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FIRST AND SECOND ORDER NONCONVEX SWEEPING PROCESS
WITH PERTURBATION
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Abstract. We prove two existence results for functional differential inclusions governed
by sweeping process. We consider the class of subsmooth moving sets. The perturbations
depend on all the variables and their values are nonconvex.

1. Introduction

Let H be a separable Hilbert space whose inner product is denoted by ⟨·, ·⟩ and
the associated norm by ∥ · ∥. Let I be a closed bounded interval in R. We denote
by C(I,H) the Banach space of continuous functions from I to H equipped with
the norm ∥x(·)∥∞ := sup

{
∥x(t)∥; t ∈ I

}
. For a positive number a, we put Ca :=

C([−a, 0], H) and for any t ∈ [0, τ ], we define the operator T (t) from C([−a, τ ], H) to
Ca by T (t)(x(·))(s) := T (t)x(s) := x(t+ s), for all s ∈ [−a, 0]. For φ ∈ Ca and r > 0,
let Ba(φ, r) :=

{
ψ ∈ H; ∥ψ − φ∥ < r

}
be the open ball centered at φ with radius r

and Ba(φ, r) be its closure. For φ ∈ Ca, we denote φ̄ the function defined by

φ̄(t) =

∫ t

−a
φ(s)ds, ∀t ∈ [−a, 0].

In this paper, we present some existence results for the following functional differ-
ential inclusions governed by nonconvex sweeping process of first and second order:

ẋ(t) ∈ −NC(t,x(t))(x(t)) +G(t, T (t)x), a.e. on [0, τ ],

x(t) = φ(t), ∀t ∈ [−a, 0],
x(t) ∈ C(t, x(t)), ∀t ∈ [0, τ ],

(1)
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and 
ẍ(t) ∈ −NC(t,x(t),ẋ(t))(ẋ(t)) + F (t, T (t)x, T (t)ẋ), a.e. on [0, τ ],

ẋ(t) = φ(t), ∀t ∈ [−a, 0],
ẋ(t) ∈ C(t, x(t), ẋ(t)), a.e. on [0, τ ],

x(t) = φ̄(t), ∀t ∈ [−a, 0],

(2)

where a, τ > 0, C, F and G are three multifunctions, φ and φ̄ are two functions
and NC(t,x(t))(x(t)) (resp. NC(t,x(t),ẋ(t))(ẋ(t))) denotes the Clarke normal cone to
C(t, x(t)) (resp. C(t, x(t), ẋ(t))) at x(t) (resp. ẋ(t)).

The evolution problems (1) and (2) are generally called the sweeping process which
is related to the modelization of elasto-plastic materials (see for example [14, 15]). It
has been introduced and studied by Moreau [13], in the setting where all sets C(t) are
assumed to be convex. Several authors have studied this problem in the case where
the values of C are convex, see for example [4].

The previous results have been generalized in different papers which have treated
the general case where the values of C are uniformly ρ-prox-regular, see [2, 5, 12]
and the references therein. Haddad, Noel and Thibault [11] have considered the
problem (1), without delay, when the values of G are convex and the sets C(t, x)
are ball-compact and subsmooth. Noel [17] has studied the problem 2 under the
last hypotheses of the last paper. It is necessary here to notice that the class of
subsmooth sets strictly contains the class of closed convex sets and the class of prox-
regular sets. Recently, Aissous, Nacry and Nguyen [1] have studied the following
differential inclusion:

ẋ(t) ∈ −NC(t,x(t))×Q(x(t)) + F (t, x(t))× {f(t, x1(t))}, a.e. on [T0, T ],

x(t) ∈ C(t, x(t))×Q, on [T0, T ],

x(T0) = (u0, q0),

where x = (x1, x2) : [T0, T ] → H2, the values of F are convex, f is a single-valued
map, Q is a convex set of H and the sets C(t, x1, x2) are subsmooth. The authors
have used the existence of solution for the last problem, to prove the existence of
solution for first and second order sweeping process.

Our main purpose in this work, is to prove the existence results for (1) and (2)
when the values of G and F are nonconvex and the sets C(t, x) and C(t, x, y) are
ball-compact and subsmooth.

The paper is organized as follows. In Section 2, we recall some important notions
and introduce notations that will be used throughout the paper. The next section is
devoted to Problem (1). In Section 4, we treat the existence of solutions for (2).

2. Preliminaries

Throughout the paper, B is the open unit ball of H and B(x, r) (resp. B(x, r)) is the
open (resp. closed) ball with center x ∈ H and radius r > 0. Let S be a nonempty
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subset of H. For an element x ∈ H, d(x, S) or dS(x) := inf{∥y − x∥ | y ∈ S}
is the distance of x from the set S. The support function of S is defined, for any
v ∈ H, by σ(v, S) := sups∈S⟨v, s⟩ and the projection set of x into S is the set
ProjS(x) :=

{
y ∈ S | dS(x) = ∥x − y∥

}
. Recall that a subset S of (H, ∥ · ∥) is ball-

compact provided that S ∩ rB is compact in (H, ∥ · ∥) for every real r > 0. Note here
that ProjS(x) is nonempty when S is nonempty and ball-compact.

Now, we shortly review the definitions of the various notions used in this paper
(see [8, 9] as general references). Let V : H → R be a Lipschitz function around x.
The upper generalized Clarke directional derivative V o(x, ·) is

V o(x, v) := lim sup
h→0+y→x

V (y + hv)− V (y)

h
.

The Clarke subdifferential of V at x is defined by

∂V (x) :=
{
y ∈ H : ⟨y, v⟩ ≤ V o(x, v), for all v ∈ H

}
.

Note that ∂V (x) is convex and closed. A vector h ∈ H belongs to the Clarke tangent
cone T (S, x) when for every sequence (xn)n in S converging to x and every sequence
of positive numbers (tn)n converging to 0, there exists some sequence (hn)n in H
converging to h such that (xn + tnhn) ∈ S for all n ∈ N. This cone is closed and
convex, and its negative polar N(S, x) is the Clarke normal cone to S at x ∈ S, that
is, N(S, x) =

{
v ∈ H : ⟨v, h⟩ ≤ 0, ∀h ∈ T (S;x)

}
.

