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Abstract. This paper develops an Implicit-Explicit method (IMEX) of third order for
solving stiff system of ordinary differential equations (ODEs). The method is L-stable with
respect to the implicit part and allows the use of an arbitrary approximation of the Ja-
cobian matrix. Order and stability conditions are derived and then solved analytically.
Automatic stepsize selection based on local error estimation and stability control is made.
The estimations for local error and stability control are obtained without significant addi-
tional computational cost. The results of numerical experiments confirm the reliability and
efficiency of the implemented integration algorithm.

1. Introduction

For many systems of differential equations modeling problems in science and engi-
neering, the right hand side is naturally split into two parts: one part is non-stiff, and
the other one is stiff. Such systems can be efficiently integrated by a class of implicit-
explicit (IMEX) methods, where the stiff part is treated by an implicit method, and
the non-stiff part is treated by an explicit method. A class of IMEX methods is an
important special case of additive methods, where the number of elemental methods
N = 2.

Various general classes of methods can be used as a basis for constructing IMEX
methods. For example, singly diagonally implicit Runge-Kutta methods with an ex-
plicit first stage (ESDIRKs) and explicit Runge-Kutta methods were used in [1,12,13]
for the treatment of the stiff and non-stiff parts correspondingly. IMEX methods based
on linear multistep methods (LMMs) [10], diagonally implicit multistage integration
methods (DIMSIMs) [11, 19] and two-step Runge-Kutta methods (TSRKs) [20] were
constructed.
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In the current paper an IMEX method is constructed on the basis of Runge-Kutta
methods and the non-stiff part is treated by an explicit RK method, as in [1, 12, 13].
In contrast to IMEX RK methods [1, 12, 13], the stiff part is treated here by a so-
called (m,k)-method [15–17]. Class (m,k)-methods belongs to linearly implicit Runge-
Kutta methods which avoid nonlinear systems and replace them by a sequence of
linear systems. These (m,k)-methods are as simple in realization as Rosenbrock-type
methods but have better accuracy and stability properties [17].

The focus of this paper is on methods with low computational cost per step due to
appropriate choice of the class of methods for the treatment of the stiff part, using the
stages of the main scheme in auxiliary formulas for local error estimation and stability
control, suitable Jacobian approximation and re-using the same Jacobian over several
steps.

Spatial discretization of continuum mechanics problems in partial differential equa-
tions by finite difference or finite element methods results in the Cauchy problem for
the system of ordinary differential equations with an additively split right-hand side
function of the form

y′ = ϕ(t, y) + g(t, y), y(t0) = y0, t0 ≤ t ≤ tk,
where ϕ(t, y) is a non-symmetric term obtained from the discretization of the first-
order differential operator, g(t, y) is a symmetric term obtained from the discretization
of the second-order differential operator, t is an independent variable. It is assumed
that in the problem the vector-function g is a stiff term and ϕ is a non-stiff term.

Explicit Runge-Kutta methods have a bounded stability region and are suitable for
non-stiff and mildly stiff problems only. L-stable methods are usually used for solving
stiff problems. In the case of large-scale problems the overall computational cost of
L-stable methods is almost completely dominated by evaluations and inversions of the
Jacobian matrix of the right-hand side vector function. The overall computational
cost can be significantly reduced by re-using the same Jacobian matrix over several
integration steps (freezing the Jacobian).

Freezing the Jacobian in iterative methods affects the convergence speed of an
iterative process only and doesn’t lead to loss of accuracy. So, this approach is exten-
sively used in the implementation of these methods. For Rosenbrock type methods
and their modifications [2, 5, 9] an approximation of the Jacobian matrix can lead to
the reduction of the consistency order.

The system y′ = f(t, y) can be written in the form y′ = [f(t, y) − By] + By,
where B is some approximation of the Jacobian matrix. Assuming that stiffness is
fully concentrated in the term g(t, y) = By, the expression ϕ(t, y) = f(t, y)−By can
be interpreted as the non-stiff term [4]. If the Cauchy problem is considered in the
form y′ = [f(t, y)−By]+By in the construction of additive methods, then an arbitrary
approximation of the Jacobian matrix can be used without the reduction of the order
of these methods. Additive methods constructed in this way allow both analytical
and numerical computations of the Jacobian matrix. Note that the approximation of
the Jacobian by a diagonal matrix is suitable for some mildly stiff problems.

