SEMILATTICE DECOMPOSITION OF LOCALLY ASSOCIATIVE Γ-AG**-GROUPOIDS

Madad Khan, Saima Anis and Kostaq Hila

Abstract

In this paper, we have shown that a locally associative Γ-AG**-groupoid S has associative powers and S / ρ_{Γ} is a maximal separative homomorphic image of S, where $a \rho_{\Gamma} b$ implies that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}, b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}, \forall a, b \in S$. The relation η_{Γ} is the least left zero semilattice congruence on S, where η_{Γ} is defined on S as $a \eta_{\Gamma} b$ if and only if there exist some positive integers m, n such that $b_{\Gamma}^{m} \subseteq a \Gamma S$ and $a_{\Gamma}^{n} \subseteq b \Gamma S$.

1. Introduction

An Abel-Grassmann's groupoid [11] (abbreviated as an AG-groupoid), is a groupoid S whose elements satisfy the invertive law $(a b) c=(c b) a$, for all $a, b, c \in S$. It is also called a left almost semigroup [3, 7, 8]. In [2], the same structure is called a left invertive groupoid. It is a useful non-associative algebraic structure, midway between a groupoid and a commutative semigroup.

An AG-groupoid S is medial [3], that is, $(a b)(c d)=(a c)(b d)$, for all $a, b, c, d \in S$. If an AG-groupoid satisfies the following property:

$$
\begin{equation*}
a(b c)=b(a c), \text { for all } a, b, c \in S \tag{1}
\end{equation*}
$$

then it is called an AG $^{* *}$-groupoid (cf. [5, 10]). In an AG ${ }^{* *}$-groupoid S the law $(a b)(c d)=(d b)(c a)$ holds for all $a, b, c, d \in S$ (cf. [10]).

An AG-groupoid S is called a locally associative AG-groupoid if ($a a$) $a=a(a a)$ holds for all $a \in S$. If S is a locally associative AG-groupoid, then it is easy to see that $(S a) S=S(a S)$ or $(S S) S=S(S S)$. If a locally associative AG-groupoid S satisfies the identity (1), then S is known as a locally associative AG**-groupoid.

An element a of S is called left zero if $a x=a$, for all $x \in S$.
Locally associative LA-semigroups have been studied by Mushtaq et al. [6, 7]. Other notions and results on AG-groupoids and AG**-groupoids, one can find in [25, 8-11,13].

2010 Mathematics Subject Classification: 20M10, 20N99
Keywords and phrases: Γ-AG-groupoid; Γ-left invertive law; Γ-medial law; Γ-congruences.
M.K. Sen [12] introduced the concept of Γ-semigroup in 1981. The non-associative Γ-AG-groupoid is the generalization of an associative Γ-semigroup.

Let S and Γ be two non-empty sets. Denote by the letters of English alphabet the elements of S and by the letters of Greek alphabet the elements of Γ. Any map from $S \times \Gamma \times S$ to S will be called a Γ-multiplication in S and denoted by $(\cdot)_{\Gamma}$. The result of this multiplication for $a, b \in S$ and $\alpha \in \Gamma$ is denoted by $a \alpha b$. A Γ -AG-groupoid [1] S is an ordered pair $\left(S,(\cdot)_{\Gamma}\right)$ where S and Γ are non-empty sets and $(\cdot)_{\Gamma}$ is a Γ-multiplication on S which satisfies the following Γ-left invertive law: $\forall(a, b, c, \alpha, \beta) \in S^{3} \times \Gamma^{2}$,

$$
\begin{equation*}
(x \alpha y) \beta z=(z \alpha y) \beta x . \tag{2}
\end{equation*}
$$

A Γ-AG-groupoid also satisfies the Γ-medial law $\forall(w, x, y, z, \alpha, \beta, \gamma) \in S^{4} \times \Gamma^{3}$,

$$
\begin{equation*}
(w \alpha x) \beta(y \gamma z)=(w \alpha y) \beta(x \gamma z) \tag{3}
\end{equation*}
$$

Note that if a Γ-AG-groupoid contains a left identity, then it becomes an AGgroupoid with left identity. A Γ-AG-groupoid is called a Γ - $\mathrm{AG}^{* *}$-groupoid [1] if it satisfies the following law $\forall(x, y, z, \alpha, \beta) \in S^{3} \times \Gamma^{2}$,

$$
\begin{equation*}
x \alpha(y \beta z)=y \alpha(x \beta z) \tag{4}
\end{equation*}
$$

A Γ - $\mathrm{AG}^{* *}$-groupoid also satisfies the following Γ-paramedial law

$$
\forall(w, x, y, z, \alpha, \beta, \gamma) \in S^{4} \times \Gamma^{3},(w \alpha x) \beta(y \gamma z)=(z \alpha y) \beta(x \gamma w)
$$

Other concepts and results on Γ-AG ${ }^{* *}$-groupoids one can find in [1].
In this paper, we introduce a new non-associative algebraic structure namely locally associative Γ-AG**-groupoids and decompose it using Γ-congruences. An AGgroupoid S is called a locally associative Γ-AG-groupoid if ($a \alpha a) \beta a=a \alpha(a \beta a)$ holds for all $a \in S$ and $\alpha, \beta \in \Gamma$. If S is a locally associative AG-groupoid, then it is easy to see that $(S \Gamma a) \Gamma S=S \Gamma(a \Gamma S)$ or $(S \Gamma S) \Gamma S=S \Gamma(S \Gamma S)$. For particular $\alpha \in \Gamma$, let us denote $a \alpha a=a_{\alpha}^{2}$ for some $\alpha \in \Gamma$ and $a \alpha a=a_{\Gamma}^{2}$, for all $\alpha \in \Gamma$, i.e., $a \Gamma a=a_{\Gamma}^{2}$ and generally $a \Gamma a \Gamma a \ldots a \Gamma a=a_{\Gamma}^{n}$ (n times).