Next, we introduce a new class of sets via the concept of subsmoothness of the
Hilbert space H (see [3]). Let S be a closed subset of H. We say that S is subsmooth
at x0 ∈ S, if for every ε > 0 there exists δ > 0 such that

⟨ξ1 − ξ2, x1 − x2⟩ ≥ −ε∥x1 − x2∥, (3)

whenever x1, x2 ∈ B(x0, δ) ∩ S and ξi ∈ N(S, xi) ∩ B, i ∈ {1, 2}. The set S is
subsmooth, if it is subsmooth at each point of S. We further say that S is uniformly
subsmooth, if for every ε > 0, there exists δ > 0, such that (3) holds for all x1, x2 ∈ S
satisfying ∥x1 − x2∥ < δ and all ξi ∈ N(S, xi) ∩ B, i ∈ {1, 2}. It is clear that an
uniformly subsmooth set is subsmooth.

Definition 2.1. Let
(
S(q)

)
q∈Q be a family of closed sets of H with parameter q ∈ Q.

This family is called equi-uniformly subsmooth, if for every ϵ > 0, there exists δ > 0
such that for each q ∈ Q, the inequality (3) holds for all x1, x2 ∈ S(q) satisfying
∥x1 − x2∥ < δ and all ξi ∈ N(S(q), xi) ∩B, i ∈ {1, 2}.

The following propositions summarize some important consequences of equi-uniformly
subsmooth family needed in the sequel (see [11]).

Proposition 2.2. Let {C(t, x) : (t, x) ∈ [0, τ ] ×H} be a family of nonempty closed
sets of H which is equi-uniformly subsmooth and let η ≥ 0. Assume that there exist
L,L′ ≥ 0 and a continuous function v : [0, τ ] → R such that for any x, x′, y, y′ ∈ H
and s, t ∈ [0, τ ]: |d(y, C(t, x))−d(y′, C(s, x′))| ≤ |v(t)−v(s)|+L′∥y−y′∥+L∥x−x′∥.
Then the following assertions hold:

(a) for all (t, x) ∈ [0, τ ]×H and y ∈ C(t, x), we have η∂dC(t,x)(y) ⊂ ηB,
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(b) for each sequence (tn)n in [0, τ ] converging to t, any sequence (xn)n converging to
x, any sequence (yn)n converging to y ∈ C(t, x) with yn ∈ C(tn, xn), and any ξ ∈ H,
we have lim

n→+∞
sup σ(ξ, η∂dC(tn,xn)(yn)) ≤ σ

(
ξ, η∂dC(t,x)(y)

)
.

The following results will be needed. For the proof see [3, 6, 16].

Proposition 2.3. Let S be a nonempty subset of H and x ∈ H. If y ∈ ProjS(x),
then x− y ∈ NS(y).

Proposition 2.4. Let S be a closed subset of H and v0 ∈ S. If S is subsmooth at
v0, then ∂dS(v0) = NS(v0) ∩B.

Next, for nonempty subsets A,B of H, we denote e(A,B) := sup
{
dB(x);x ∈ A

}
and H(A,B) = max

{
e(A,B), e(B,A)

}
. A multifunction is said to be measurable if

its graph is measurable. For more details on measurability theory, we refer the reader
to [7]. Let us recall the following lemmas that will be used in the sequel.

Lemma 2.5 ([18]). Let Ω be a nonempty set in H. Assume that F : [a, b]× Ω → 2H

is a multifunction with nonempty closed values satisfying:
(a) for every x ∈ Ω, F (·, x) is measurable on [a, b];

(b) for every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on Ω.
Then for any measurable function x(·) : [a, b] → Ω, the multifunction F (·, x(·)) is
measurable on [a, b].

Lemma 2.6 ([18]). Let G : [a, b] → 2H be a measurable multifunction and y(·) : [a, b] → H
a measurable function. Then for any positive measurable function r(·) : [a, b] →
R+, there exists a measurable selection g(·) of G such that for almost all t ∈ [a, b]
∥g(t)− y(t)∥ ≤ d

(
y(t), G(t)

)
+ r(t).

If D is a bounded subset of H, then the Kuratowski’s measure of noncompactness
of D is defined by β(D) = inf

{
d > 0 : D admits a finite number of sets with diameter

less than d
}
.

In the following lemma, we recall some useful properties for the measure of non-
compactness β.

Lemma 2.7 ([10]). Let X be an infinite dimensional real Banach space and D1, D2

be two bounded subsets of X. Then
(i) β(D1) = 0 ⇔ D1 is relatively compact, (ii) β(λD1) = |λ|β(D1); λ ∈ R,
(iii) D1 ⊆ D2 ⇒ β(D1) ≤ β(D2), (iv) β(D1 +D2) ≤ β(D1) + β(D2),

(v) if x0 ∈ X and r is a positive real number then β(B(x0, r)) = 2r.

3. First order perturbed nonconvex sweeping process with delay

In this section, we study the existence of solutions of (1). First, let us make the
following assumptions:
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(H1) C : [0, b] × H → 2H is a set-valued map with nonempty and closed values
satisfying:

(a) the family {C(t, x) : (t, x) ∈ [0, b]×H} is equi-uniformly subsmooth,

(b) for any I ×A ⊂ [0, b]×H, the set C(I ×A) is ball-compact in H,

(c) there exist an absolutely continuous function v : [0, b] → R and K ∈ R+ such that∣∣d(x,C(t, x′)) − d(y, C(s, y′))
∣∣ ≤ |v(t) − v(s)| +K∥x − y∥, for all x, y, x′, y′ ∈ H and

s, t ∈ [0, b];

(H2) G : [0, b]×Ca → 2H is a set-valued map with nonempty closed values satisfying

(i) for each ψ ∈ Ca, t 7→ G(t, ψ) is measurable,

(ii) there exists a function m(·) ∈ L1([0, b],R+) such that for all t ∈ [0, b] and for all
ψ1, ψ2 ∈ Ca: H

(
G(t, ψ1), G(t, ψ2)

)
≤ m(t)∥ψ1 − ψ2∥∞,

(iii) for all φ ∈ Ca, there exist r>0 and functions q(·), p(·) ∈ L1([0, b],R+) such that
for all t ∈ [0, b] and for all ψ ∈ Ba(φ, r): ∥G(t, ψ)∥:= sup

y∈G(t,ψ)

∥y∥ ≤ q(t)+p(t)∥ψ∥∞.