In this paper we construct a six-stage third order IMEX method that allows the
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use of different kinds of approximation of the Jacobian matrix. The estimations of
the local error and the maximum absolute eigenvalue of the Jacobian matrix have
been obtained without significant additional computational cost. Indeed, the error
estimation has been obtained on the basis of an embedded IMEX method and the
maximum absolute eigenvalue estimation has been obtained by a power method using
only two additional computations of ϕ(y). These estimations are used for local error
and stability control correspondingly. In contrast to [15,16], we impose an additional
condition of consistency of the explicit and implicit methods.

2. An IMEX scheme

Consider the Cauchy problem for an autonomous system of ordinary differential equa-
tions

y′ = ϕ(y) + g(y), y(t0) = y0, t0 ≤ t ≤ tk, (1)

where y, ϕ and g are N -dimensional smooth vector-functions, t is an independent
variable. In the following, we assume that g is a stiff term and ϕ is a non-stiff term.
Consider a six-stage numerical scheme for solving (1):

yn+1 = yn +

6∑
i=1

piki,

k1 = hϕ(yn), Dnk2 = hϕ(yn) + hg(yn), Dnk3 = k2,

Dnk4 = hϕ(yn +

3∑
j=1

β4jkj) + hg(yn +

3∑
j=1

α4jkj), (2)

Dnk5 = k4 + γk3, k6 = hϕ(yn +

5∑
j=1

β6jkj),

where Dn = I − ahg′n, g′n = ∂g(yn)/∂y is the Jacobian matrix of the function g(y),
I is the identity matrix, ki, 1 ≤ i ≤ 6, are stages, a, pi, α4j , β4j , β6j , γ are coefficients
that affect accuracy and stability properties of the scheme (2).

In the IMEX scheme (2) the stiff term g is treated by a (4, 2)-method [17] (the
implicit part), while the non-stiff term ϕ is treated by the three-stage explicit Runge-
Kutta method (the explicit part).

3. Derivation of the third order conditions

We expand the approximate solution in a Taylor series up to terms in h3

yn+1 = yn+
(
p1+p2+p3+p4+(γ+1)p5+p6

)
hϕ+

(
p2+p3+p4+(γ+1)p5

)
hg

+
(

(β41+β42+β43)(p4+p5)+
(
β61+β62+β63+β64+(γ+1)β65

)
p6

)
h2ϕ′ϕ
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+
(

(β42+β43)(p4+p5)+
(
β62+β63+β64+(γ+1)β65

)
p6

)
h2ϕ′g

+
[
a
(
p2+2p3+p4+(3γ+2)p5

)
+(α41+α42+α43)(p4+p5)

]
h2g′ϕ

+
[
a
(
p2+2p3+p4+(3γ+2)p5

)
+(α42+α43)(p4+p5)

]
h2g′g

+1/2
[
(β41+β42+β43)2(p4+p5)+

(
β61+β62+β63+β64+(γ+1)β65

)2
p6
]
h3ϕ′′ϕ2

+1/2
[
(β42+β43)2(p4+p5)+

(
β62+β63+β64+(γ+1)β65

)2
p6
]
h3ϕ′′g2

+
[
(β42+β43)(β41+β42+β43)(p4+p5)

+
(
β61+β62+β63+β64+(γ+1)β65

)(
β62+β63+β64+(γ+1)β65

)
p6
]
h3ϕ′′ϕg

+(β41+β42+β43)(β64+β65)p6h
3ϕ′

2
ϕ+(β42+β43)(β64+β65)p6h

3ϕ′
2
g

+
[
a
(

(β42+2β43)(p4+p5)+
(
β62+2β63+β64+(3γ+2)β65

)
p6

)
+(α41+α42+α43)(β64+β65)p6

]
h3ϕ′g′ϕ+

[
a
(

(β42+2β43)(p4+p5)

