ω2) ∈ Ap,q(Rn), φ1, φ2 are generalized functions and b ∈ BMO(Rn). Furthermore, we
give some applications of our results.

1. Introduction

Let 1 ≤ p < ∞, φ be a positive measurable function on Rn × (0,∞) and ω be a non-
negative measurable function on Rn. We denote by Mp,φ

ω the generalized weighted
Morrey space, the space of all functions f ∈ Lloc

p,ω(Rn) with finite norm

∥f∥Mp,φ
ω

= sup
x∈Rn,r>0

1

φ(x, r)∥ω∥Lp(B(x,r))
∥f∥Lp,ω(B(x,r)),

where the supremum is taken over all balls B(x, r) in Rn and Lp,ω(B(x, r)) denotes
the weighted Lp-space of measurable functions f for which

∥f∥Lp,ω(B(x,r)) ≡ ∥fχB(x,r)
∥Lp,ω(Rn) =

(∫
B(x,r)

|f(y)|pω(y) dy

) 1
p

.

Moreover, by WMp,φ
ω we denote the weak generalized weighted Morrey space of all

functions f ∈ WLloc
p,ω(Rn) with finite norm

∥f∥WMp,φ
ω

= sup
x∈Rn,r>0

1

φ(x, r)∥ω∥Lp(B(x,r))
∥f∥WLp,ω(B(x,r)),
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38 Two-weighted inequalities for Riesz potential

where WLp,ω(B(x, r)) denotes the weak weighted Lp-space of measurable functions
f for which

∥f∥WLp,ω(B(x,r)) ≡ ∥fχB(x,r)
∥WLp,ω(Rn) = sup

t>0
t

(∫
y∈B(x,r):|f(y)|>t

|f(y)|pω(y) dy

) 1
p

.

Note that if ω(x) = χB(x,r), thenMp,φ
ω (Rn) = Mp,φ(Rn) is the generalized Morrey

space and if φ(x, r) = r
n−λ

p , then Mp,φ
ω (Rn) = Lp,λ(ω) is the weighted Morrey space.

Let f be a locally integrable function on Rn. The so-called fractional maximal
function is defined by the formula

Mαf(x) = sup
r>0

|B(x, r)|−1+α/n

∫
B(x,r)

|f(y)| dy, 0 ≤ α < n,

where |B(x, r)| = ωnr
n is the Lebesgue measure of the ball B(x, r). It coincides

with the Hardy-Littlewood maximal function Mf ≡ M0f . Maximal operators play
an important role in the differentiability properties of functions, singular integrals
and partial differential equations. They often provide a deeper and more simplified
approach to understanding problems in these areas than other methods.

Fractional maximal operator is intimately related to the Riesz potential

Iαf(x) =

∫
Rn

f(y) dy

|x− y|n−α
, 0 < α < n.

The aim of this paper is to find the conditions for the boundedness of Riesz poten-
tial Iα and its commutators [b, Iα] and |b, Iα| from the generalized weighted Morrey
spaces Mp,φ1

ω1
(Rn) to the spaces Mq,φ2

ω2
(Rn), where 0 < α < n, 1 < p < n

α ,
1
p −

1
q = α

n ,

(ω1, ω2) ∈ Ap,q(Rn), ω1, ω2 are generalized functions and b ∈ BMO(Rn). Further-
more, we give some applications of our main results.

In 2012, Guliyev gave a concept of generalized weighted Morrey space, which
could be viewed as extension of both generalized Morrey space and weighted Morrey
space [9]. In [9] Guliyev also obtained the boundedness of sublinear operators and
their higher order commutators generated by Calderón-Zygmund operators and Riesz
potentials in generalized weighted Morrey spaces (see also [12,15] ).

