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Abstract. In this paper, we have shown that a locally associative I'-AG**-groupoid S
has associative powers and S/pr is a maximal separative homomorphic image of S, where
aprb implies that al'b7 = b;“, blar = a}l“, Va,b € S. The relation nr is the least left zero
semilattice congruence on S, where nr is defined on S as anrb if and only if there exist some
positive integers m, n such that b7 C al'S and af C bI'S.

1. Introduction

An Abel-Grassmann’s groupoid [11] (abbreviated as an AG-groupoid), is a groupoid
S whose elements satisfy the invertive law (ab)ec = (cb)a, for all a,b,c € S. It is
also called a left almost semigroup [3,7,8]. In [2], the same structure is called a left
invertive groupoid. It is a useful non-associative algebraic structure, midway between
a groupoid and a commutative semigroup.

An AG-groupoid S is medial [3], that is, (ab)(cd) = (ac)(bd), for all a,b,c,d € S.
If an AG-groupoid satisfies the following property:

a(bc) = b(ac), for all a,b,c € S, (1)
then it is called an AG**-groupoid (cf. [5,10]). In an AG**-groupoid S the law
(ab)(ed) = (db)(ca) holds for all a,b,c,d € S (cf. [10]).

An AG-groupoid S is called a locally associative AG-groupoid if (aa)a = a(aa)
holds for all a € S. If S is a locally associative AG-groupoid, then it is easy to see that
(Sa)S = S(aS) or (S5)S = S(SS). If a locally associative AG-groupoid S satisfies
the identity (1), then S is known as a locally associative AG**-groupoid.

An element a of S is called left zero if ax = a, for all x € S.

Locally associative LA-semigroups have been studied by Mushtaq et al. [6, 7].
Other notions and results on AG-groupoids and AG**-groupoids, one can find in [2—-
5,8-11,13].
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274 Semilattice decomposition of locally associative I'-AG**-groupoids

M.K. Sen [12] introduced the concept of I'-semigroup in 1981. The non-associative
I'-AG-groupoid is the generalization of an associative I'-semigroup.

Let S and ' be two non-empty sets. Denote by the letters of English alphabet
the elements of S and by the letters of Greek alphabet the elements of I'. Any map
from S x I' x S to S will be called a I'-multiplication in S and denoted by (-)r.
The result of this multiplication for a,b € S and o € T" is denoted by aab. A T-
AG-groupoid [1] S is an ordered pair (S, (-)r) where S and T' are non-empty sets
and (-)r is a T-multiplication on S which satisfies the following I'-left invertive law:
V(a,b,c,a, B) € S x T'2,

(zay)Bz = (zay)pfx. (2)
A T-AG-groupoid also satisfies the I-medial law V(w, z, y, z, o, 3,7) € S* x '3,
(wax)B(yyz) = (way)B(z7z). (3)

Note that if a I'-AG-groupoid contains a left identity, then it becomes an AG-
groupoid with left identity. A T-AG-groupoid is called a I'-AG**-groupoid [1] if it
satisfies the following law V(x,vy, 2, a, 8) € S x I'?,

za(yBz) = ya(zpfz). (4)

A T-AG**-groupoid also satisfies the following I'-paramedial law

V(w,2,y,2,,8,7) € $* x I?, (waz) B(yyz) = (2ay)B(zyw).
Other concepts and results on I'-AG**-groupoids one can find in [1].

In this paper, we introduce a new non-associative algebraic structure namely lo-
cally associative I'-AG**-groupoids and decompose it using I'-congruences. An AG-
groupoid S is called a locally associative I'-AG-groupoid if (aca)Ba = aa(afBa) holds
for all a € S and o, 8 € I'. If S is a locally associative AG-groupoid, then it is easy
to see that (STa)l'S = ST'(al'S) or (ST S)I'S = ST(ST'S). For particular a € T, let
us denote aca = a? for some o € ' and aca = a2, for all @ € T, i.e., al'a = a? and
generally al'al'a . ..al'a = aft (n times).

2. Main results

Let S be an I'~AG**-groupoid and a relation pr be defined on S as follows : aprb if

and only if there exists a positive integer n such that al'b% = b’;“ and bl'aft = a?“,

for all ¢ and b in S.