2. Main results

Let S be an Γ-AG**-groupoid and a relation ρ_{Γ} be defined on S as follows : $a \rho_{\Gamma} b$ if and only if there exists a positive integer n such that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}$ and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$, for all a and b in S.

Proposition 2.1. If S is a locally associative Γ - $A G^{* *}$-groupoid, then $a \Gamma a_{\Gamma}^{n+1}=$ $\left(a_{\Gamma}^{n+1}\right) \Gamma a$, for all a in S and positive integer n.

$$
\text { Proof. } \quad \begin{aligned}
a \Gamma a_{\Gamma}^{n+1} & =a \Gamma\left(a_{\Gamma}^{n} \Gamma a\right)=a_{\Gamma}^{n} \Gamma(a \Gamma a)=\left(a_{\Gamma}^{n-1} \Gamma a\right) \Gamma(a \Gamma a) \\
& =(a \Gamma a) \Gamma\left(a \Gamma a_{\Gamma}^{n-1}\right)=(a \Gamma a) \Gamma a_{\Gamma}^{n}=\left(a_{\Gamma}^{n} \Gamma a\right) \Gamma a=\left(a_{\Gamma}^{n+1}\right) \Gamma a .
\end{aligned}
$$

Proposition 2.2. In a locally associative Γ - $A G^{* *}$-groupoid S, $a_{\Gamma}^{m} \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{m+n}$, for all $a \in S$ and positive integers m, n.

Proof. $a_{\Gamma}^{m+1} \Gamma a_{\Gamma}^{n}=\left(a_{\Gamma}^{m} \Gamma a\right) \Gamma a_{\Gamma}^{n}=\left(a_{\Gamma}^{n} \Gamma a\right) \Gamma a_{\Gamma}^{m}=\left(a \Gamma a_{\Gamma}^{n}\right) \Gamma a_{\Gamma}^{m}=\left(a_{\Gamma}^{m} \Gamma a_{\Gamma}^{n}\right) \Gamma a$

$$
=a_{\Gamma}^{m+n} \Gamma a=a_{\Gamma}^{m+n+1} .
$$

Proposition 2.3. If S is a locally associative Γ - $A G^{* *}$-groupoid, then for all $a, b \in S$, $(a \Gamma b)_{\Gamma}^{n}=a_{\Gamma}^{n} \Gamma b_{\Gamma}^{n}$ for a positive integer $n \geq 1$ and $(a \Gamma b)_{\Gamma}^{n}=b_{\Gamma}^{n} \Gamma a_{\Gamma}^{n}$, for $n \geq 2$.

Proof. We have

$$
\begin{aligned}
(a \Gamma b)_{\Gamma}^{2} & =(a \Gamma b) \Gamma(a \Gamma b)=(a \Gamma a) \Gamma(b \Gamma b)=a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2} \\
(a \Gamma b)_{\Gamma}^{k+1} & =(a \Gamma b)_{\Gamma}^{k} \Gamma(a \Gamma b)=\left(a_{\Gamma}^{k} \Gamma b_{\Gamma}^{k}\right) \Gamma(a \Gamma b)=\left(a_{\Gamma}^{k} \Gamma a\right) \Gamma\left(b_{\Gamma}^{k} \Gamma b\right)=a_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k+1} .
\end{aligned}
$$

Let $n \geq 2$. Then by (4) and (2), we get

$$
\begin{aligned}
(a \Gamma b)_{\Gamma}^{n} & \left.=a_{\Gamma}^{n} \Gamma b_{\Gamma}^{n}=\left(a \Gamma a_{\Gamma}^{n-1}\right) \Gamma\left(b \Gamma b_{\Gamma}^{n-1}\right)=b \Gamma\left(\left(a \Gamma a_{\Gamma}^{n-1}\right) \Gamma b_{\Gamma}^{n-1}\right)\right)=b \Gamma\left(\left(b_{\Gamma}^{n-1} \Gamma a_{\Gamma}^{n-1}\right) \Gamma a\right) \\
& =b \Gamma\left((b \Gamma a)_{\Gamma}^{n-1} \Gamma a\right)=(b \Gamma a)_{\Gamma}^{n-1} \Gamma(b \Gamma a)=(b \Gamma a)_{\Gamma}^{n}=b_{\Gamma}^{n} \Gamma a_{\Gamma}^{n} .
\end{aligned}
$$

Proposition 2.4. In a locally associative Γ - $A G^{* *}$-groupoid S, $\left(a_{\Gamma}^{m}\right)_{\Gamma}^{n}=a_{\Gamma}^{m n}$ for all $a \in S$ and positive integers m, n.

Proof. $\left(a_{\Gamma}^{m+1}\right)_{\Gamma}^{n}=\left(a_{\Gamma}^{m} \Gamma a\right)_{\Gamma}^{n}=\left(a_{\Gamma}^{m}\right)_{\Gamma}^{n} \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{m n} \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{m n+n}=a_{\Gamma}^{n(m+1)}$.
ThEOREM 2.5. Let S be a locally associative Γ - $A G^{* *}$-groupoid. If $a \Gamma b_{\Gamma}^{m}=b_{\Gamma}^{m+1}$ and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$, for $a, b \in S$ and positive integers m, n, then $a \rho_{\Gamma} b$.

Proof. If $n>m$, then $b_{\Gamma}^{n-m} \Gamma\left(a \Gamma b_{\Gamma}^{m}\right)=b_{\Gamma}^{n-m} \Gamma b_{\Gamma}^{m+1}, a \Gamma\left(b_{\Gamma}^{n-m} \Gamma b_{\Gamma}^{m}\right)=b_{\Gamma}^{n-m+m+1}$, $a \Gamma b_{\Gamma}^{n-m+m}=b_{\Gamma}^{n+1}, a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}$.