In this paper we aim to give a characterization of two-weighted inequalities for
Riesz potential and its commutators in generalized weighted Morrey spaces. Two-
weight norm inequalities for the operators of harmonic analysis on various function
spaces were widely studied (see, for example [5,8,16,17,20]). The weighted norm in-
equalities with different types of weights on Morrey spaces were also studied (see, for
example [13,22,24] ). The two-weight norm inequality for the Hardy-Littlewood max-
imal function on Morrey spaces was obtained in [28]. Two-weight norm inequalities on
weighted Morrey spaces for fractional maximal operators and fractional integral op-
erators were obtained in [23]. Two-weight norm inequalities on generalized weighted
Morrey spaces for maximal, Calderón-Zygmund operators and their commutators
were obtained in [3].

In the sequel we use the letter C for a positive constant, independent of appropriate
parameters and not necessary the same at each occurrence. If p ∈ [1,∞], the conjugate
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number p′ is defined by pp′ = p + p′. M(R+), M
+(R+) and M+(R+;↑) stand for the

set of Lebesgue-measurable functions on R+, and its subspaces of non-negative and
non-negative non-decreasing functions, respectively.

2. Background material

Even though the Ap class is well-known, we offer the definition of Ap weight functions.

Definition 2.1. The weight function ω belongs to the class Ap(Rn), for 1 ≤ p < ∞,
if the following

sup
x∈Rn,r>0

1

|B(x, r)|

( ∫
B(x,r)

ωp(y) dy

) 1
p
( ∫
B(x,r)

ω−p′
(y) dy

) 1
p′

is finite and ω belongs to A1(Rn), if there exists a positive constant C such that for
any x ∈ Rn and r > 0

|B(x, r)|−1

∫
B(x,r)

ω(y) dy ≤ C ess sup
y∈B(x,r)

1

ω(y)
.

Definition 2.2. The weight functions (ω1, ω2) belong to the class Ãp(Rn), for 1 ≤
p < ∞, if the following supremum is finite

sup
x∈Rn,r>0

1

|B(x, r)|

( ∫
B(x,r)

ωp
2(y) dy

) 1
p
( ∫
B(x,r)

ω−p′

1 (y) dy

) 1
p′

.

Definition 2.3. The weight functions (ω1, ω2) belong to the class Ap,q(Rn), for 1 ≤
p, q < ∞, if the following supremum is finite

sup
x∈Rn,r>0

|B(x, r)|
1
p−

1
q−1

( ∫
B(x,r)

ωq
2(y) dy

) 1
q
( ∫
B(x,r)

ω−p′

1 (y) dy

) 1
p′

.

The following theorem was proved in [21].

Theorem 2.4. Let 1 ≤ p < ∞, then

(i) M : Lp,φ(Rn) → Lp,φ(Rn) if and only if φ ∈ Ap(Rn),

(ii) M : L1,φ(Rn) → WL1,φ(Rn) if and only if φ ∈ A1(Rn).

Let M ♯ be the sharp maximal function defined by

M ♯f(x) = sup
r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)| dy,

where fB(x,r)(x) = |B(x, r)|−1
∫
B(x,r)

f(y) dy.
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Definition 2.5. We define the BMO(Rn) space as the set of all locally integrable
functions f such that

∥f∥BMO = sup
x∈Rn, r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)| dy < ∞

or ∥f∥BMO = inf
C

sup
x∈Rn, r>0

|B(x, r)|−1

∫
B(x,r)

|f(y)− C| dy < ∞.

Definition 2.6. We define the BMOp,ω(Rn) (1 ≤ p < ∞) space as the set of all
locally integrable functions f such that

∥f∥BMOp,ω
= sup

x∈Rn,r>0

∥(f(·)−fB(x,r))χB(x,r)∥Lp,ω(Rn)

∥ω∥Lp(B(x,r))
<∞

or ∥f∥BMOp,ω
= sup

x∈Rn,r>0

1

|B(x, r)|
∥(f(·)−fB(x,r))χB(x,r)∥Lp,ω(Rn)∥ω−1∥Lp′ (B(x,r))<∞.

