Refining numerical radius inequalities of Hilbert space operators


M. A. S. Khorasani, Z. Heydarbeygi




Several upper estimates for the numerical radius of Hilbert space operators are given. Among many other inequalities, it is shown that \begin{align*}{{mega }^{2}}eft( A \right)e \frac{1}{4}eft\| {{eft| A \right|}^{2}}+{{eft| {{A}^{*}} \right|}^{2}} \right\| +\frac{1}{2}mega eft( {{A}^{2}} \right)-\frac{1}{2}\underset{eft\| x \right\|=1} {\mathop{\underset{xı \mathscr H}{\mathop{ıf }}\,}}\,{{eft( qrt{eftangle {{eft| A \right|}^{2}}x,x \right\rangle } -qrt{eftangle {{eft| {{A}^{*}} \right|}^{2}}x,x \right\rangle } \right)}^{2}}.\end{align*}