ProroSITION 2.1. If S is a locally associative T'-AG**-groupoid, then aI‘a;‘+1 =
(G?H)Fa, for all a in S and positive integer n.

Proof.  alal*! = al'(alTa) = afT(aTa) = (af 'Ta)T(al'a)
= (aTa)T'(aTal™ ') = (aTa)la} = (aTa)Ta = (af™)Ta. O

PROPOSITION 2.2. In a locally associative T-AG**-groupoid S, a"Talk = a'™™, for
all a € S and positive integers m,n.
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Proof. af'™'Taf = (af!Ta)la} = (afTa)laf = (al'a})Ta = (af'Ta})la
=al'"™"Ta = af' Tt O

PROPOSITION 2.3. If S is a locally associative I'-AG**-groupoid, then for all a,b € S,
(aTb)%t = afTbE for a positive integer n > 1 and (a'b)f = bELaf, for n > 2.
Proof. We have

(al'b)3 = (aI'b)T'(aT'b) = (aT'a)T(bI'b) = aZT b3

(al'b)p™ = (aTb)ET(al'b) = (afTHE)T (aTh) = (apTa)T (bETH) = al ' THET.

Let n > 2. Then by (4) and (2), we get
(aTb)} = afTb}E = (aTal HTOILE™) = b0 ((aTal TR 1)) = b0 (b 'Tal!)Ta)

= bI((bTa) " 'Ta) = (bla)p 'T'(bla) = (bla)f = biTal. O

PROPOSITION 2.4. In a locally associative T-AG**-groupoid S, (ai")} = a™™ for all
a € S and positive integers m,n.

Proof. (ap)ft = (af'Ta)ft = (af )£ Taft = af"Tapt = ap™ ™ = ap ", -

THEOREM 2.5. Let S be a locally associative I'-AG** -groupoid. If al'bl = b’IPH and
bl'aft = a?“, for a,b € S and positive integers m,n, then aprb.

Proof. If n > m, then b "T(al'b{) = b "TbZ !, aT (b ™"ThE) = bp~mHmh
albp= ™t = pitl qTblt = ittt

THEOREM 2.6. The relation pr on a locally associative I'-AG**-groupoid is a congru-
ence relation.

Proof. Evidently pr is reflexive and symmetric. For transitivity we may proceed as
follows.
Let aprb and bprc so that there exist positive integers n,m such that al'bp =
bRt blap = at ™, and bUc = it eTbp = bt
Let k = (n+ 1)(m + 1) — 1, that is, &k = n(m + 1) + m. Using (2), (4) and
Proposition 2.2, 2.3 and 2.4, we get
alck = aFc?(m+1)+m = aF(cF(m+1)Fcf”) = al{(cPTHETP} = al{(b0cf)fT e}
= al{(bpT ™D} = al' (" T0R) = T (albp)
= TR = (ETh)ptt = bt T = (prep)att = ot

Similarly, cl'a® = a’li'H. Thus pr is an equivalence relation. To show that pr is
compatible, assume that aprb such that for some positive integer n, al'b}t = b?“ and
blall = aF'H.
Let ¢ € S, then by identity (3) and Propositions 2.4 and 2.1, we get
(aT'e)D(bTe)E = (ale)T (BETel) = (albE)T(elef) = bt et = (ble)pt.

Similarly, (b['c)T'(al'c)} = (al'c)*!. Hence pr is a congruence relation on S. O
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LEMMA 2.7. Let S be a locally associative I'-AG**-groupoid; then al'bprbla, for all
a,bes.

Proof. (aTb)T(bTa) ™t = (al'b)T(ap IO = (alal )T (Th1T)
= apPPropt? = (bla) P2,
Similarly, (bTa)T'(aT'b)+* = (aT'b) 2. Hence al'bprbla, for all a,b € S. U

A relation pr on an AG-groupoid S is called separative if al'bpra? and al'bprb2
imply that apr.

THEOREM 2.8. The relation pr is separative.