THEOREM 2.6. The relation ρ_{Γ} on a locally associative Γ - $A G^{* *}$-groupoid is a congruence relation.

Proof. Evidently ρ_{Γ} is reflexive and symmetric. For transitivity we may proceed as follows.

Let $a \rho_{\Gamma} b$ and $b \rho_{\Gamma} c$ so that there exist positive integers n, m such that $a \Gamma b_{\Gamma}^{n}=$ $b_{\Gamma}^{n+1}, b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$, and $b \Gamma c_{\Gamma}^{m}=c_{\Gamma}^{m+1}, c \Gamma b_{\Gamma}^{m}=b_{\Gamma}^{m+1}$.

Let $k=(n+1)(m+1)-1$, that is, $k=n(m+1)+m$. Using (2), (4) and Proposition 2.2, 2.3 and 2.4, we get

$$
\begin{aligned}
a \Gamma c_{\Gamma}^{k} & =a \Gamma c_{\Gamma}^{n(m+1)+m}=a \Gamma\left(c_{\Gamma}^{n(m+1)} \Gamma c_{\Gamma}^{m}\right)=a \Gamma\left\{\left(c_{\Gamma}^{m+1}\right)_{\Gamma}^{n} \Gamma c_{\Gamma}^{m}\right\}=a \Gamma\left\{\left(b \Gamma c_{\Gamma}^{m}\right)_{\Gamma}^{n} \Gamma c_{\Gamma}^{m}\right\} \\
& =a \Gamma\left\{\left(b_{\Gamma}^{n} \Gamma c_{\Gamma}^{m n}\right) \Gamma c_{\Gamma}^{m}\right\}=a \Gamma\left(c_{\Gamma}^{m(n+1)} \Gamma b_{\Gamma}^{n}\right)=c_{\Gamma}^{m(n+1)} \Gamma\left(a \Gamma b_{\Gamma}^{n}\right) \\
& =c_{\Gamma}^{m(n+1)} \Gamma b_{\Gamma}^{n+1}=\left(c_{\Gamma}^{m} \Gamma b\right)_{\Gamma}^{n+1}=b_{\Gamma}^{n+1} \Gamma c_{\Gamma}^{m(n+1)}=\left(b \Gamma c_{\Gamma}^{m}\right)_{\Gamma}^{n+1}=c_{\Gamma}^{k+1} .
\end{aligned}
$$

Similarly, $c \Gamma a^{k}=a_{\Gamma}^{k+1}$. Thus ρ_{Γ} is an equivalence relation. To show that ρ_{Γ} is compatible, assume that $a \rho_{\Gamma} b$ such that for some positive integer $n, a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}$ and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$.

Let $c \in S$, then by identity (3) and Propositions 2.4 and 2.1, we get

$$
(a \Gamma c) \Gamma(b \Gamma c)_{\Gamma}^{n}=(a \Gamma c) \Gamma\left(b_{\Gamma}^{n} \Gamma c_{\Gamma}^{n}\right)=\left(a \Gamma b_{\Gamma}^{n}\right) \Gamma\left(c \Gamma c_{\Gamma}^{n}\right)=b_{\Gamma}^{n+1} \Gamma c_{\Gamma}^{n+1}=(b \Gamma c)_{\Gamma}^{n+1} .
$$

Similarly, $(b \Gamma c) \Gamma(a \Gamma c)_{\Gamma}^{n}=(a \Gamma c)_{\Gamma}^{n+1}$. Hence ρ_{Γ} is a congruence relation on S.

Lemma 2.7. Let S be a locally associative $\Gamma-A G^{* *}$-groupoid; then $a \Gamma b \rho_{\Gamma} b \Gamma a$, for all $a, b \in S$.
Proof.

$$
\begin{aligned}
(a \Gamma b) \Gamma(b \Gamma a)_{\Gamma}^{n+1} & =(a \Gamma b) \Gamma\left(a_{\Gamma}^{n+1} \Gamma b_{\Gamma}^{n+1}\right)=\left(a \Gamma a_{\Gamma}^{n+1}\right) \Gamma\left(b \Gamma b_{\Gamma}^{n+1}\right) \\
& =a_{\Gamma}^{n+2} \Gamma b_{\Gamma}^{n+2}=(b \Gamma a)_{\Gamma}^{n+2} .
\end{aligned}
$$

Similarly, $(b \Gamma a) \Gamma(a \Gamma b)_{\Gamma}^{n+1}=(a \Gamma b)_{\Gamma}^{n+2}$. Hence $a \Gamma b \rho_{\Gamma} b \Gamma a$, for all $a, b \in S$.
A relation ρ_{Γ} on an AG-groupoid S is called separative if $a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2}$ and $a \Gamma b \rho_{\Gamma} b_{\Gamma}^{2}$ imply that $a \rho_{\Gamma}$.