+
(
β62+2β63+β64+(3γ+2)β65

)
p6

)
+(α42+α43)(β64+β65)p6

]
h3ϕ′g′g

+1/2(α41+α42+α43)2(p4+p5)h3g′′ϕ2+1/2(α42+α43)2(p4+p5)h3g′′g2

+(α42+α43)(α41+α42+α43)(p4+p5)h3g′′ϕg+a(β41+β42+β43)(p4+2p5)h3g′ϕ′ϕ

+a(β42+β43)(p4+2p5)h3g′ϕ′g+a
[
a
(
p2+3p3+p4+(6γ+3)p5

)
+(α41+2α42+3α43)p4+(2α41+2α42+3α43)p5

]
h3g′

2
ϕ

+a
[
a
(
p2+3p3+p4+(6γ+3)p5

)
+(2α42+3α43)p4+(2α42+3α43)p5

]
h3g′

2
g+O(h4),

where the corresponding elementary differentials are evaluated at yn.

Expanding the exact solution in a Taylor series up to terms in h3, we obtain

y(tn+1) = y(tn)+h(ϕ+g)+
h2

2
(ϕ′ϕ+ϕ′g+g′ϕ+g′g)+

h3

6
(ϕ′′ϕ2+ϕ′′g2+2ϕ′′ϕg+ϕ′

2
ϕ

+ϕ′
2
g+ϕ′g′ϕ+ϕ′g′g+g′′ϕ2+g′′g2+2g′′ϕg+g′ϕ′ϕ+g′ϕ′g+g′

2
ϕ+g′

2
g)+O(h4), (3)

where the corresponding elementary differentials are evaluated at y(tn).

Comparing the successive terms in the Taylor series expansion of the approximate
and the exact solutions up to third order terms under the assumption yn = y(tn), we
have the third order conditions (Tables 1 and 2) of the scheme (2):

Table 1: Order conditions for explicit Runge-Kutta method and (4,2)-method

explicit Runge-Kutta method (4,2)-method
p1+p2+p3+p̃4+γp5+p6=1 p2+p3+p̃4+γp5=1
β4p̃4+(β6+γβ65)p6=1/2 a(p2+2p3+p̃4+(3γ+1)p5)+α̃4p̃4=1/2
β2
4 p̃4+(β6+γβ65)2p6=1/3 α̃2

4p̃4=1/3

β4β̃64p6=1/6 a
[
a
(
p2+3p3+p̃4+2(3γ+1)p5

)
+(2α̃4+α43)p̃4

]
=1/6
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Table 2: Coupling conditions for IMEX scheme

β̃4p̃4 + (β6 − β61 + γβ65)p6 = 1/2,
a(p2 + 2p3 + p̃4 + (3γ + 1)p5) + α4p̃4 = 1/2,

β̃2
4 p̃4 + (β6 − β61 + γβ65)2p6 = 1/3,

β4β̃4p̃4 + (β6 + γβ65)(β6 − β61 + γβ65)p6 = 1/3,

β̃4β̃64p6 = 1/6,

a
(

(β̃4 + β43)p̃4 +
(
β̃6 + β63 + (3γ + 1)β65

)
p6

)
+ α4β̃64p6 = 1/6,

a
(

(β̃4 + β43)p̃4 +
(
β̃6 + β63 + (3γ + 1)β65

)
p6

)
+ α̃4β̃64p6 = 1/6,

α2
4p̃4 = 1/3,
α4α̃4p̃4 = 1/3,
aβ4(p̃4 + p5) = 1/6,

aβ̃4(p̃4 + p5) = 1/6,
a
[
a
(
p2 + 3p3 + p̃4 + 2(3γ + 1)p5

)
+ (2α4 − α41 + α43)p̃4 + α41p5

]
= 1/6.