Proof. Let a,b € S, al'bpra? and al'bprb?. Then by the definition of pr, there exist
positive integers m and n such that,

(al'b)T (ar)r = (ar)mH aFF(an) (aI‘b)?“
and (aTb)D(b2)7 = (bR) 2t 62T (D) = ()t
Then (al'b)Ta™ = (aTb)T (e Tal™) = (al'a™)T (bTaf)

= (e ™D (bTa?) = bl (af ' Taf) = bTaZ™ 1,

but (aT'b)TaZ™ = (a2)Pt! = a2 which implies that blaf™ ! = a2™*2. Also,
(aTH)D(b2)% = (b2)pt implies that b"T'Ta = b2"*2. Also, we get bE"T°Th2 =

(b2 'Ta)Tb2, which implies that b2""* = B2 (al'b2" ) = (b2 ToE ) = aTbE+s.
Hence by Theorem 2.5, aprb. U

THEOREM 2.9. Let S be a locally associative T'-AG**-groupoid. Then S/pr is a maz-
imal separative commutative image of S.

Proof. By Theorem 2.8, pr is separative, and hence S/pr is separative. We now show
that pr is contained in every separative congruence relation op on S. Let aprb, so

that there exists a positive integer n such that al'bf = b and bla}t = alt ™.

We need to show that aorb, where or is a separative congruence on S. Let k be
any positive integer such that

albElopbft™ and  blafopart™ (5)
Suppose that k£ > 3.
(alby~H)f = (albp )T (albp ') = af b~ % = (al'a)T'(bf*Tby)
= (aTbE?)T(al'bk) = (aTbE )T

Therefore (aTbf~ )0 (al'bl)or (aTbE2)THETL.

Using the identity (2) and Proposition 2.2, we get

(aDbp 2 THEH! = (BT 2)Ta = b7 'Ta = (BETbE 1 )la = (al'bE~ " )Ibf:

Also  (albE"HTBE = (WETHE " )Ta = b2 'Ta = (W' THE)Ta = (aTbE)THE
implying that (b8 )20 (aTbE)THE.

Since albEorbE™ and (albE)TOE opbE M THE™ hence (aTbf™!)2or (b)2. Tt fur-
ther implies that (aTbE™")2or(albl ) Tbkor(bE)3. Thus albEtopbk. Similarly,
blar 'orak. Thus if (5) holds for k, it holds for k — 1.
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Now obviously (5) yields al'b3obt and blaofat. Also, we get

(aTb3)Taiopbila? and (bTa)ThEoap b2,

(a2Tb3)TaopTbETa? and (b2Tad)TbopapTbE,

(b3Ta?)TacpafTbt and (a3Tb3)Tborbilat,
a3 Tbiopailb and bilalopbilat,
apTbdorai b and apTbdorbilat,

which imply that (b2Ta)2ofailbiof(a2T'b)2, and as of. is separative and
(bila)[(aZTb) = (bila2)[(al'b) = (a2T'b2)['(al'b) = ail'bd, so ailbofbila. Now
we get: (a2lb)TaopI'(bila)Ta, (al'b)Tatopailbd, a2l (bla)ofailbe, bladofailb2,
but bladohat.

Thus (bTa)20rbla o (a)2. Now since of. is separative and a2I'(bI'a) = bl'al, so
we get blaoha?.

Similarly we can obtain al'bojb.

Also it is easy to show that (5) holds for £ = 2. Thus if (5) holds for &, it holds
for k = 1. By induction down from k, it follows that (5) holds for k = 1, al'borb? and
blLaora?. Now using (2) and Proposition 2.4 on al'borb?, we get (bl'a)2orbila, and
again using (4) and (2) on al'borb? we get bilaorbg. So (bla)iorbilaorby implies
that bl"aarb% which further implies that al'borbl'a. Thus we obtain aorb. Hence
pr C or and so S/pr is the maximal separative commutative image of S. O

LEMMA 2.10. IfaTa =z (a = a?) for some x in a locally associative I'-AG**-groupoid
S, then xfl'a =z for some positive integer n.
Proof. Let n = 2. By using (3), we get

rila = (2Tx)T(ala) = (2Ta)T (2Ta) = 2Tz = 3.
Let the result be true for k, that is, x’lifa = x{i Then by (3) and Proposition 2.1, we
get 281 Ta = (aTzk)(ala) = (2Ta)T(zkTa) = 2Tk = 28+ Hence afTa = 2 for
all positive integers n. 0
LEMMA 2.11. If S is a T-AG-groupoid, then Qr = {x € S | 2la = x and a = a?} is
a commutative subsemigroup.
Proof. As al'a = a, we have a € Qr. Now if z,y € Qr, then by identity (3),
2y = (2la)T'(yT'a) = (2T'y)[(al'a) = (aTy)Ta.