Theorem 2.7 ([18]). Let 1 ≤ p < ∞ and ω be a Lebesgue measurable function. If
ω ∈ Ap(Rn), then the norms ∥ · ∥BMOp,ω

and ∥ · ∥BMO are mutually equivalent.

Before proving the main theorems, we need the following lemma.

Lemma 2.8 ([14]). Let b ∈ BMO(Rn). Then there is a constant C > 0 such that∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C∥b∥BMO ln t
r for 0 < 2r < t, where C is independent of b, x, r

and t.

Let L∞,v(R+) be the weighted L∞-space with the norm ∥g∥L∞,v(R+) = ess sup
t>0

v(t)g(t).

We denote A = {φ ∈ M+(R+; ↑) : limt→0+ φ(t) = 0}. Let u be a continuous and
non-negative function on R+. We define the supremal operator Su by (Sug)(t) :=
∥u g∥L∞(0,t), t ∈ (0,∞).

The following theorem was proved in [4].

Theorem 2.9 ([4]). Suppose that v1 and v2 are non-negative measurable functions
such that 0 < ∥v1∥L∞(0,t) < ∞ for every t > 0. Let u be a continuous non-negative

function on R. Then the operator Su is bounded from L∞
v1
(R+) to L∞

v2
(R+) on the

cone A if and only if
∥∥∥v2Su

(
∥v1∥−1

L∞(0,·)

)∥∥∥
L∞(R+)

< ∞.

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=

∫ t

0

g(s)w(s)ds, H∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞,

where w is a weight.

Theorem 2.10 ([10]). Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

ess sup
t>0

v2(t)H
∗
wg(t) ≤ Cess sup

t>0
v1(t)g(t)
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holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
< ∞.

Theorem 2.11 ([10,11]). Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

ess sup
t>0

v2(t)Hwg(t) ≤ Cess sup
t>0

v1(t)g(t) (1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := ess sup
t>0

v2(t)

∫ t

0

w(s)ds

ess sup0<τ<s v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (1).

3. Two-weighted inequalities for Riesz potential and its commutators in
generalized weighted Morrey spaces

In this section we prove two-weighted inequalities for Riesz potential and its commu-
tators in generalized weighted Morrey spaces.

Theorem 3.1 ([25]). Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n and the (ω1, ω2) ∈

Ap,q(Rn). Then the operator Iα is bounded from Lp,ω1
(Rn) to Lq,ω2

(Rn).

From the inequality Mαf(x) ≤ ω
α
n−1
n (Iα)|f |(x), we get the following corollary.

Corollary 3.2. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n and (ω1, ω2) ∈ Ap,q(Rn).

Then the operator Mα is bounded from Lp,ω1(Rn) to Lq,ω2(Rn).

Theorem 3.3. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n and (ω1, ω2) ∈ Ap,q(Rn).

Then there exists a constant C > 0 such that for an arbitrary f ∈ Lp,ω1(B(x, t)) the
inequality

∥Iαf∥Lq,ω2
(B(x,t)) ≤ C∥ω2∥Lq(B(x,t))

∫ ∞

t

sα−n−1
∥f∥Lp,ω(B(x,s))

∥ω2∥Lq(B(x,s))
ds (2)

holds.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χB(x,2t)(y), f2(y) = f(y)χRn\B(x,2t)(y), t > 0, (3)

and have Iαf(x) = Iαf1(x) + Iαf2(x).
By Theorem 3.1 we obtain

∥Iαf1∥Lq,ω2
(B(x,t)) ≤∥Iαf1∥Lq,ω2

(Rn) ≤ C∥f1∥Lp,ω1
(Rn) = C∥f∥Lp,ω1

(B(x,2t)).
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Then

∥Iαf1∥Lq,ω2
(B(x,t)) ≤C∥f∥Lp,ω1

(B(x,2t)),

where the constant C is independent of f . Taking into account that, we get

∥Iαf1∥Lq,ω2
(B(x,t)) ≤ C∥ω2∥Lq(B(x,t))