Here α4 =
∑3

j=1 α4j , β4 =
∑3

j=1 β4j , β6 =
∑5

j=1 β6j , p̃4 = p4 + p5, β̃64 =

β64 + β65, α̃4 = α4 − α41, β̃4 = β4 − β41, β̃6 = β6 − β61. After simplification the
third order conditions take the form:

α41 = β41 = β61 = 0, p1 = −p6,
p2 + p3 + p̃4 + γp5 = 1, β4p̃4 + (β6 + γβ65)p6 = 1/2,

a(p2 + 2p3 + p̃4 + (3γ + 1)p5) + α4p̃4 = 1/2,

β2
4 p̃4 + (β6 + γβ65)2p6 = 1/3, β4β̃64p6 = 1/6, (4)

a
[
(β4 + β43)p̃4 +

(
β6 + β63 + (3γ + 1)β65

)
p6
]

+ α4β̃64p6 = 1/6,

α2
4p̃4 = 1/3, aβ4(p̃4 + p5) = 1/6,

a
[
a
(
p2 + 3p3 + p̃4 + 2(3γ + 1)p5

)
+ (2α4 + α43)p̃4

]
= 1/6.

4. Linear stability analysis

Let us investigate the stability properties of the IMEX scheme (2) with respect to the
scalar linear test problem

y′ = λ1y + λ2y, y(0) = y0, t ≥ 0, <(λ1) ≤ 0, <(λ2) ≤ 0, |<(λ1)| � |<(λ2)|, (5)

where the free parameters λ1, λ2 can be interpreted as eigenvalues of the Jacobian
matrices of the functions ϕ (the non-stiff term) and g (the stiff term) correspondingly.

Applying the scheme (2) to the problem (5), we obtain yn+1 = R(x, z)yn, where
x = λ1h, z = λ2h and R(x, z) is a stability function (its analytical expression is
omitted here for brevity).

The necessary condition of L-stability of the IMEX scheme (2) with respect to



124 An implicit-explicit method of third order for stiff ODEs

the stiff term has the form lim
z→−∞

R(x, z) = 0. It is satisfied if the following two

conditions hold:

a2(p1 + p6) +
(
(α42 − a)β64 − aβ62

)
p6 = 0, a(a− p2) + (α42 − a)p4 = 0. (6)

5. An analytical solution of the order and stability conditions

Solving the system (4), (6), we assume that
∑3

j=1 α4j =
∑3

j=1 β4j ,
∑5

j=1 β6j = 1,
α42 = a, β42 = a. The first relation means the consistency of explicit and implicit
methods of IMEX scheme (2) [3, 4], i.e., in the fourth stage ϕ and g are evaluated at

the same point. The second relation ensures that in the sixth stage ϕ(yn+
∑5

j=1 β6jkj)
approximates ϕ(y(tn+1)), the other ones improve the stability properties of the inter-
mediate numerical formulas. Obvious simplifications of the system (4), (6) yields

α41 = β41 = β61 = β62 = 0, β6 = 1, α42 = β42 = p2 = a,

α43 = β43 = α4 − a, p1 = −p6, p3 + p̃4 + γp5 = 1− a,
α4p̃4 + (γβ65 + 1)p6 = 1/2, a2 + a(2p3 + p̃4 + (3γ + 1)p5) + α4p̃4 = 1/2,

α2
4p̃4 + (γβ65 + 1)2p6 = 1/3, α4β̃64p6 = 1/6, (7)

a
[
(2α4 − a)p̃4 +

(
β63 + (3γ + 1)β65 + 1

)
p6
]

+ α4β̃64p6 = 1/6,

α2
4p̃4 = 1/3, aα4(p̃4 + p5) = 1/6,

a
[
a2 + a

(
3p3 + p̃4 + 2(3γ + 1)p5

)
+ (3α4 − a)p̃4

]
= 1/6.

Now, the coefficients of the L -stable third order scheme (2) are given by

α41 = β41 = β61 = β62 = 0, α4 = 2/3,

α42 = β42 = p2 = a, α43 = β43 = 2/3− a,
γ = (4a2 − 2a− 1)/(1− 3a), u = (γ + 1)/(3(1− a)γ), (8)

p4 = (6a− 1)/(4a), p5 = 3/4− p4
p3 = 1/4− a− γp5, p6 = 1/(4u), p1 = −p6,
β65 = −1/γ, β63 = 1− u, β64 = u− β65,

where the coefficient a is determined from the equation 4a2 − 9a + 3 = 0. This
equation has two real roots a1 = (9 −

√
33)/8 and a2 = (9 +

√
33)/8. Numerical ex-

periments show that the method with a1 gives more accurate results. The coefficients,
corresponding to a = a1, are