Now, we are able to state our first existence result for (1).

Theorem 3.1. If assumptions (H1) and (H2) are satisfied, then for all φ ∈ Ca such
that φ(0) ∈ C(0, φ(0)), there exist τ > 0 and a continuous function x(·) : [−a, τ ] → H,
that is absolutely continuous on [0, τ ] such that x(·) is a solution of (1).

Proof. Fix φ ∈ Ca such that φ(0) ∈ C(0, φ(0)). There exist r > 0 and q(·), p(·) ∈
L1([0, b],R+) such that ∥G(t, ψ)∥ ≤ q(t) + p(t)∥ψ∥∞, ∀(t, ψ) ∈ [0, b]×Ba(φ, r).

Let τ1 > 0 be such that∫ τ1

0

[
|v̇(t)|+ (K + 1)

(
q(t) + p(t)(∥φ∥∞ + r)

)]
dt <

r

2
.

For ε > 0 set

η1(ε) = sup

{
γ ∈]0, ε] :

∣∣∣∣ ∫ t2

t1

[
|v̇(s)|+ (K + 1)

(
q(s) + p(s)(∥φ∥∞ + r)

)]
ds

∣∣∣∣ < ε

if |t1 − t2| < γ

}
and η2(ε) = sup

{
γ ∈]0, ε] : ∥φ(t1)− φ(t2)∥ < ε if |t1 − t2| < γ

}
.

Put η(ε) = min{η1(ε), η2(ε)} and τ = min{ 1
2η(

r
2 ), τ1, b}. We will use the following

lemma to prove the main result of this section.

Lemma 3.2. If assumptions (H1) and (H2) are satisfied, then for all n ∈ N∗ and for
all measurable function y(·) : [0, τ ] → H, there exist a continuous mapping xn(·) :
[−a, τ ] → H, step functions θn(·), θn(·) : [0, τ ] → [0, τ ] and gn(·) ∈ L1([0, τ ], H) such
that

xn(·) = φ on [−a, 0], xn(θn(t)) ∈ C(θn(t), xn(θn(t))), ∀t ∈ [0, τ ],

xn(t) ∈ B(φ(0),
r

2
), T (θn(t))xn ∈ Ba(φ, r), ∀t ∈ [0, τ ],

gn(t) ∈ G(t, T (θn(t))xn), ∀t ∈ [0, τ ],
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∥gn(t)− y(t)∥ ≤ d
(
y(t), G(t, T (θn(t))xn)

)
+

1

n
, for almost all t ∈ [0, τ ],

ẋn(t)− gn(t) ∈ −NC(θn(t),xn(θn(t)))

(
xn(θ̄n(t))

)
, a.e. on [0, τ ].

Proof. Fix n ∈ N∗ and let y(·) : [0, τ ] → H be a measurable function. Consider
a sequence (Pn)n of subdivisions of [0, τ ] : Pn =

{
tn0=0<tn1< . . .<t

n
i < . . .<t

n
2n=τ

}
,

where tni = i τ2n , 0 < i < 2n. Let us define a sequence (xn)n of approximate solutions
as follows. Set xn(s) = φ(s) for all s ∈ [−a, 0]. Put xn0 = φ(0) ∈ C(tn0 , x

n
0 ). The

set-valued map t 7→ G(t, T (tn0 )xn) is measurable, then, in view of Lemma 2.6, there
exists a function gn0 ∈ L1([0, tn1 ], H) such that gn0 (t) ∈ G(t, T (tn0 )xn), for all t ∈ [0, tn1 ],
and ∥gn0 (t) − y(t)∥ ≤ d

(
y(t), G(t, T (tn0 )xn)

)
+ 1

n , for almost all t ∈ [0, tn1 ]. The ball-

compactness of C(tn1 , x
n
0 ) ensures that ProjC(tn1 ,x

n
0 )

(
xn0 +

∫ tn1
tn0
gn0 (s)ds

)
̸= ∅. Then,

we can choose a point xn1 ∈ ProjC(tn1 ,x
n
0 )

(
xn0 +

∫ tn1
tn0
gn0 (s)ds

)
. Hence, we have xn1 ∈

C(tn1 , x
n
0 ) and by (H1) we deduce∥∥∥∥xn1 −

(
xn0 +

∫ tn1

tn0

gn0 (s)ds

)∥∥∥∥ = dC(tn1 ,x
n
0 )

(
xn0 +

∫ tn1

tn0

gn0 (s)ds

)
≤

∫ tn1

tn0

[
|v̇(s)|+K

(
q(s) + p(s)(r + ∥φ∥∞)

)]
ds.

Now, set xn(t)=x
n
0+

α(t)−α(tn0 )
α(tn1 )−α(tn0 )

(
xn1−xn0−

∫ tn1
tn0
gn0 (s)ds

)
+
∫ t
tn0
gn0 (s) ds, for all t∈[tn0 , tn1 ],

where α(t) =
∫ t
0

[
|v̇(s)|+K

(
q(s)+p(s)(r+∥φ∥∞)

)]
ds, ∀t ∈ [0, τ ]. So for all t ∈ [tn0 , t

n
1 ]

∥xn(t)− φ(0)∥ ≤ α(t)− α(tn0 ) +

∫ t

tn0

(q(s) + p(s)∥φ∥∞)ds

≤
∫ t

tn0

[
|v̇(s)|+ (K + 1)

(
q(s) + p(s)(r + ∥φ∥∞)

)]
ds

which is equivalent to xn(t) ∈ B(φ(0), r2 ) for all t ∈ [tn0 , t
n
1 ]. Now, we have to estimate

∥(T (tn1 )xn)(s) − φ(s)∥ for each s ∈ [−a, 0]. If −tn1 ≤ s ≤ 0, then (tn1 + s) ∈ [0, tn1 ].
Thus, by the fact that |s| ≤ tn1 ≤ τ < η( r2 ), we have

∥(T (tn1 )xn)(s)−φ(s)∥ = ∥xn(tn1+s)−φ(s)∥ ≤ ∥xn(tn1+s)−φ(0)∥+∥φ(s)−φ(0)∥ ≤ r.