∫ ∞

t

sα−n−1
∥f∥Lp,ω1

(B(x,s))

∥ω2∥Lq(B(x,s))
ds. (4)

When |x− z| ≤ t, |z− y| ≥ 2t, we have 1
2 |z− y| ≤ |x− y| ≤ 3

2 |z− y|, and therefore

|Iαf2(z)| ≤
∫
Rn\B(x,2t)

|z − y|α−n|f(y)| dy ≤ C

∫
Rn\B(x,2t)

|x− y|α−n|f(y)| dy.

We choose β > n
q and obtain∫

Rn\B(x,2t)

|x− y|α−n|f(y)| dy =β

∫
Rn\B(x,2t)

|f(y)|

(∫ ∞

|x−y|
sα−n−1ds

)
dy

=β

∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|f(y)| dy

)
ds

≤C

∫ ∞

2t

sα−n−1∥χB(x,s)ω
−1
1 ∥Lp′ (Rn)∥f∥Lp,ω1 (B(x,s))ds

≤C

∫ ∞

t

sα−n−1∥f∥Lp,ω1
(B(x,s))∥ω−1

1 ∥Lp′ (B(x,s))ds.

Hence

∥Iαf2∥Lq,ω2
(B(x,t)) ≤ C

∫ ∞

t

sα−n−1∥f∥Lp,ω1
(B(x,s))∥ω−1

1 ∥Lp′ (B(x,s))ds∥χB(x,t)∥Lq,ω2
(Rn).

Therefore we get

∥Iαf2∥Lq,ω2
(B(x,t))≤C∥ω2∥Lq(B(x,t))

∫ ∞

t

sα−n−1∥f∥Lp,ω1
(B(x,s))∥ω2∥−1

Lq(B(x,s))ds (5)

which together with (4) yields (2). □

Theorem 3.4. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n and (ω1, ω2) ∈ Ap,q(Rn). Let

the functions φ1(x, r) and φ2(x, r) fulfill the condition∫ ∞

t

sα−n−1
ess inf
s<r<∞

φ1(x, r)∥ω1∥Lp(B(x,r))

∥ω2∥Lq(B(x,s))
ds ≤ Cφ2(x, t). (6)

Then the operator Iα is bounded from Mp,φ1
ω1

(Rn) to Mq,φ2
ω2

(Rn).

Proof. Let f ∈ Mp,φ1
ω1

(Rn). From the definition of the norm of generalized weighted
Morrey spaces we write

∥Iαf∥Mq,φ2
ω2

(Rn) = sup
x∈Rn, t>0

1

φ2(x, t)∥ω2∥Lq(B(x,t))
∥IαfχB(x,t)∥Lq,ω2 (Rn). (7)

We estimate ∥IαfχB(x,t)∥Lq,ω2 (Rn) in (7) by means of Theorems 3.3, 2.11 and obtain

∥Iαf∥Mq,φ2
ω2

(Rn) ≤ C sup
x∈Rn, t>0

∥ω2∥Lq(B(x,t))

φ2(x, t)∥ω2∥Lq(B(x,t))

∫ ∞

t

sα−n−1
∥f∥Lp,ω1

(B(x,s))

∥ω∥Lq(B(x,s))
ds
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≤ C sup
x∈Rn, t>0

1

φ1(x, t)∥ω1∥Lp(B(x,t))
∥f∥Lp,ω1

(B(x,t)) = C∥f∥Mp,φ1
ω1

(Rn).

It remains to make use of condition (6). □

It is well-known that the commutator is an important integral operator and it
plays a key role in harmonic analysis. In this section we consider commutators of the
Riesz potential defined by the following equality

[b, Iα]f(x) =

∫
Rn

(b(x)− b(y))|x− y|α−n f(y) dy, 0 < α < n.