Theorem 2.8. The relation ρ_{Γ} is separative.
Proof. Let $a, b \in S, a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2}$ and $a \Gamma b \rho_{\Gamma} b_{\Gamma}^{2}$. Then by the definition of ρ_{Γ}, there exist positive integers m and n such that,

$$
(a \Gamma b) \Gamma\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m+1}, a_{\Gamma}^{2} \Gamma(a \Gamma b)_{\Gamma}^{m}=(a \Gamma b)_{\Gamma}^{m+1}
$$

and $\quad(a \Gamma b) \Gamma\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n}=\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n+1}, b_{\Gamma}^{2} \Gamma(a \Gamma b)_{\Gamma}^{n}=(a \Gamma b)_{\Gamma}^{n+1}$.
Then $\quad(a \Gamma b) \Gamma a_{\Gamma}^{2 m}=(a \Gamma b) \Gamma\left(a_{\Gamma}^{m} \Gamma a_{\Gamma}^{m}\right)=\left(a \Gamma a_{\Gamma}^{m}\right) \Gamma\left(b \Gamma a_{\Gamma}^{m}\right)$

$$
=\left(a_{\Gamma}^{m+1}\right) \Gamma\left(b \Gamma a_{\Gamma}^{m}\right)=b \Gamma\left(a_{\Gamma}^{m+1} \Gamma a_{\Gamma}^{m}\right)=b \Gamma a_{\Gamma}^{2 m+1},
$$

but $(a \Gamma b) \Gamma a_{\Gamma}^{2 m}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m+1}=a_{\Gamma}^{2 m+2}$, which implies that $b \Gamma a_{\Gamma}^{2 m+1}=a_{\Gamma}^{2 m+2}$. Also, $(a \Gamma b) \Gamma\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n}=\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n+1}$ implies that $b_{\Gamma}^{2 n+1} \Gamma a=b_{\Gamma}^{2 n+2}$. Also, we get $b_{\Gamma}^{2 n+2} \Gamma b_{\Gamma}^{2}=$ $\left(b_{\Gamma}^{2 n+1} \Gamma a\right) \Gamma b_{\Gamma}^{2}$, which implies that $b_{\Gamma}^{2 n+4}=b_{\Gamma}^{2} \Gamma\left(a \Gamma b_{\Gamma}^{2 n+1}\right)=a \Gamma\left(b_{\Gamma}^{2} \Gamma b_{\Gamma}^{2 n+1}\right)=a \Gamma b_{\Gamma}^{2 n+3}$. Hence by Theorem 2.5, $a \rho_{\Gamma} b$.
Theorem 2.9. Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then S / ρ_{Γ} is a maximal separative commutative image of S.

Proof. By Theorem 2.8, ρ_{Γ} is separative, and hence S / ρ_{Γ} is separative. We now show that ρ_{Γ} is contained in every separative congruence relation σ_{Γ} on S. Let $a \rho_{\Gamma} b$, so that there exists a positive integer n such that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}$ and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$.

We need to show that $a \sigma_{\Gamma} b$, where σ_{Γ} is a separative congruence on S. Let k be any positive integer such that

$$
\begin{equation*}
a \Gamma b_{\Gamma}^{k} \Gamma \sigma_{\Gamma} b_{\Gamma}^{k+1} \text { and } b \Gamma a_{\Gamma}^{k} \sigma_{\Gamma} a_{\Gamma}^{k+1} \tag{5}
\end{equation*}
$$

Suppose that $k \geq 3$.

$$
\begin{aligned}
\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} & =\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k-1}\right)=a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2 k-2}=(a \Gamma a) \Gamma\left(b_{\Gamma}^{k-2} \Gamma b_{\Gamma}^{k}\right) \\
& =\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k}\right)=\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b_{\Gamma}^{k+1} .
\end{aligned}
$$

Therefore $\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k}\right) \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b_{\Gamma}^{k+1}$.
Using the identity (2) and Proposition 2.2, we get

$$
\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b_{\Gamma}^{k+1}=\left(b_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k-2}\right) \Gamma a=b_{\Gamma}^{2 k-1} \Gamma a=\left(b_{\Gamma}^{k} \Gamma b_{\Gamma}^{k-1}\right) \Gamma a=\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma b_{\Gamma}^{k}
$$

Also $\quad\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma b_{\Gamma}^{k}=\left(b_{\Gamma}^{k} \Gamma b_{\Gamma}^{k-1}\right) \Gamma a=b_{\Gamma}^{2 k-1} \Gamma a=\left(b_{\Gamma}^{k-1} \Gamma b_{\Gamma}^{k}\right) \Gamma a=\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1}$, implying that $\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1}$.

Since $a \Gamma b_{\Gamma}^{k} \sigma_{\Gamma} b_{\Gamma}^{k+1}$ and $\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1} \sigma_{\Gamma} b_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k-1}$, hence $\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(b_{\Gamma}^{k}\right)_{\Gamma}^{2}$. It further implies that $\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma b_{\Gamma}^{k} \sigma_{\Gamma}\left(b_{\Gamma}^{k}\right)_{\Gamma}^{2}$. Thus $a \Gamma b_{\Gamma}^{k-1} \sigma_{\Gamma} b_{\Gamma}^{k}$. Similarly, $b \Gamma a_{\Gamma}^{k-1} \sigma_{\Gamma} a_{\Gamma}^{k}$. Thus if (5) holds for k, it holds for $k-1$.

Now obviously (5) yields $a \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{4}$ and $b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4}$. Also, we get

$$
\begin{array}{rll}
\left(a \Gamma b_{\Gamma}^{3}\right) \Gamma a_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{4} \Gamma a_{\Gamma}^{2} & \text { and } & \left(b \Gamma a_{\Gamma}^{3}\right) \Gamma b_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4} \Gamma b_{\Gamma}^{2}, \\
\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{3}\right) \Gamma a \sigma_{\Gamma}^{\prime} \Gamma b_{\Gamma}^{4} \Gamma a_{\Gamma}^{2} & \text { and } & \left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{3}\right) \Gamma b \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4} \Gamma b_{\Gamma}^{2}, \\
\left(b_{\Gamma}^{3} \Gamma a_{\Gamma}^{2}\right) \Gamma a \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} & \text { and } & \left(a_{\Gamma}^{3} \Gamma b_{\Gamma}^{2}\right) \Gamma b \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4}, \\
a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} & \text { and } & b_{\Gamma}^{3} \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4}, \\
a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} & \text { and } & a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4},
\end{array}
$$

which imply that $\left(b_{\Gamma}^{2} \Gamma a\right)_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime}\left(a_{\Gamma}^{2} \Gamma b\right)_{\Gamma}^{2}$, and as σ_{Γ}^{\prime} is separative and $\left(b_{\Gamma}^{2} \Gamma a\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b\right)=\left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{2}\right) \Gamma(a \Gamma b)=\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right) \Gamma(a \Gamma b)=a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3}$, so $a_{\Gamma}^{2} \Gamma b \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a$. Now we get: $\left(a_{\Gamma}^{2} \Gamma b\right) \Gamma a \sigma_{\Gamma}^{\prime} \Gamma\left(b_{\Gamma}^{2} \Gamma a\right) \Gamma a,(a \Gamma b) \Gamma a_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}, a_{\Gamma}^{2} \Gamma(b \Gamma a) \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}, b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}$, but $b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4}$.