Therefore, T (tn1 )xn ∈ Ba(φ, r). Next, we reiterate this process for constructing the
sequences (gni (·))i and (xni )i and the function xn(·) satisfying, for all 0 ≤ i ≤ 2n − 1
and for all t ∈ [tni , t

n
i+1], the following assertions:

gni (t) ∈ G(t, T (tni )xn), (4)

xn0 ∈ C(tn0 , x
n
0 ), x

n
i+1 ∈ C(tni+1, x

n
i ),

∥xn(t)− φ(0)∥ ≤
∫ t

tn0

[
|v̇(s)|+ (K + 1)

(
q(s) + p(s)(r + ∥φ∥∞)

)]
ds,

xn(t) ∈ B(φ(0),
r

2
), T (tni )xn ∈ Ba(φ, r),

∥gni (t)− y(t)∥ ≤ d(y(t), G(t, T (tni )xn)) +
1

n
, a.e. (5)
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xni+1 ∈ ProjC(tni+1,x
n
i )

(
xni +

∫ tni+1

tni

gni (s)ds

)
, (6)

∥∥∥∥xni+1 −
(
xni +

∫ tni+1

tni

gni (s)ds

)∥∥∥∥ ≤
∫ tni+1

tni

[
|v̇(s)|+K

(
q(s) + p(s)(r + ∥φ∥∞)

)]
ds,

xn(t) = xni +
α(t)− α(tni )

α(tni+1)− α(tni )

(
xni+1 − xni −

∫ tni+1

tni

gni (s)ds

)
+

∫ t

tni

gni (s)ds.

Now, we define the functions θn(·), θ̄n(·) : [0, τ ] → [0, τ ] and gn(·) ∈ L1([0, τ ], H) by
setting for all t ∈ [tni , t

n
i+1[: θ̄n(t) = tni+1, θn(t) = tni and gn(t) = gni (t), and θ̄(τ) = τ ,

θn(τ) = tn2n−1 and gn(τ) = gn2n−1(τ). We claim that xn(·) is absolutely continuous.
Indeed, for all 0 ≤ i ≤ 2n − 1 and for all t and s in [tni , t

n
i+1], s < t, one has

xn(t)− xn(s) =
α(t)− α(s)

α(tni+1)− α(tni )

(
xni+1 − xni −

∫ tni+1

tni

gni (τ)dτ

)
+

∫ t

s

gni (τ)dτ.

Then, by (4) and (6), we get

∥xn(t)− xn(s)∥ ≤ α(t)− α(s)

α(tni+1)− α(tni )

∥∥∥∥xni+1 − xni −
∫ tni+1

tni

gni (τ)dτ

∥∥∥∥+

∫ t

s

∥gni (τ)∥ dτ

≤
∫ t

s

[
|v̇(τ)|+ (K + 1)

(
q(τ) + p(τ)(∥φ∥∞ + r)

)]
dτ. (7)

By addition this last inequality holds for all s, t ∈ [0, τ ] with s < t. Hence xn(·) is
absolutely continuous. Remark that for all 0 ≤ i ≤ 2n − 1 and for almost every t in
[tni , t

n
i+1],

ẋn(t) =
α̇(t)

α(tni+1)− α(tni )

(
xni+1 − xni −

∫ tni+1

tni

gni (s)ds

)
+ gn(t).

Then, we obtain for almost every t ∈ [0, τ ]

∥ẋn(t)− gn(t)∥ ≤ |v̇(t)|+K
(
q(t) + p(t)(∥φ∥∞ + r)

)
.

Observe that by construction, we have gn(t) ∈ G
(
t, T (θn(t))xn

)
and

∥gn(t)− y(t)∥ ≤ d
(
y(t), G(t, T (θn(t))xn)

)
+

1

n
.

Also, by construction and the relation (6), we have for almost every t ∈ [0, τ ]

ẋn(t)− gn(t) ∈ −NC(θn(t),xn(θn(t)))
(x(θ̄n(t))). □

Now, we are ready to prove Theorem 3.1. The proof will be given in several steps.
First, by Lemma 3.2, we can define inductively sequences (gn(·))n≥1, (xn(·))n≥1 ⊂
C([−a, τ ], H) and (θn(·))n≥1, (θ̄n(·))n≥1 ⊂ S([0, τ ], [0, τ ]), where S([0, τ ], [0, τ ]) de-
notes the space of step functions from [0, τ ] into [0, τ ], such that

xn(·) = φ on [−a, 0], xn(θn(t)) ∈ C(θn(t), xn(θn(t))), ∀t ∈ [0, τ ],

xn(t) ∈ B(φ(0),
r

2
), T (θn(t))xn ∈ Ba(φ, r), ∀t ∈ [0, τ ],

gn(t) ∈ G(t, T (θn(t))xn), ∀t ∈ [0, τ ],



148 Nonconvex sweeping process

∥gn+1(t)− gn(t)∥ ≤ d
(
gn(t), G(t, T (θn+1(t))xn+1)

)
+

1

n+ 1
, a.e. on [0, τ ],

ẋn(t)− gn(t) ∈ −NC(θn(t),xn(θn(t)))

(
xn(θ̄n(t))

)
, a.e. on [0, τ ].