Given a measurable function b the operator |b, Iα| is defined by

|b, Iα|f(x) =
∫
Rn

|b(x)− b(y)| |x− y|α−n |f(y)| dy, 0 < α < n.

The maximal commutator is defined by

Mb(f)(x) := sup
r>0

|B(x, r)|−1

∫
B(x,r)

|b(x)− b(y)||f(y)| dy

for all x ∈ Rn.

Lemma 3.5 ([6]). Let b ∈ BMO(Rn), 1 < s < ∞. Then

M ♯(|b, Iα|f(x)) ≤ C∥b∥BMO

[
(M |Iαf(x)|s)

1
s + (Msα|f(x)|s)

1
s

]
,

where C > 0 is independent of f and x.

Lemma 3.6 ([27]). Let 1 < p < ∞ and ω ∈ Ap(Rn). Then ∥f∥Lp,ω
≤ C∥M ♯f∥Lp,ω

with a constant C > 0 not depending on f .

Theorem 3.7 ([3]). Let 1 < p < ∞, (ω1, ω2) ∈ Ãp(Rn) and the function φ1(x, r) and
φ2(x, r) satisfy the condition

sup
t>r

ess inf
t<s<∞

φ1(x, s)∥ω1∥Lp(B(x,s))

∥ω2∥Lp(B(x,t))
≤ Cφ2(x, r), (8)

where C does not depend on x and t.

Then the operator M is bounded from the space Mp,φ1
ω1

(Rn) to the space Mp,φ2
ω2

(Rn).

Theorem 3.8 ([3]). Let 1 < p < ∞, b ∈ BMO(Rn) and (ω1, ω2) ∈ Ãp(Rn), ω1 ∈
Ap(Rn), then the operator Mb is bounded from Lp,ω1

(Rn) to Lp,ω2
(Rn).

Theorem 3.9 ([3]). Let 1 < p < ∞, b ∈ BMO(Rn) and (ω1, ω2) ∈ Ãp(Rn), ω1, ω2 ∈
Ap(Rn). If the functions φ1(x, r) and φ2(x, r) satisfy the condition

sup
t>r

(
1 + ln

t

r

) ess inf
t<s<∞

φ1(x, s)∥ω1∥Lp(B(x,s))

∥ω2∥Lp(B(x,t))
≤ Cφ2(x, r), (9)

where C does not depend on x and t.

Then the operator Mb is bounded from the space Mp,φ1
ω1

(Rn) to the space Mp,φ2
ω2

(Rn).
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Theorem 3.10. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n , b ∈ BMO(Rn) and

(ω1, ω2) ∈ Ap,q(Rn), ω1 ∈ Ap(Rn), ω2 ∈ Aq(Rn). The operator |b, Iα| is bounded
from Lp,ω1(Rn) to Lq,ω2(Rn).

Proof. Let f ∈ Lp,ω1(Rn) and b ∈ BMO(Rn). From Lemma 3.6 we have

∥|b, Iα|f∥Lq,ω2 (Rn) ≤ C∥M ♯([b, Iα]f)∥Lq,ω2 (Rn).

From Lemma 3.5, we have

∥M ♯(|b, Iα|f)∥Lq,ω2
(Rn) ≤ C∥b∥BMO

∥∥∥(M |Iαf |s)
1
s + (Mαs|f |s)

1
s

∥∥∥
Lq,ω2

(Rn)

≤ C∥b∥BMO

[∥∥∥(M |Iαf |s)
1
s

∥∥∥
Lq,ω2 (Rn)

+
∥∥∥(Mαs|f |s)

1
s

∥∥∥
Lq,ω2 (Rn)

]
.

From Theorem 2.4 and Theorem 3.1, we get∥∥∥(M |Iαf |s)
1
s

∥∥∥
Lq,ω2

(Rn)
≤C ∥Iαf∥Lq,ω2

(Rn) ≤ C ∥f∥Lp,ω1
.