α41 = β41 = β61 = β62 = 0, p4 = 0.885643223060915,

a = 0.406929669182746, p5 = −0.135643223060915,

γ = 5.21535165408627, α43 = β43 = 0.259736997483920,

p1 = −p6 = −0.373237570007449, β63 = 0.330185329427018, (9)

p2 = α42 = β42 = 0.406929669182746, β64 = 0.861556295361886,

p3 = 0.550497438573592, β65 = −0.191741624788904,
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6. Local error estimation

For the local error estimation we construct an embedded method of second order of
the form

yn+1, 2 = yn +

4∑
i=1

riki + r5k̃5 ,

k1 = hϕ(yn), Dnk2 = hϕ(yn) + hg(yn), Dnk3 = k2, (10)

Dnk4 = hϕ(yn +

3∑
j=1

β4jkj) + hg(yn +

3∑
j=1

α4jkj),

Dnk̃5 = k4,

where the coefficients ri, 1 ≤ i ≤ 5, should be determined, and parameters α4j , β4j are
given by (9). This form is chosen to avoid additional computational cost, associated
with evaluating of right-hand side, evaluating and inverting of the Jacobian matrix.
Note that there is no sixth stage in (10) and γk3 in the fifth stage, in contrast to (2).

We expand the approximate solution computed by the scheme (10) in a Taylor
series up to terms in h2

yn+1, 2 = yn + (r1 + r2 + r3 + r4 + r5)hϕ+ (r2 + r3 + r4 + r5)hg

+
(
a(r2 + 2r3 + r4 + 2r5) + r4 + r5

)
h2g′ϕ+

(
a(r2 + 2r3 + r4 + 2r5) + r4 + r5

)
h2g′g

+ β4(r4 + r5)h2ϕ′ϕ+ β4(r4 + r5)h2ϕ′g +O(h3),

where the elementary differentials are evaluated at yn. Comparing successive terms in
the Taylor series expansion of the approximate and the exact solutions up to second
order terms under the assumption yn = y(tn), we obtain the second order conditions
of the scheme (10):

r1 + r2 + r3 + r4 + r5 = 1, r2 + r3 + r4 + r5 = 1, (11)

β4(r4 + r5) = 1/2, a(r2 + 2r3 + r4 + 2r5) + r4 + r5 = 1/2,

Now we analyze the stability of the scheme (10). Its application to numerically
solving the equation (5) yields yn+1, 2 = R2(x, z) yn, 2, where x = λ1h, z = λ2h and
the stability function R2(x, z) has the form

R2(x, z) = [a3(a−r2)z4−a3(r2−r4)xz3−a
(
4a2−a(3r2+r3+2r4)+r4

)
z3

+ a3r4x
2z2+a

(
a(3r2+r3+r4−r5)−r4(β4+1)

)
xz2

+
(
6a2−a(3r2+2r3+3r4+2r5)+r4+r5

)
z2−a

(
a(r4+r5)+r4β4

)
x2z

+
(
−a(3r2+2r3+3r4+2r5)+(r4+r5)(β4+1)

)
xz

+ (−4a+r2+r3+r4+r5)z+β4(r4+r5)x2+(r2+r3+r4+r5)x+1]/(1−az)4.
From the necessary condition of L-stability of the auxiliary scheme (10) with respect
to the stiff term limz→−∞R2(x, z) = 0 we have r2 = a. Then, solving (11), we obtain
the coefficients of the L stable embedded method (10) of second order

r1 = 0, r2 = a, r3 = 1− a− v, r4 = 2− a+ (v − 1/2)/a, r5 = v − r4,
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where v = 1/(2β4). The coefficients, corresponding to (9), are

r1 = 0, r2 = 0.406929669182746, r3 = −0.156929669182746,

r4 = 2.20742710775634, r5 = −1.45742710775634.

The embedded method (10) requires, at each integration step, only one additional
backward substitution steps of Gauss elimination method and doesn’t require ad-
ditional evaluations of right-hand side, evaluations and inversions of the Jacobian
matrix. In the case of large-scale problems the overall computational cost of the
method (10) is almost completely dominated by evaluations and inversions of the Ja-
cobian matrix. So, we have obtained the local error estimation based on the embedded
method (10) without significant additional computational cost.