Step 1. Convergence of xn(·) to some absolutely continuous mapping x(·). Fix any
t ∈ [0, τ ]. We have xn(θn(t)) ∈ C

(
θn(t), xn(θn(t))

)
, ∥xn(θn(t))∥ < ∥φ(0)∥ + 2r = λ

and ∥xn(θn(t))∥ < λ, which implies that xn(θn(t)) ∈ C
(
[0, τ ] × λB

)
∩ λB. Then

{xn(θn(t)) : n ≥ 1} is relatively compact in H, in view of (H1). Now, for all t ∈ [0, τ ],
β
{
xn(t) : n ≥ 1

}
= β

{
xn(t)− xn(θn(t)) + xn(θn(t)) : n ≥ 1

}
. From Lemma 2.7 (iv),

we get β
{
xn(t) : n ≥ 1

}
≤ β

{
xn(t) − xn(θn(t)) : n ≥ 1

}
+ β

{
xn(θn(t)) : n ≥ 1

}
.

Since the set {xn(θn(t)) : n ≥ 1} is relatively compact in H, by Lemma 2.7 (i),
β
{
xn(θn(t)) : n ≥ 1

}
= 0. Then β

{
xn(t) : n ≥ 1

}
≤ β

{
xn(t)− xn(θn(t)) : n ≥ 1

}
=

β
{ ∫ t

θn(t)
ẋn(s)ds : n ≥ 1

}
. By Lemma 2.7 (v), we obtain

β
{
xn(t) : n ≥ 1

}
≤β

{
B

(
0,

∫ θn(t)

t

(
|v̇(s)|+ (K + 1)(q(s) + p(s)(∥φ∥∞ + r))

)
ds

)}
=2

∫ θn(t)

t

(
|v̇(s)|+ (K + 1)(q(s) + p(s)(∥φ∥∞ + r))

)
ds.

Since the right term of the above inequality converges to 0 as n → ∞, β
{
xn(t) :

n ≥ 1
}

= 0. Hence
{
xn(t) : n ≥ 1

}
is relatively compact in H. Moreover, since

∥ẋn(t)∥ ≤ |v̇(t)|+(K+1)
(
q(t)+p(t)(∥φ∥∞+r)

)
for almost every t ∈ [0, τ ], by Arzelà-

Ascoli’s Theorem, we can select a subsequence, again denoted by (xn(·))n which
converges uniformly to an absolutely continuous function x(·) on [0, τ ]. Moreover
(ẋn(·))n converges weakly to ẋ(·) in L1([0, τ ], H). Also, since all functions xn(·) agree
with φ(·) on [−a, 0], we can obviously say that (xn(·))n converges uniformly to x(·)
on [−a, 0], if we extend x(·) in such a way that x(·) ≡ φ(·) on [−a, 0]. Additionally,
observe that (xn(θn(·)))n converges uniformly to x(·) on [0, τ ]. Indeed, by (7), we have

∥xn(θn(t))−x(t)∥ ≤∥xn(θn(t))−xn(t)∥+∥xn(t)−x(t)∥

≤
∫ θn(t)

t

(
|v̇(s)|+(K+1)

(
q(s)+p(s)

)
(r+∥φ∥∞)

)
ds+∥xn(t)−x(t)∥.

The right term of the above inequality converge to 0. It follows that (xn(θn(·)))n
converges uniformly to x(·) on [0, τ ]. Therefore, by (H1) (c), we conclude that x(t) ∈
C(t, x(t)) for all t ∈ [0, τ ].

Step 2. T (θn(t))xn converges to T (t)x in Ca. For all t ∈ [0, τ ], one has

∥T (θn(t))xn − T (t)x∥∞ = sup
−a≤s≤0

∥xn(θn(t) + s)− x(t+ s)∥

≤ sup
−a≤s≤0

∥xn(θn(t) + s)− x(θn(t) + s)∥+ sup
−a≤s≤0

∥x(θn(t) + s)− x(t+ s)∥

≤∥xn(·)− x(·)∥∞ + sup
−a≤s≤0

∥x(θn(t) + s)− x(t+ s)∥

Since the right term of the above relation converges to 0, T (θn(t))xn converges to
T (t)x in Ca.
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Step 3. x(·) is a solution of (1). Let t ∈ [0, τ ]. From (H2) and (5), we have

∥gn+1(t)− gn(t)∥ ≤ H
(
G(t, T (θn(t))xn), G(t, T (θn+1(t))xn+1)

)
+

1

n+ 1

≤ m(t)∥T (θn(t))xn − T (θn+1(t))xn+1∥∞ +
1

n+ 1
.

Since the right term of the above relation converges to 0, (gn(t))n≥1 is a Cauchy
sequence and (gn(t))n≥1 converges to g(t). Moreover, observe that

d
(
g(t), G(t, T (t)x)

)
≤∥g(t)− gn(t)∥+H

(
G(t, T (θn(t))xn), G(t, T (t)x)

)
≤∥g(t)− gn(t)∥+m(t)∥T (θn(t))xn − T (t)x∥∞

So g(t) ∈ G(t, T (t)x) for all t ∈ [0, τ ]. Now, the weak convergence of ẋn(·) to ẋ(·) in
L1([0, τ ], H) and the Mazur’s lemma entail ẋ(t)−g(t) ∈

⋂
n
c̄o
{
ẋm(t)−gm(t) : m ≥ n

}
,

for a.e. on [0, τ ].

Fix t ∈ [0, τ ] \ I and y ∈ H, where [0, τ ] \ I denote the set on which the above
relations hold and I is a subset of [0, τ ] with null Lebesgue-measure. We have
⟨y, ẋ(t)− g(t)⟩ ≤ infn supk≥n⟨y, ẋk(t)− gk(t)⟩. On the other hand, one has

(
ẋn(t)−

gn(t)
)
∈ −NC(θ̄n(t),xn(θn(t)))(xn(θ̄n(t)))

⋂
γ(t)B, where γ(t) = |v̇(t)|+(K+1)

(
q(t)+

p(t)(∥φ∥∞+r)
)
. Hence, we get

(
ẋn(t)−gn(t)

)
∈ −γ(t)∂dC(θ̄n(t)),xn(θn(t)))(xn(θ̄n(t))).

Then, we deduce

⟨y, ẋ(t)− g(t)⟩ ≤γ(t) lim sup
n→∞

σ
(
y,−∂dC(θ̄n(t)),xn(θn(t)))(xn(θ̄n(t)))

)
≤γ(t)σ

(
y,−∂dC(t,x(t))(x(t))

)
.