To prove that Qr is commutative and associative, assume that x,y and z belong to
Qr. Then by using (2), we get 2Ty = (zT'a)T'y = (yT'a)Tx = yT'z. Also, (aT'y)Tz =
(2Ty)Tz = 2T'(yI'z). Hence Qr is a commutative subsemigroup of S. O
THEOREM 2.12. Let pr and or be separative congruences on locally associative I'-
AG**-groupoid S and 73Ta = 2% (a = a?) for allx € S. If pr N (Qr x Qr) C
or N (Qr x Qr), then pr C or.

Proof. If xpry, then (22T (2Ty))2pr (22T (aTy)T (22Ty2) pr(2z2Ty2)2. Tt follows that
(22T (2Dy))2, (z2Ty2)%2 C Qr. Now by (3), (2), (4), respectively, we get
(22T (2T'y))P(aflyf) = (aflaf)l(aTy)Tyf) = (272t ) T (yple)
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= apl(yple) = ypl(aplz) = yplap
and (yPTap)la = (yplap)T(ala) = (ypla)l (2pla) = ypTap
So 2L (aT'y)T (zfI'yf) € Qr. Hence xfl'(al'y))for (27 (aTy) T (aE Ty )or (2ETyE)7
implies that 22T (xTy)orzily2.

Since 22y prat and (z2Ty3), 2t C Qr, thus 22Ty2orat. From Proposition 2.4,
we get (22)iorail(xTy)or(2Ty)%, which implies that z%orzly. Finally, z3pry
and z3,y2 C Qr, implying that zZoryZ, 2%oralyory?. Thus xory because or is
separative. [l

LEMMA 2.13. Every left zero congruence is commutative.

Proof. Let aora and borb which imply that al'boral'b, (al'b)T' (al'b)o(al'b)3 = (brl'a)?
and so we obtain al'bopbl'a. (]

The relation nr is defined on S by anrb if and only if there exist some positive
integers m,n such that bf* C aI'S and ap C 0I'S.

THEOREM 2.14. Let S be a locally associative I'-AG**-groupoid. Then the relation np
is the least semilattice congruence on S.

Proof. The relation nr is obviously reflexive and symmetric. To show the transitivity,
let anrb and bnre, where a,b,c € S. Then al'x = b and bI'y = ¢, for some z,y € S.
Using (4), we get ¢ = ()P = (bl'y)P = yPIdP = yfT'(al'z) = al'(y'Tx),
implying that cf = al'z, where k = mn and z = (y®T'z). Similarly, bl'2’ = af”/ and
[y’ = b implying that af = Tz,

Let a,b,c € S and anrb < (Im,n € Z1)(Fz,y € S), 0" = al'z,alt = bl'y. If
m = 1,n > 1, that is, b = al'z, a} = bl'y for some z,y € S, then b} = (bI'b)'(al'z) =
al'(bil'z) C al'S.

Similarly we can consider the case m = n = 1. Suppose that m,n > 1. Then
using (2) and Proposition 2.4, we obtain

(o) = bPTel = (aTx)Tef = (al'z)T(clef ™) = (al'e)T (2Tt = (aT'e)Ty,

where y = xl"c?il. Thus al'enrbdl'c and cl'anrcl’b.

Now to show that nr is a semilattice congruence on S, first we need to show that
anrb implies al'bnra.

Let anrb; then bf* = al'z and apt = bI'y for some z,y € S. So by Proposition 2.4
and (3), we get (al'D)P = aPTOP = af'T'(al'x) = al'(a'T'z). Also, af = bI'y implies
that aft ™2 = aiTa}t = (aTa)[(bT'y) = (aI'b)I'(al'y). Hence albnra which implies that
atnra, (ad)n. = (a)y. and so S/nr is idempotent.