Let us denote the local error estimation by

errn = max
1≤i≤N

|yin − yin, 2|
Atoli +Rtoli|yin|

,

where Atoli and Rtoli are the desired tolerances prescribed by the user. If errn ≤ 1,
then the computed step is accepted, else the step is rejected and computations are
repeated. When Rtoli = 0, the absolute error is controlled on the i-th component of
the solution with the desired tolerance Atoli. If Atoli = 0 then the relative error is
controlled on the i-th component with the tolerance Rtoli.

7. Stability control and stepsize selection

In the IMEX scheme (2) the stiff term g is treated by the L-stable (4, 2)-method [17]
(the implicit part), while the non-stiff term ϕ is treated by the three-stage explicit
Runge-Kutta method (the explicit part). In the general case there is no guarantee
that the function ϕ(y) = f(y) − By is the non-stiff term in reducing y′ = f(y) to
y′ = [f(y)−By] +By. If some stiffness is in ϕ(y) = f(y)−By (i.e., stiffness leakage
phenomenon occurs) then the additional stability control of the explicit part of the
scheme (2) can increase efficiency of computations for many problems. In some cases
it does not have a significant effect on the efficiency of the integration algorithm
because of the good stability properties of the scheme (2). Therefore the choice of
using or not using the additional stability control of the explicit part is given to the
end-user.

We perform the stability control of the explicit part of the scheme (2) by analogy
with [15,16]. Let us consider the additional stages d1, d2 of the form

d1 = hϕ(yn + α21k1), d2 = hϕ(yn + α31k1 + α32d1).

Denote ϕ(y) = Ay+b, where A and b are matrix and vector with constant coefficients
correspondingly, then we have

k1 = h(Ayn + b), d1 = k1 + α21hAk1, d2 = k1 + (α31 + α32)hAk1 + α21α32h
2A2k1.

Assuming α21 = α31 + α32, we obtain

d2 − d1 = α21α32h
2A2k1, d1 − k1 = α21hAk1.
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The maximum absolute eigenvalue vn = h|λn max| of the matrix hA can be approxi-
mated using the power method by the following formula

vn = |α−132 | max
1≤i≤N

|di2 − di1|
|di1 − ki1|

,

then the stability control can be made by vn ≤ 2, where number 2 is an approximate
length of the stability interval of the three-stage explicit Runge-Kutta method.

In the general case this estimation is quite crude because of the small number of
iterations of the power method and the nonlinearity of the function ϕ(y). Therefore
the stability control is used for limiting the stepsize growing only.

Let the approximate solution yn be computed with the stepsize hn. For the
stepsize selection we use errn = O(h3n). The stepsize hacc predicted by accuracy we
compute by the formula hacc = q1hn, where q1 is a root of the equation q31errn = 1. In
view of vn = O(hn), the stepsize hst predicted by stability is computed by hst = q2hn,
where q2 is a root of the equation q2vn = 2. Then the stepsize hn+1 predicted by
accuracy and stability is selected by the formula hn+1 = max[hn,min(hacc, hst)].

The stability control of the explicit part of the scheme (2) requires, at each integra-
tion step, two additional computations of ϕ(y). This computational cost is negligible
for large-scale problems, but if one is sure that all stiffness is in g(y) then one can
turn off stability control to save computational cost.

8. Numerical experiments

In what follows, the numerical code based on the third order IMEX method (2) con-
structed under the consistency condition and with local error estimation and stability
control as well as with diagonal Jacobian approximation is called IMEX3.

The test problems given below have been reduced to the form y′ = (f(y)−By) +
By. All numerical computations have been performed in double precision arithmetic
with the desired tolerances of the local error Atol = Rtol = Tol = 10−m, m = 2, 4.
The scheme (2) is of third order, therefore it is unreasonable to perform numerical
computations with higher tolerance.

The following four test problems are considered:
Test problem 1 [6]

y′1 = −0.013y1 − 1000y1y3,

y′2 = −2500y2y3,

y′3 = −0.013y1 − 1000y1y3 − 2500y2y3,

t ∈ [0, 50], y1(0) = 1, y2(0) = 1, y3(0) = 0, h0 = 2.9 · 10−4.