So, the convexity and the closedness of the set ∂dC(t,x(t))(x(t)) ensure
(
ẋ(t)−g(t)

)
∈

−γ(t)∂dC(t,x(t))(x(t))⊂−NC(t,x(t))(x(t)). Finally, ẋ(t)∈−NC(t,x(t))(x(t))+G(t, T (t)x)
for almost all t ∈ [0, τ ]. □

4. Second order sweeping process with nonconvex perturbation

In this section, we prove the existence result of solutions for (2). Assume that the
following hypothesis hold:
(H3) C : [0, b]×H ×H → 2H is a set-valued map with nonempty and closed values
satisfying:

(a) the family {C(t, x, y) : (t, x, y) ∈ [0, b]×H ×H} is equi-uniformly subsmooth,

(b) for any I ×A×A′ ⊂ [0, b]×H ×H, the set C(I ×A×A′) is ball-compact in H,

(c) there exist an absolutely continuous function v : [0, b] → R and K,K ′ ∈ R+ such
that

∣∣d(x,C(t, x′, x′′)) − d(y, C(s, y′, y′′))
∣∣ ≤ |v(t) − v(s)| +K∥x′ − y′∥ +K ′∥x − y∥,

for all x, y, x′, y′, x′′, y′′ ∈ H and s, t ∈ [0, b],

(H4) F : [0, b] × Ca × Ca → 2H is a set-valued map with nonempty closed values
satisfying

(i) For each ψ, ϕ ∈ Ca, t 7→ F (t, ψ, ϕ) is measurable,
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(ii) There exists a function m(·) ∈ L1([0, b],R+) such that for all t ∈ [0, b] and for all
ψ1, ψ2, ϕ1, ϕ2 ∈ Ca, H

(
F (t, ψ1, ϕ1), F (t, ψ2, ϕ2)

)
≤ m(t)(∥ϕ1 − ϕ2∥∞ + ∥ψ1 − ψ2∥∞),

(iii) For all φ ∈ Ca, there exist r1, r2 > 0 and three functions g(·), p(·), q(·) ∈
L1([0, b],R+) such that for all t ∈ [0, b] and for all (ψ, ϕ) ∈ Ba(φ̄, r1) × Ba(φ, r2),
∥F (t, ψ, ϕ)∥ ≤ g(t) + p(t)∥ψ∥∞ + q(t)∥ϕ∥∞.

We established the following result.

Theorem 4.1. If assumptions (H3) and (H4) are satisfied, then for all φ ∈ Ca such
that φ(0) ∈ C(0, φ̄(0), φ(0)), there exist τ > 0 and a continuously differentiable func-
tion x(·) : [−a, τ ] → H such that ẋ(·) is absolutely continuous on [0, τ ], and x(·) is a
solution of (2).

Proof. Fix φ ∈ Ca such that φ(0) ∈ C(0, φ̄(0), φ(0)). There exist r1, r2 > 0 and
g(·), p(·), q(·) ∈ L1([0, b],R+) such that for all (t, ψ, ϕ) ∈ [0, b]×Ba(φ̄, r1)×Ba(φ, r2)

∥F (t, ψ, ϕ)∥ ≤ g(t) + p(t)∥ψ∥∞ + q(t)∥ϕ∥∞.
Put r = min{ r12 ,

r2
2 }. For simplification, set δ(t) = g(t)+p(t)(∥φ̄∥∞+r)+q(t)(∥φ∥∞+

r), ∀t ∈ [0, b]. Let τ1 > 0 and τ2 > 0 such that∫ τ1

0

(
|v̇(s)|+Kρ(s) + (K ′ + 1)δ(s)

)
ds <

r

2
and

∫ τ2

0

ρ(s)ds <
r

2
,

where ρ(s) = r
2 + ∥φ(0)∥, for all s ∈ [0, b]. For ε > 0 set

η1(ε) = sup

{
γ ∈]0, ε] :

∣∣∣∣ ∫ t2

t1

(
|v̇(s)|+Kρ(s) + (K ′ + 2)δ(s)

)
ds

∣∣∣∣ < ε

and

∣∣∣∣ ∫ t2

t1

ρ(s)ds

∣∣∣∣ < ε if |t1 − t2| < γ

}
and η2(ε) = sup

{
γ ∈]0, ε] : ∥φ(t1)− φ(t2)∥ < ε

and ∥φ̄(t1)− φ̄(t2)∥ < ε if |t1 − t2| < γ
}
.

Put η(ε) = min{η1(ε), η2(ε)} and τ = min
{
τ1, τ2,

1
2η(

r
2 ), b

}
.

We will use the following lemma to prove the main result of this section.

Lemma 4.2. If assumptions (H3) and (H4) are satisfied, then for all n ∈ N∗ and
for all measurable function y(·) : [0, τ ] → H, there exist two continuous maps xn(·) :
[−a, τ ] → H, un(·) : [−a, τ ] → H, step functions θn(·), θ̄n(·) : [0, τ ] → [0, τ ] and
fn(·) ∈ L1([0, τ ], H) such that
(i) fn(t) ∈ F (t, T (θn(t))xn, T (θn(t))un), un(θ̄n(t)) ∈ C(θ̄n(t), xn(θ̄n(t)), un(θn(t))),
for all t ∈ [0, τ ];

(ii) ∥fn(t)−y(t)∥ ≤ d
(
y(t), F (t, T (θn(t))xn, T (θn(t))un)

)
+

1

n
for almost all t ∈ [0, τ ];

(iii)
(
u̇n(t)−fn(t)

)
∈ −NC(θ̄n(t),xn(θ̄n(t)),un(θn(t)))(un(θ̄n(t))) for almost all t ∈ [0, τ ];

(iv) ∥u̇n(t)− fn(t)∥ ≤ |v̇(t)|+Kρ(t) + (K ′ + 1)δ(t) for almost every t ∈ [0, τ ];

(v) xn(t) = φ̄(0) +
∫ t
0
un(θn(s))ds for every t ∈ [0, τ ];
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(vi) xn(t) ∈ B(φ̄(0), r2 ), un(t) ∈ B(φ(0), r2 ), T (θn(t))xn ∈ Ba(φ̄, r) and T (θn(t))un ∈
Ba(φ, r) for every t ∈ [0, τ ].