Thus $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime}\left(a_{\Gamma}^{2}\right)_{\Gamma}^{2}$. Now since σ_{Γ}^{\prime} is separative and $a_{\Gamma}^{2} \Gamma(b \Gamma a)=b \Gamma a_{\Gamma}^{3}$, so we get $b \Gamma a \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2}$.

Similarly we can obtain $a \Gamma b \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2}$.
Also it is easy to show that (5) holds for $k=2$. Thus if (5) holds for k, it holds for $k=1$. By induction down from k, it follows that (5) holds for $k=1, a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$ and $b \Gamma a \sigma_{\Gamma} a_{\Gamma}^{2}$. Now using (2) and Proposition 2.4 on $a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$, we get $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma} b_{\Gamma}^{3} \Gamma a$, and again using (4) and (2) on $a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$ we get $b_{\Gamma}^{3} \Gamma a \sigma_{\Gamma} b_{\Gamma}^{4}$. So $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma} b_{\Gamma}^{3} \Gamma a \sigma_{\Gamma} b_{\Gamma}^{4}$ implies that $b \Gamma a \sigma_{\Gamma} b_{\Gamma}^{2}$ which further implies that $a \Gamma b \sigma_{\Gamma} b \Gamma a$. Thus we obtain $a \sigma_{\Gamma} b$. Hence $\rho_{\Gamma} \subseteq \sigma_{\Gamma}$ and so S / ρ_{Γ} is the maximal separative commutative image of S.

Lemma 2.10. If $x \Gamma a=x\left(a=a_{\Gamma}^{2}\right)$ for some x in a locally associative Γ - $A G^{* *}$-groupoid S, then $x_{\Gamma}^{n} \Gamma a=x_{\Gamma}^{n}$ for some positive integer n.
Proof. Let $n=2$. By using (3), we get

$$
x_{\Gamma}^{2} \Gamma a=(x \Gamma x) \Gamma(a \Gamma a)=(x \Gamma a) \Gamma(x \Gamma a)=x \Gamma x=x_{\Gamma}^{2} .
$$

Let the result be true for k, that is, $x_{\Gamma}^{k} \Gamma a=x_{\Gamma}^{k}$. Then by (3) and Proposition 2.1, we get $x_{\Gamma}^{k+1} \Gamma a=\left(x \Gamma x_{\Gamma}^{k}\right) \Gamma(a \Gamma a)=(x \Gamma a) \Gamma\left(x_{\Gamma}^{k} \Gamma a\right)=x \Gamma x_{\Gamma}^{k}=x_{\Gamma}^{k+1}$. Hence $x_{\Gamma}^{n} \Gamma a=x_{\Gamma}^{n}$ for all positive integers n.
Lemma 2.11. If S is $a \Gamma$-AG-groupoid, then $Q_{\Gamma}=\left\{x \in S \mid x \Gamma a=x\right.$ and $\left.a=a_{\Gamma}^{2}\right\}$ is a commutative subsemigroup.
Proof. As $a \Gamma a=a$, we have $a \in Q_{\Gamma}$. Now if $x, y \in Q_{\Gamma}$, then by identity (3), $x \Gamma y=(x \Gamma a) \Gamma(y \Gamma a)=(x \Gamma y) \Gamma(a \Gamma a)=(x \Gamma y) \Gamma a$.

To prove that Q_{Γ} is commutative and associative, assume that x, y and z belong to Q_{Γ}. Then by using (2), we get $x \Gamma y=(x \Gamma a) \Gamma y=(y \Gamma a) \Gamma x=y \Gamma x$. Also, $(x \Gamma y) \Gamma z=$ $(z \Gamma y) \Gamma x=x \Gamma(y \Gamma z)$. Hence Q_{Γ} is a commutative subsemigroup of S.
THEOREM 2.12. Let ρ_{Γ} and σ_{Γ} be separative congruences on locally associative Γ $A G^{* *}$-groupoid S and $x_{\Gamma}^{2} \Gamma a=x_{\Gamma}^{2}\left(a=a_{\Gamma}^{2}\right)$ for all $x \in S$. If $\rho_{\Gamma} \cap\left(Q_{\Gamma} \times Q_{\Gamma}\right) \subseteq$ $\sigma_{\Gamma} \cap\left(Q_{\Gamma} \times Q_{\Gamma}\right)$, then $\rho_{\Gamma} \subseteq \sigma_{\Gamma}$.
Proof. If $x \rho_{\Gamma} y$, then $\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2} \rho_{\Gamma}\left(x_{\Gamma}^{2} \Gamma(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \rho_{\Gamma}\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right)_{\Gamma}^{2}\right.$. It follows that $\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2},\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right)_{\Gamma}^{2} \subseteq Q_{\Gamma}$. Now by (3), (2), (4), respectively, we get

$$
\left.\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right)=\left(x_{\Gamma}^{2} \Gamma x_{\Gamma}^{2}\right) \Gamma(x \Gamma y) \Gamma y_{\Gamma}^{2}\right)=\left(x_{\Gamma}^{2} \Gamma x_{\Gamma}^{2}\right) \Gamma\left(y_{\Gamma}^{3} \Gamma x\right)
$$

$$
=x_{\Gamma}^{4} \Gamma\left(y_{\Gamma}^{3} \Gamma x\right)=y_{\Gamma}^{3} \Gamma\left(x_{\Gamma}^{4} \Gamma x\right)=y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}
$$

and

$$
\left(y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}\right) \Gamma a=\left(y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}\right) \Gamma(a \Gamma a)=\left(y_{\Gamma}^{3} \Gamma a\right) \Gamma\left(x_{\Gamma}^{5} \Gamma a\right)=y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}
$$