From Corollary 3.2, we obtain∥∥∥(Mαs|f |s)
1
s

∥∥∥
Lq,ω2

(Rn)
≤C ∥f∥Lp,ω1

.

Therefore we get

∥[b, Iα]f∥Lq,ω2
(Rn) ≤C∥b∥BMO ∥f∥Lp,ω1

.

Thus the theorem has been proved. □

Theorem 3.11. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n , b ∈ BMO(Rn) and

(ω1, ω2) ∈ Ap,q(Rn), ω1 ∈ Ap(Rn), ω2 ∈ Aq(Rn). Then

∥|b, Iα|f∥Lq,ω2 (B(x,t)) ≤

C ∥b∥BMO ∥ω2∥Lq(B(x,t)) ×
∫ ∞

t

(
1 + ln

s

t

)
∥f∥Lp,ω1

(B(x,s))∥ω2∥−1
Lq(B(x,s))

ds

s
, (10)

where t > 0, C does not depend on f , x and t.

Proof. We represent f as (3) and have |b, Iα|f(x) ≤ |b, Iα|f1(x) + |b, Iα|f2(x).
By Theorem 3.10 we obtain

∥|b, Iα|f1∥Lq,ω2
(B(x,t)) ≤∥|b, Iα|f1∥Lq,ω2

(Rn)

≤C ∥b∥BMO ∥f1∥Lp,ω1
(Rn) = C ∥b∥BMO ∥f∥Lp,ω1

(B(x,2t)).

Then

∥|b, Iα|f1∥Lq,ω2
(B(x,t)) ≤C ∥b∥BMO ∥f∥Lp,ω1

(B(x,2t)),

where the constant C is independent of f . Taking into account that, we get

∥|b, Iα|f1∥Lq,ω2
(B(x,t)) ≤

C ∥b∥BMO ∥ω2∥Lq(B(x,t)) ×
∫ ∞

t

(
1 + ln

s

t

) ∥f∥Lp,ω1
(B(x,s))

∥ω2∥Lq(B(x,s))

ds

s
. (11)
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When |x − z| ≤ t, |z − y| ≥ 2t, we have 1
2 |z − y| ≤ |x − y| ≤ 3

2 |z − y|. Therefore
we get

|b, Iα|f2(z) ≤
∫
Rn\B(x,2t)

|b(y)− b(z)||z − y|α−n|f(y)| dy

≤ C

∫
Rn\B(x,2t)

|b(y)− b(z)||x− y|α−n|f(y)| dy.

We obtain∫
Rn\B(x,2t)

|b(y)− b(z)||x− y|α−n|f(y)| dy

=

∫
Rn\B(x,2t)

|b(y)− b(z)||f(y)|

(∫ ∞

|x−y|
sα−n−1ds

)
dy

≤ C

∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|b(y)− b(z)||f(y)| dy

)
ds

≤ C

∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|b(y)− bB(x,t)||f(y)| dy

)
ds

+ C|b(z)− bB(x,t)|
∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|f(y)| dy

)
ds = J1 + J2.

To estimate J1:

J1 = C

∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|b(y)− bB(x,t)||f(y)| dy

)
ds

≤ C

∫ ∞

t

sα−n−1∥b(·)− bB(x,s)∥Lp′,ω−1 (B(x,s))∥f∥Lp,ω(B(x,s))ds

+ C

∫ ∞

t

sα−n−1|bB(x,t) − bB(x,s)|

(∫
B(x,s)

|f(y)| dy

)
ds

≤ C∥b∥BMO

∫ ∞

t

sα−n−1∥ω−1∥Lp′ (B(x,s))∥f∥Lp,ω(B(x,s))ds

+ C∥b∥BMO

∫ ∞

t

sα−n−1 ln
s

t
∥ω−1∥Lp′ (B(x,s))∥f∥Lp,ω(B(x,s))ds

≤ C∥b∥BMO

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω(B(x,s))
ds

s
. (12)

To estimate J2:

J2 =C|b(z)− bB(x,t)|
∫ ∞

2t

sα−n−1

(∫
{y∈Rn:2t≤|x−y|≤s}

|f(y)| dy

)
ds

≤ C|B(x, t)|−1

∫
B(x,t)

|b(z)− b(y)| dy
∫ ∞

t

sα−n∥ω−1∥Lp′ (B(x,s))∥f∥Lp,ω(B(x,s))
ds

s
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≤ CMbχB(x,t)(z)

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω(B(x,s))
ds

s
, (13)

where C does not depend on x, t. Then by Theorem 3.8 and (12), (13) we have

∥|b, Iα|f2∥Lq,ω2
(B(x,t)) ≤ ∥J1∥Lq,ω2

(B(x,t)) + ∥J2∥Lq,ω2
(B(x,t))

≤C∥b∥BMO∥χB(x,t)∥Lq,ω2

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1 (B(x,s))
ds

s

+ C∥MbχB(x,t)∥Lq,ω2

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1
(B(x,s))

ds

s

≤C∥b∥BMO∥ω2∥Lq(B(x,t))

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1
(B(x,s))

ds

s

+ C∥b∥BMO∥ω2∥Lq(B(x,t))

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1 (B(x,s))
ds

s

≤C∥b∥BMO∥ω2∥Lq(B(x,t))

∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1 (B(x,s))
ds

s
.

Hence

∥|b, Iα|f2∥Lq,ω2 (B(x,t)) ≤

C∥b∥BMO∥ω2∥Lq(B(x,t)) ×
∫ ∞

t

(
1 + ln

s

t

)
∥ω2∥−1

Lq(B(x,s))∥f∥Lp,ω1
(B(x,s))

ds

s
,

which together with (11) yields (10). □

In the following two theorems we prove the boundedness of commutators of the
Riesz potential operator |b, Iα| from the generalized weighted Morrey spacesMp,φ1

ω1
(Rn)

to the generalized weighted Morrey spaces Mq,φ2
ω2

(Rn). We find conditions on the
functions φ1(x, r) and φ2(x, r) for the boundedness of |b, Iα| from Mp,φ1

ω1
(Rn) to

Mq,φ2
ω2

(Rn).

Theorem 3.12. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n , b ∈ BMO(Rn), (ω1, ω2) ∈

Ap,q(Rn), ω1 ∈ Ap(Rn), ω2 ∈ Aq(Rn) and the functions φ1(x, r) and φ2(x, r) fulfill
the condition∫ ∞

t

(
1 + ln

s

t

) ess inf
s<t<ı

φ1(x, r)∥ω1∥Lp(B(x,r))

∥ω2∥Lq(B(x,s))

ds

s
≤ Cφ2(x, t). (14)

Then the operator |b, Iα| is bounded from Mp,φ1
ω1

(Rn) to Mq,φ2
ω2

(Rn).

Proof. Let f ∈ Mp,φ1
ω1

(Rn). From the definition of norm of generalized weighted
Morrey spaces we write

∥|b, Iα|f∥Mq,φ2
ω2

(Rn) = sup
x∈Rn, r>0

1

φ2(x, t)∥ω2∥Lq(B(x,t))
∥|b, Iα|fχB(x,r)∥Lq,ω2

(Rn). (15)

We estimate ∥|b, Iα|fχB(x,r)∥Lq,ω2
(Rn) in (15) by means of Theorems 3.11, 2.11 and

obtain

∥|b, Iα|f∥Mq,φ2
ω2

(Rn)
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≤ C ∥b∥BMO sup
x∈Rn, t>0

∥ω2∥Lq(B(x,t))

φ2(x, t)∥ω2∥Lq(B(x,t))

∫ ∞

t

(
1 + ln

s

t

) ∥f∥Lp,ω(B(x,s))

∥ω2∥Lp′ (B(x,s))

ds

s

≤ C ∥b∥BMO sup
x∈Rn, t>0

1

φ1(x, t)∥ω1∥Lp(B(x,t))
∥f∥Lp,ω1 (B(x,t)) = C ∥b∥BMO ∥f∥Mp,φ1

ω1
(Rn).