Proof. Fix n ∈ N∗ and let y(·) : [0, τ ] → H be a measurable function. Consider
a sequence (Pn)n of subdivisions of [0, τ ] : P=

{
0=tn0<t

n
1< . . .<t

n
i < . . .<t

n
2n=τ

}
,

where tni = i τ2n for 0 < i < 2n. Let us define the functions xn(·) and un(·)
as follows. Set xn(s) = φ̄(s) and un(s) = φ(s) for all s ∈ [−a, 0]. Put xn0 =
φ̄(0) and un0 = φ(0) ∈ C(tn0 , x

n
0 , u

n
0 ). By Lemma 2.5, the set-valued map t 7→

F
(
t, T (tn0 )xn, T (t

n
0 )un

)
is measurable. Hence, there exists fn0 (·) ∈ L1([tn0 , t

n
1 ], H)

such that fn0 (t) ∈ F (t, T (tn0 )xn, T (t
n
0 )un) for all t ∈ [tn0 , t

n
1 ] and ∥fn0 (t) − y(t)∥ ≤

d
(
y(t), F (t, T (tn0 )xn, T (t

n
0 )un)

)
+ 1

n , for almost all t ∈ [tn0 , t
n
1 ]. Set xn(t) = xn0 +

(t − tn0 )u
n
0 , ∀t ∈ [tn0 , t

n
1 ] and put xn(t

n
1 ) = xn1 . By the ball compactness of the set

C(tn1 , x
n
1 , u

n
0 ), there exists some point un1 ∈ ProjC(tn1 ,x

n
1 ,u

n
0 )

(
un0 +

∫ tn1
tn0
fn0 (s)ds

)
. Note

that un1 ∈ C(tn1 , x
n
1 , u

n
0 ) and∥∥∥∥un1 −

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)∥∥∥∥ = dC(tn1 ,x
n
1 ,u

n
0 )

(
un0 +

∫ tn1

tn0

fn0 (s)ds

)
≤
∫ tn1

tn0

(
|v̇(s)|+K ′(g(s) + p(s)∥φ̄∥∞ + q(s)∥φ∥∞) +K∥φ(0)∥

)
ds

≤
∫ tn1

tn0

(
|v̇(s)|+K ′(g(s) + p(s)∥φ̄∥∞ + q(s)∥φ∥∞) +Kρ(s)

)
ds.

Now, set un(t)=u
n
0+

α(t)−α(tn0 )
α(tn1 )−α(tn0 )

(
un1−un0−

∫ tn1

tn0

fn0 (s)ds

)
+

∫ t

tn0

fn0 (s)ds, ∀t∈[tn0 , tn1 ],

where α(t) =
∫ t
0
(|v̇(s)|+Kρ(s) +K ′δ(s))ds, ∀t ∈ [0, τ ]. So, for all t ∈ [tn0 , t

n
1 ],

∥un(t)−φ(0)∥ ≤ α(t)−α(t0)
α(tn1 )−α(tn0 )

∥∥∥∥un1−un0−∫ tn1

tn0

fn0 (s)ds

∥∥∥∥+∫ t

tn0

∥fn0 (s)∥ds

≤α(t)−α(tn0 )+
∫ t

tn0

δ(s)ds ≤
∫ t

tn0

(|v̇(s)|+Kρ(s)+(K ′+1)δ(s))ds ≤ r

2

and ∥xn(t)− φ̄(0)∥ ≤
∫ t
tn0
ρ(s)ds ≤ r

2 , which is equivalent to un(t) ∈ B(φ(0), r2 ) and

xn(t) ∈ B(φ̄(0), r2 ) for all t ∈ [tn0 , t
n
1 ]. Now, by the same arguments us in the last

section, we can prove that T (tn1 )xn ∈ Ba(φ̄, r) and T (t
n
1 )un ∈ Ba(φ, r).

We reiterate this process for constructing the sequences (fni (·))i, (xni )i and (uni )i
and the functions xn(·) and un(·) satisfying, for all 0 ≤ i ≤ 2n and for all t ∈ [tni , t

n
i+1],

the following assertions:

fni (t) ∈F (t, T (tni )xn, T (tni )un),
un0 ∈C(tn0 , xn(tn0 ), un(tn0 )), uni+1 ∈ C(tni+1, xn(t

n
i+1), un(t

n
i )),

∥xn(t)− φ̄(0)∥ ≤
∫ t

tn0

ρ(s)ds,
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xn(t) ∈B(φ̄(0),
r

2
), T (tni+1)xn ∈ Ba(φ̄, r),

∥un(t)− φ(0)∥ ≤
∫ t

tn0

(
|v̇(s)|+Kρ(s) + (K ′ + 1)δ(s)

)
ds,

un(t) ∈B(φ(0),
r

2
), T (tni+1)un ∈ Ba(φ, r),

∥fni (t)− y(t)∥ ≤d
(
y(t), F (t, T (tni )xn, T (t

n
i )un)

)
+

1

n
, a.e.

uni+1 ∈ ProjC(tni+1,xn(tni+1),un(tni ))

(
uni +

∫ tni+1

tni

fni (s)ds

)
, (8)

∥∥∥∥uni+1−
(
uni +

∫ tni+1

tni

fni (s)ds

)∥∥∥∥ ≤
∫ tni+1

tni

(|v̇(s)|+Kρ(s) +K ′δ(s))ds,

un(t) =u
n
i +

α(t)− α(tni )

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)
+

∫ t

tni

fni (s)ds,

xn(t) =x
n
i + (t− tni )u

n
i .

Now, we define the functions θn(·), θ̄n(·) : [0, τ ] → [0, τ ] and fn(·) ∈ L1([0, τ ], H) by
setting for all t ∈ [tni , t

n
i+1[

θ̄n(t) =t
n
i+1, θn(t) =t

n
i and fn(t) =f

n
i (t),

θ̄(τ) =τ, θn(τ) =t
n
2n−1 and fn(τ) =f

n
2n−1(τ).