Next we show that nr is commutative. By Proposition 2.4, (aI'b)3 = (bla)3,
which shows that aI'bnrbI'a that is, (@), I'(b)y. = (b)neI'(a)nr, that is, S/nr is a com-
mutative AG-groupoid and so it is left zero commutative semigroup of idempotents.
Therefore, nr is a semilattice congruence on S. Next we will show that np is contained
in any other left zero semilattice congruence pr on S. Let anrb; then bf* = al'z and
al = bl'y. Now since apra? and bprb?, it implies that al'zprail'z, apra® and bprbf
which further implies that aprbl'y and bpral’xz. It can be easily seen that al'bprbl'a.
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Also since bprb and pr is compatible, so we get bl'yprbZI'y. We can easily see that
blapralbpraprblyprb?ly which implies that blaprb?ly. Similarly, we can show
that al'bpra?lz. So aprblyprbilyprblapralbprailzpralzprb implies that aprb.
Thus nr is a least semilattice congruence on S. U

THEOREM 2.15. nr is separative.
Proof. Let a2nral'b and al'bnrbd, then there exist positive integers m,m’, n,n’ such
that (a})p' = (al'b)3lz, (alb)R = (a})2Ta’ and (aTb)} = (b2)3Ty, (b3)f= (al'b)3T.
Now we get, at"*? = a¥"Ta} = (ad)PTad = ((ayb)iTx)Ta}

= (a2T2)T(al'b)} = (aiTx)T(a2Th3) = (afT2)T (bETa?)

= bAl((a2Tx)Tad = bil'ts, where tg = ((a2Tx)lad)

Similarly, b2 = bETbE = ((al'b)ETy)T0E = (bETy)T (aZT'b3)
= afT((b3Ty)TbY) = ail'ty, where t; = ((bEI'y)Tb3).
Hence nr is separative. 0

THEOREM 2.16. Let S be a locally associative T'-AG**-groupoid. Then S/nr is a
maximal semilattice separative image of S.

Proof. By Theorem 2.14, nr is the least semilattice congruence on S and S/nr is a
semilattice. Hence S/nr is a maximal semilattice separative image of S. U

THEOREM 2.17. Ewery locally associative I'-AG**-groupoid S is uniquely expressible
as a semilattice Y of Archimedean locally associative I'-AG**-groupoids (Sy)r(m € Y).
The semilattice Y is isomorphic with the mazimal semilattice separative image S/nr
of S and (Sz)r(m €Y) are the equivalence classes of S modnr.

Proof. By Theorem 2.14, nr is the least semilattice congruence on S. Next we will
prove that the equivalence classes modnr are Archimedean locally associative I'-AG**-
groupoids and the semilattice Y is isomorphic to S/nr. Let a,b € (S;)r, where
m € Y; then anrd implies that af C bI'S,bp C al'S, so af' = bI'z and b} = al'y,
where z,y € S. If & € Sy,¥ # w, then 7 = 7, using (4), and we get a’I?H =
alaf = al'(bT'z) = bI'(al'z) C bI'(Syrp)r = bI'(Sy)r. Similarly, one can show that
bt C al'(Sx)r. This shows that (Sy)r is right Archimedean and so it is locally
associative Archimedean I'~AG**-groupoid S.

Next we show the uniqueness. Let S be a semilattice Y of Archimedean AG**-
groupoid (Sz)r,m € Y. We need to show that (S;)r are equivalent classes of S
modnr. Let a,b € S. Then we show that anpb if and only if ¢ and b belong to the
same (S;)r. If a and b both belong to the same (S;)r, then each divides the power
of the other. Since (S;)r is Archimedean, anrd by the definition. Conversely, if anrb,
then al'z = b and bI'y = af for some z,y € S and some m,n € Z*. If x € (Sy)r,
then al'z C (Szy)r and b C (Sy)r, so that ) = 9. Hence ¥ < 7, in the semilattice
Y. By symmetry, it follows that 7 < 9, that is, 7 = 9. O
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