So $x_{\Gamma}^{2} \Gamma(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \subseteq Q_{\Gamma}$. Hence $\left.x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(x_{\Gamma}^{2} \Gamma(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \sigma_{\Gamma}\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right)_{\Gamma}^{2}\right.$ implies that $x_{\Gamma}^{2} \Gamma(x \Gamma y) \sigma_{\Gamma} x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}$.

Since $x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2} \rho_{\Gamma} x_{\Gamma}^{4}$ and $\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right), x_{\Gamma}^{4} \subseteq Q_{\Gamma}$, thus $x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2} \sigma_{\Gamma} x_{\Gamma}^{4}$. From Proposition 2.4, we get $\left(x_{\Gamma}^{2}\right)_{\Gamma}^{2} \sigma_{\Gamma} x_{\Gamma}^{2} \Gamma(x \Gamma y) \sigma_{\Gamma}(x \Gamma y)_{\Gamma}^{2}$, which implies that $x_{\Gamma}^{2} \sigma_{\Gamma} x \Gamma y$. Finally, $x_{\Gamma}^{2} \rho_{\Gamma} y_{\Gamma}^{2}$ and $x_{\Gamma}^{2}, y_{\Gamma}^{2} \subseteq Q_{\Gamma}$, implying that $x_{\Gamma}^{2} \sigma_{\Gamma} y_{\Gamma}^{2}, x_{\Gamma}^{2} \sigma_{\Gamma} x \Gamma y \sigma_{\Gamma} y_{\Gamma}^{2}$. Thus $x \sigma_{\Gamma} y$ because σ_{Γ} is separative.

Lemma 2.13. Every left zero congruence is commutative.

Proof. Let $a \sigma_{\Gamma} a$ and $b \sigma_{\Gamma} b$ which imply that $a \Gamma b \sigma_{\Gamma} a \Gamma b,(a \Gamma b) \Gamma(a \Gamma b) \sigma(a \Gamma b)_{\Gamma}^{2}=\left(b_{\Gamma} \Gamma a\right)_{\Gamma}^{2}$ and so we obtain $a \Gamma b \sigma_{\Gamma} b \Gamma a$.

The relation η_{Γ} is defined on S by $a \eta_{\Gamma} b$ if and only if there exist some positive integers m, n such that $b_{\Gamma}^{m} \subseteq a \Gamma S$ and $a_{\Gamma}^{n} \subseteq b \Gamma S$.

Theorem 2.14. Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then the relation η_{Γ} is the least semilattice congruence on S.

Proof. The relation η_{Γ} is obviously reflexive and symmetric. To show the transitivity, let $a \eta_{\Gamma} b$ and $b \eta_{\Gamma} c$, where $a, b, c \in S$. Then $a \Gamma x=b_{\Gamma}^{m}$ and $b \Gamma y=c_{\Gamma}^{n}$, for some $x, y \in S$. Using (4), we get $c_{\Gamma}^{m n}=\left(c_{\Gamma}^{n}\right)_{\Gamma}^{m}=(b \Gamma y)_{\Gamma}^{m}=y_{\Gamma}^{m} \Gamma b_{\Gamma}^{m}=y_{\Gamma}^{m} \Gamma(a \Gamma x)=a \Gamma\left(y_{\Gamma}^{m} \Gamma x\right)$, implying that $c_{\Gamma}^{k}=a \Gamma z$, where $k=m n$ and $z=\left(y_{\Gamma}^{m} \Gamma x\right)$. Similarly, $b \Gamma x^{\prime}=a_{\Gamma}^{m^{\prime}}$ and $c \Gamma y^{\prime}=b_{\Gamma}^{n^{\prime}}$ implying that $a_{\Gamma}^{k^{\prime}}=c \Gamma z^{\prime}$.

Let $a, b, c \in S$ and $a \eta_{\Gamma} b \Leftrightarrow\left(\exists m, n \in Z^{+}\right)(\exists x, y \in S), b_{\Gamma}^{m}=a \Gamma x, a_{\Gamma}^{n}=b \Gamma y$. If $m=1, n>1$, that is, $b=a \Gamma x, a_{\Gamma}^{n}=b \Gamma y$ for some $x, y \in S$, then $b_{\Gamma}^{3}=(b \Gamma b) \Gamma(a \Gamma x)=$ $a \Gamma\left(b_{\Gamma}^{2} \Gamma x\right) \subseteq a \Gamma S$.

Similarly we can consider the case $m=n=1$. Suppose that $m, n>1$. Then using (2) and Proposition 2.4, we obtain
$(b \Gamma c)_{\Gamma}^{m}=b_{\Gamma}^{m} \Gamma c_{\Gamma}^{m}=(a \Gamma x) \Gamma c_{\Gamma}^{m}=(a \Gamma x) \Gamma\left(c \Gamma c_{\Gamma}^{m-1}\right)=(a \Gamma c) \Gamma\left(x \Gamma c_{\Gamma}^{m-1}\right)=(a \Gamma c) \Gamma y$, where $y=x \Gamma c_{\Gamma}^{m-1}$. Thus $a \Gamma c \eta_{\Gamma} b \Gamma c$ and $c \Gamma a \eta_{\Gamma} c \Gamma b$.