Next, we can easily verify that xn(·) and un(·) are absolutely continuous. Now, remark
that for all 0 ≤ i ≤ 2n − 1 and for almost every t in [tni , t

n
i+1],

u̇n(t) =
α̇(t)

α(tni+1)− α(tni )

(
uni+1 − uni −

∫ tni+1

tni

fni (s)ds

)
+ fn(t).

Then, for almost every t ∈ [0, τ ], ∥u̇n(t)−fn(t)∥ ≤ |v̇(t)|+Kρ(t)+(K ′+1)δ(t). Also,
by construction and the relation (8), we have for almost every t ∈ [0, τ ],(

u̇n(t)− fn(t)
)
∈ −NC(θ̄n(t),xn(θ̄n(t)),un(θn(t)))(un(θ̄n(t))).

Then the proof is complete. □

Now, we will prove Theorem 4.1. In view of Lemma 4.2, we can define induc-
tively sequences (fn(·))n≥1, (xn(·))n≥1, (un(·))n≥1 ⊂ C([−a, τ ], H) and (θn(·))n≥1,
(θ̄n(·))n≥1 ⊂ S([0, τ ], [0, τ ]) satisfying the assertions (i)-(vi). By the same technics
of the last section, we can prove that, for every t ∈ [0, τ ], the set {un(t) : n ≥ 1}
is relatively compact in H. On the other hand, by (iv), we have, for almost all
t ∈ [0, τ ], ∥u̇n(t)∥ ≤ |v̇(t)| +Kρ(t) + (K ′ + 2)δ(t). By Arzelà-Ascoli’s Theorem, we
can select a subsequence, again denoted by (un(·))n which converges uniformly to an
absolutely continuous function u(·) on [0, τ ], moreover u̇n(·) converges weakly to u̇(·)
in L1([0, τ ], H). Also, since all functions un(·) agree with φ(·) on [−a, 0], we can say,
as above, that un(·) converges uniformly to u(·) on [−a, τ ]. In addition, since

∥un(θn(t))− u(t)∥ ≤∥un(θn(t))− un(t)∥+ ∥un(t)− u(t)∥
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≤
∫ t

θn(t)

(
|v̇(s)|+Kρ(s) + (K ′ + 2)δ(s)

)
ds+ ∥un(t)− u(t)∥

and the right term of the above inequality converges to 0 as n→ ∞, we can conclude
that (un(θn(·)))n converges uniformly to u(·) on [0, τ ]. By the same argument, we
can prove that (un(θn(·)))n converges uniformly to u(·) on [0, τ ]. Next, set x(t) =

φ̄(0) +
∫ t
0
u(s)ds for all t ∈ [0, τ ]. We have ∥xn(t)− x(t)∥ ≤

∫ τ
0
∥un(θn(s))− u(s)∥ds,

∀t ∈ [0, τ ]. Hence, the sequence (xn(·))n converges uniformly to a function x(·). Also,
since all functions xn(·) agree with φ̄(·) on [−a, 0], we can obviously say that xn(·)
converges uniformly to x(·) on [−a, τ ], if we extend x(·) in such a way that x(·) ≡ φ̄(·)
on [−a, 0]. Additionally, observe that for all t ∈ [0, τ ]

∥xn(θ̄n(t))−x(t)∥≤∥xn(θ̄n(t))−xn(t)∥+∥xn(t)−x(t)∥≤
∫ θ̄n(t)

t

ρ(s)ds+∥xn(t)−x(t)∥

Thus xn(θ̄n(·)) converges uniformly to x(·). By the same argument, we can prove
that xn(θn(·)) converges uniformly to x(·). Moreover, one has u(t) ∈ C(t, x(t), u(t)),
for all t ∈ [0, τ ]. On the other hand, since ẋn(t) = un(θn(t)), for almost all t ∈ [0, τ ],
the sequence (ẋn(·))n converges uniformly to u(·). So, from

xn(t) = φ̄(0) +

∫ t

0

ẋn(s)ds, ∀t ∈ [0, τ ],

we get x(t) = φ̄(0) +

∫ t

0

u(s)ds, ∀t ∈ [0, τ ].

So ẋ(t) = u(t) and ẍ(t) = u̇(t) for almost all t ∈ [0, τ ]. Now, if we apply the same
arguments of the last section, we can prove that T (θn(t))xn converges to T (t)x and
T (θn(t))un converges to T (t)u in Ca. In the next, we shall prove that x(·) is a solution
of (2). Let t ∈ [0, τ ]. From (i) and (ii) we deduce

∥fn+1(t)−fn(t)∥

≤H
(
F (t, T (θn(t))xn, T (θn(t))un), F (t, T (θn+1(t))xn+1, T (θn+1(t))un+1)

)
+

1

n+1

≤m(t)

(
∥T (θn(t))xn−T (θn+1(t))xn+1∥∞+∥T (θn(t))un−T (θn+1(t))un+1∥∞

)
+

1

n+1

The right term of the above relation converges to 0. Hence (fn(t))n≥1 is a Cauchy
sequence and fn(t) converges to f(t). Moreover, from the following inequality

d
(
f(t), F (t, T (t)x, T (t)u)

)
≤∥f(t)− fn(t)∥+H

(
F (t, T (θn(t))xn, T (θn(t))un), F (t, T (t)x, T (t)u)

)
≤∥f(t)− fn(t)∥+m(t)

(
∥T (θn(t))xn − T (t)x∥∞ + ∥T (θn(t))un − T (t)u∥∞

)
we get f(t) ∈ F (t, T (t)x, T (t)u) for all t ∈ [0, τ ]. Now, as in the previous section, we
can prove that u̇(t) ∈ −NC(t,x(t),u(t))(u(t))+F (t, T (t)x, T (t)u), a.e. on [0, τ ]. Finally,
we get ẍ(t) ∈ −NC(t,x(t),ẋ(t))(ẋ(t)) +F (t, T (t)x, T (t)ẋ), and ẋ(t) ∈ C(t, x(t), ẋ(t)) for
almost every t ∈ [0, τ ]. The proof is complete. □
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