It remains to make use of condition (14). □

4. Some applications

In this section we give some applications of our main results. We apply the theorems
of Section 3 to the operators which are estimated from above by Riesz potentials.
Now we give some examples.

Let 0 < α < n. The fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∫ ∞

0

e−tLf(x)
dt

t−α/2+1
,

where L is a linear operator on L2 which generates an analytic semigroup e−tL with
the kernel pt(x, y) satisfying the Gaussian upper bound, that is,

|pt(x, y)| ≤
c1
tn/2

e−c2
|x−y|2

t (16)

for x, y ∈ Rn and all t > 0, c1, c2 > 0 are independent of x, y and t.

If L = −△ is the Laplacian on Rn, then L−α/2 is the Riesz potential Iα (see [27]).

The following theorem states the boundedness of the operator L−α/2 from the
spaces Mp,φ1

ω1
(Rn) to the spaces Mq,φ2

ω2
(Rn).

Theorem 4.1. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n , (ω1, ω2) ∈ Ap,q(Rn). Let

also (φ1, φ2) satisfy the condition (6). Then the operator L−α/2 is bounded from
Mp,φ1

ω1
(Rn) to Mq,φ2

ω2
(Rn).

Proof. From the condition (16), it follows that |L−α/2f(x)| ≤ CIα|f |(x) for all x ∈ Rn

(see [7]).

Since the semigroup e−tL has the kernel pt(x, y), from the above mentioned the-
orems we have ∥L−α/2f∥Mq,φ2

ω2
≤ C∥Iα|f |∥Mq,φ2

ω2
≤ C∥f∥Mp,φ1

ω1
, where the constant

C > 0 is independent of f . □

Various classes of differential operators also satisfy the inequality (16). Two of
these operators are considered here:

(i) First we consider the magnetic potential a⃗, i.e., a real-valued vector potential a⃗ =
(a1, a2, . . . , an), and an electric potential V . Let us assume that for any k = 1, 2, . . . , n,
ak ∈ Lloc

2 and 0 ≤ V ∈ Lloc
1 . The operator L, which is given by L = −(∇− i⃗a)2+V (x)

is called the magnetic Schrödinger operator.

From the well-known diamagnetic inequality (see [26]) we have the following point-
wise estimate. For any t > 0 and f ∈ L2, the following inequality |e−tLf | ≤ e−t△|f |
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holds, which illustrates that the semigroup e−tL has the kernel pt(x, y) that satisfies
upper bound (16).

Furthermore, note that under the appropriate assumptions (see [2,19,27]) we can
obtain similar results with Theorem 4.1 for a homogeneous elliptic operator L in L2

of order 2m in the divergence form Lf = (−1)m
∑

|α|=|β|=m

Dα
(
aαβD

βf
)
. In this case

estimate (16) should be replaced by |pt(x, y)| ≤ c3
tn/2m e

−c4
(

|x−y|
t1/(2m)

)2m/(2m−1)

for all
t > 0 and all x, y ∈ Rn.

(ii) Now let A = (aij(x))1≤i,j≤n be an n × n matrix with complex-valued entries

aij ∈ L∞ satisfying Re
n∑

i,j=1

aij(x)ζiζj ≥ λ|ζ|2, for all x ∈ Rn, ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn

and some λ > 0. Consider the divergence form operator Lf ≡ −div(A∇f), which is
interpreted in the usual weak sense via the appropriate sesquilinear form.

It is well known that the Gaussian bound (16) for the kernel of e−tL holds when
A has real-valued entries (see, for example, [1]), or when n = 1, 2 in the case of
complex-valued entries (see [2, Chapter 1]). Therefore we can obtain similar results
with Theorem 4.1.
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