Test problem 2 [8]

y′1 = 77.27(y2 − y1y2 + y1 − 8.375 · 10−6y21),

y′2 = (−y2 − y1y2 + y3)/77.27,

y′3 = 0.161(y1 − y3),
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t ∈ [0, 300], y1(0) = 4, y2(0) = 1.1, y3(0) = 4, h0 = 2 · 10−3.

Test problem 3

y′1 = −0.04y1 + 0.01y2y3,

y′2 = 400y1 − 100y2y3 − 3000y22 ,

y′3 = 30y22 ,

t ∈ [0, 40], y1(0) = 1, y2(0) = y3(0) = 0, h0 = 10−5.

Test problem 4

y′1 = y3 − 100y1y2,

y′2 = y3 + 2y4 − 100y1y2 − 2 · 104y22 ,

y′3 = −y3 + 100y1y2,

y′4 = −y4 + 104y22 ,

t ∈ [0, 20], y1(0) = y2(0) = 1, y3(0) = y4(0) = 0, h0 = 2.5 · 10−5.

The approximation of the Jacobian by a diagonal matrix is used when solving the test
problems by IMEX3, ASODE3-1 [15] and ASODE3-2 [16]. In this case computational
cost of additive methods is dominated by the number of right-hand side function
evaluations, the same is true for explicit Runge-Kutta methods. Therefore, IMEX3
is compared with the following numerical codes based on well-known explicit Runge-
Kutta methods:

RKM4 – 5-stage Merson method of order 4 [14],
RKF5 – 6-stage Felberg method of order 5 [7],
RKF7 – 13-stage Felberg method of order 7 [7],
DP8 – 13-stage Dormand and Prince method of order 8 [18],
and additive methods:
ASODE3-1 – 6-stage method of order 3 [15],
ASODE3-2 – 6-stage method of order 3 [16].

The overall computational cost (measured by the number of right-hand side func-
tion evaluations over the integration interval) is given in the Table 3 and Table 4.

As can be seen from Tables 3 and Table 4, the developed integration algorithm
IMEX3 is more efficient than the other additive and explicit Runge-Kutta methods
considered in this paper.

9. Conclusions

So, in this paper we have constructed the third order IMEX method, which combines
a (4,2)-method with an explicit Runge–Kutta method and includes an embedded
method for error control. This method is L-stable with respect to the implicit part
and allows the use of an arbitrary approximation of the Jacobian matrix without loss
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Table 3: Computational cost of the explicit Runge-Kutta methods and IMEX3

№ Tol RKM4 RKF5 RKF7 DP8 IMEX3
1 10−2 401 716 401 005 982 536 717 526 90

10−4 400 627 400 656 982 150 717 287 2 232
2 10−2 13 391 594 15 694 434 38 429 196 27 998 053 3 951

10−4 13 384 132 15 691 105 38 429 976 27 993 793 76 092
3 10−2 204 889 237 942 587 509 431 591 417

10−4 206 647 240 676 565 396 430 823 3 297
4 10−2 10 832 11 874 29 991 23 052 123

10−4 10 236 11 366 28 819 23 354 5 766

Table 4: Computational cost of the additive methods ASODE3-1, ASODE3-2, IMEX3

№ Tol ASODE3-1 ASODE3-2 IMEX3
1 10−2 3 129 243 90

10−4 16 361 5 253 2 232
2 10−2 63 430 4 245 3 951

10−4 367 411 89 993 76 092
3 10−2 9 351 1 278 417

10−4 37 338 7 908 3 297
4 10−2 1 589 174 123

10−4 7 711 7 938 5 766

of accuracy. Order and stability conditions were derived and then solved analytically.
Automatic stepsize selection based on local error estimation and stability control
is performed and the auxiliary formulas for performing this were obtained without
significant additional computational cost.

The aim of the numerical computations was to test the reliability and efficiency
of the implemented integration algorithm with local error estimation and stability
control as well as with diagonal Jacobian approximation. Solving specific applied
problems is beyond the scope of the current computations.

Numerical experiments show reliability and efficiency of the presented method for
solving mildly stiff problems and that the test problems considered turned out to be
rather stiff for the explicit Runge-Kutta methods.
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