Now to show that η_{Γ} is a semilattice congruence on S, first we need to show that $a \eta_{\Gamma} b$ implies $a \Gamma b \eta_{\Gamma} a$.

Let $a \eta_{\Gamma} b$; then $b_{\Gamma}^{m}=a \Gamma x$ and $a_{\Gamma}^{n}=b \Gamma y$ for some $x, y \in S$. So by Proposition 2.4 and (3), we get $(a \Gamma b)_{\Gamma}^{m}=a_{\Gamma}^{m} \Gamma b_{\Gamma}^{m}=a_{\Gamma}^{m} \Gamma(a \Gamma x)=a \Gamma\left(a_{\Gamma}^{m} \Gamma x\right)$. Also, $a_{\Gamma}^{n}=b \Gamma y$ implies that $a_{\Gamma}^{n+2}=a_{\Gamma}^{2} \Gamma a_{\Gamma}^{n}=(a \Gamma a) \Gamma(b \Gamma y)=(a \Gamma b) \Gamma(a \Gamma y)$. Hence $a \Gamma b \eta_{\Gamma} a$ which implies that $a_{\Gamma}^{2} \eta_{\Gamma} a,\left(a_{\Gamma}^{2}\right)_{\eta_{\Gamma}}=(a)_{\eta_{\Gamma}}$ and so S / η_{Γ} is idempotent.

Next we show that η_{Γ} is commutative. By Proposition 2.4, $(a \Gamma b)_{\Gamma}^{2}=(b \Gamma a)_{\Gamma}^{2}$, which shows that $a \Gamma b \eta_{\Gamma} b \Gamma a$ that is, $(a)_{\eta_{\Gamma}} \Gamma(b)_{\eta_{\Gamma}}=(b)_{\eta_{\Gamma}} \Gamma(a)_{\eta_{\Gamma}}$, that is, S / η_{Γ} is a commutative AG-groupoid and so it is left zero commutative semigroup of idempotents. Therefore, η_{Γ} is a semilattice congruence on S. Next we will show that η_{Γ} is contained in any other left zero semilattice congruence ρ_{Γ} on S. Let $a \eta_{\Gamma} b$; then $b_{\Gamma}^{m}=a \Gamma x$ and $a_{\Gamma}^{n}=b \Gamma y$. Now since $a \rho_{\Gamma} a_{\Gamma}^{2}$ and $b \rho_{\Gamma} b_{\Gamma}^{2}$, it implies that $a \Gamma x \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x, a \rho_{\Gamma} a_{\Gamma}^{n}$ and $b \rho_{\Gamma} b_{\Gamma}^{m}$ which further implies that $a \rho_{\Gamma} b \Gamma y$ and $b \rho_{\Gamma} a \Gamma x$. It can be easily seen that $a \Gamma b \rho_{\Gamma} b \Gamma a$.

Also since $b \rho_{\Gamma} b_{\Gamma}^{2}$ and ρ_{Γ} is compatible, so we get $b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$. We can easily see that $b \Gamma a \rho_{\Gamma} a \Gamma b \rho_{\Gamma} a \rho_{\Gamma} b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$ which implies that $b \Gamma a \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$. Similarly, we can show that $a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x$. So $a \rho_{\Gamma} b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y \rho_{\Gamma} b \Gamma a \rho_{\Gamma} a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x \rho_{\Gamma} a \Gamma x \rho_{\Gamma} b$ implies that $a \rho_{\Gamma} b$. Thus η_{Γ} is a least semilattice congruence on S.

Theorem 2.15. η_{Γ} is separative.
Proof. Let $a_{\Gamma}^{2} \eta_{\Gamma} a \Gamma b$ and $a \Gamma b \eta_{\Gamma} b_{\Gamma}^{2}$, then there exist positive integers $m, m^{\prime}, n, n^{\prime}$ such that $\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m}=(a \Gamma b)_{\Gamma}^{2} \Gamma x,(a \Gamma b)_{\Gamma}^{m^{\prime}}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{2} \Gamma x^{\prime}$ and $(a \Gamma b)_{\Gamma}^{n^{\prime}}=\left(b_{\Gamma}^{2}\right)_{\Gamma}^{2} \Gamma y^{\prime},\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n}=(a \Gamma b)_{\Gamma}^{2} \Gamma y$. \quad Now we get, $\quad a_{\Gamma}^{2 m+2}=a_{\Gamma}^{2 m} \Gamma a_{\Gamma}^{2}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m} \Gamma a_{\Gamma}^{2}=\left((a \gamma b)_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2}$
$=\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma(a \Gamma b)_{\Gamma}^{2}=\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right)=\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma\left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{2}\right)$
$=b_{\Gamma}^{2} \Gamma\left(\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2}=b_{\Gamma}^{2} \Gamma t_{6}\right.$, where $t_{6}=\left(\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2}\right)$
Similarly, $\quad b_{\Gamma}^{2 n+2}=b_{\Gamma}^{2 n} \Gamma b_{\Gamma}^{2}=\left((a \Gamma b)_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}=\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right)$
$=a_{\Gamma}^{2} \Gamma\left(\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}\right)=a_{\Gamma}^{2} \Gamma t_{7}, \quad$ where $t_{7}=\left(\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}\right)$.
Hence η_{Γ} is separative.
Theorem 2.16. Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then S / η_{Γ} is a maximal semilattice separative image of S.

Proof. By Theorem 2.14, η_{Γ} is the least semilattice congruence on S and S / η_{Γ} is a semilattice. Hence S / η_{Γ} is a maximal semilattice separative image of S.

Theorem 2.17. Every locally associative Γ - $A G^{* *}$-groupoid S is uniquely expressible as a semilattice Y of Archimedean locally associative Γ - $A G^{* *}$-groupoids $\left(S_{\pi}\right)_{\Gamma}(\pi \in Y)$. The semilattice Y is isomorphic with the maximal semilattice separative image S / η_{Γ} of S and $\left(S_{\pi}\right)_{\Gamma}(\pi \in Y)$ are the equivalence classes of $S \bmod \eta_{\Gamma}$.

Proof. By Theorem 2.14, η_{Γ} is the least semilattice congruence on S. Next we will prove that the equivalence classes $\bmod \eta_{\Gamma}$ are Archimedean locally associative Γ - $\mathrm{AG}^{* *}$ groupoids and the semilattice Y is isomorphic to S / η_{Γ}. Let $a, b \in\left(S_{\pi}\right)_{\Gamma}$, where $\pi \in Y$; then $a \eta_{\Gamma} b$ implies that $a_{\Gamma}^{m} \subseteq b \Gamma S, b_{\Gamma}^{n} \subseteq a \Gamma S$, so $a_{\Gamma}^{m}=b \Gamma x$ and $b_{\Gamma}^{n}=a \Gamma y$, where $x, y \in S$. If $x \in S_{\vartheta}, \vartheta \neq \pi$, then $\pi=\pi \vartheta$, using (4), and we get $a_{\Gamma}^{m+1}=$ $a \Gamma a_{\Gamma}^{m}=a \Gamma(b \Gamma x)=b \Gamma(a \Gamma x) \subseteq b \Gamma\left(S_{\pi \vartheta}\right)_{\Gamma}=b \Gamma\left(S_{\pi}\right)_{\Gamma}$. Similarly, one can show that $b_{\Gamma}^{n+1} \subseteq a \Gamma\left(S_{\pi}\right)_{\Gamma}$. This shows that $\left(S_{\pi}\right)_{\Gamma}$ is right Archimedean and so it is locally associative Archimedean Γ-AG ${ }^{* *}$-groupoid S.

Next we show the uniqueness. Let S be a semilattice Y of Archimedean AG**groupoid $\left(S_{\pi}\right)_{\Gamma}, \pi \in Y$. We need to show that $\left(S_{\pi}\right)_{\Gamma}$ are equivalent classes of S $\bmod \eta_{\Gamma}$. Let $a, b \in S$. Then we show that $a \eta_{\Gamma} b$ if and only if a and b belong to the same $\left(S_{\pi}\right)_{\Gamma}$. If a and b both belong to the same $\left(S_{\pi}\right)_{\Gamma}$, then each divides the power of the other. Since $\left(S_{\pi}\right)_{\Gamma}$ is Archimedean, $a \eta_{\Gamma} b$ by the definition. Conversely, if $a \eta_{\Gamma} b$, then $a \Gamma x=b_{\Gamma}^{m}$ and $b \Gamma y=a_{\Gamma}^{n}$ for some $x, y \in S$ and some $m, n \in Z^{+}$. If $x \in\left(S_{\vartheta}\right)_{\Gamma}$, then $a \Gamma x \subseteq\left(S_{\pi \vartheta}\right)_{\Gamma}$ and $b_{\Gamma}^{m} \subseteq\left(S_{\vartheta}\right)_{\Gamma}$, so that $\pi \vartheta=\vartheta$. Hence $\vartheta \leq \pi$, in the semilattice Y. By symmetry, it follows that $\pi \leq \vartheta$, that is, $\pi=\vartheta$.

References

[1] Faisal, N. Yaqoob, K. Hila, On fuzzy (2; 2)-regular ordered Γ - $A G^{* *}$-Groupoids, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. Vol. 74(2) (2012), 87-104.
[2] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., 61(1-4)(1992), 101-106.
[3] M. A. Kazim, M. Naseerudin, On almost-semigroups, The Alig. Bull. Math., 2 (1972), 1-7.
[4] M. Khan, S. Anis, On semilattice Decomposition of an Abel-Grassmann's groupoid, Acta Math. Sinica, English Series Vol. 28(7) (2012), 1461-1468.
[5] W. Khan, F. Yousafzai, K. Hila, Congruences and decompositions of AG ${ }^{* *}$-groupoids, Miskolc Math. Notes 19(2) (2018), 931-944.
[6] Q. Mushtaq, Q. Iqbal, Decomposition of a locally associative LA-semigroup, Semigroup Forum, 41 (1990), 154-164.
[7] Q. Mushtaq, S. M. Yusuf, On locally associative LA-semigroups, J. Nat. Sci. Math., 1 (1979), 57-62.
[8] Q. Mushtaq, S. Yusuf, On LA-semigroups, Aligarh Bull. Math., 8 (1978), 65-70.
[9] P. Protić, Some remarks on Abel-Grassmann's groups, Quasigroups Relat. Syst., 20 (2012), 267-274.
[10] P.V. Protić, M. Božinović, Some congruences on an $A G^{* *}$-groupoid, Filomat, 9(3) (1995), 879-886.
[11] P.V. Protić, N. Stevanović, On Abel-Grassmann's grupoids, Proc. Math. Conf. Pristina, (1994), 31-38.
[12] M.K. Sen, On Γ-semigroups, Proceeding of International Symposium on Algebra and Its Applications, Decker Publication, New York, (1981), 301-308.
[13] N. Stevanović, P.V. Protić, Some decomposition on Abel-Grassmann's groupoids, PU.M.A., 8(2-3-4) (1997), 355-366.
(received 12.02.2019; in revised form 14.05.2019; available online 07.01.2020)
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Pakistan
E-mail: madadmath@yahoo.com
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Pakistan
E-mail: saimaanis_pk@yahoo.com
Department of Mathematical Engineering, Polytechnic University of Tirana, Albania
E-mail: kostaq_hila@yahoo.com

