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Abstract. In this paper, we have shown that a locally associative Γ-AG∗∗-groupoid S
has associative powers and S/ρΓ is a maximal separative homomorphic image of S, where
aρΓb implies that aΓbnΓ = bn+1

Γ , bΓanΓ = an+1
Γ , ∀a, b ∈ S. The relation ηΓ is the least left zero

semilattice congruence on S, where ηΓ is defined on S as aηΓb if and only if there exist some
positive integers m,n such that bmΓ ⊆ aΓS and anΓ ⊆ bΓS.

1. Introduction

An Abel-Grassmann’s groupoid [11] (abbreviated as an AG-groupoid), is a groupoid
S whose elements satisfy the invertive law (ab)c = (cb)a, for all a, b, c ∈ S. It is
also called a left almost semigroup [3, 7, 8]. In [2], the same structure is called a left
invertive groupoid. It is a useful non-associative algebraic structure, midway between
a groupoid and a commutative semigroup.

An AG-groupoid S is medial [3], that is, (ab)(cd) = (ac)(bd), for all a, b, c, d ∈ S.
If an AG-groupoid satisfies the following property:

a(bc) = b(ac), for all a, b, c ∈ S, (1)

then it is called an AG∗∗-groupoid (cf. [5, 10]). In an AG∗∗-groupoid S the law
(ab)(cd) = (db)(ca) holds for all a, b, c, d ∈ S (cf. [10]).

An AG-groupoid S is called a locally associative AG-groupoid if (aa)a = a(aa)
holds for all a ∈ S. If S is a locally associative AG-groupoid, then it is easy to see that
(Sa)S = S(aS) or (SS)S = S(SS). If a locally associative AG-groupoid S satisfies
the identity (1), then S is known as a locally associative AG∗∗-groupoid.

An element a of S is called left zero if ax = a, for all x ∈ S.
Locally associative LA-semigroups have been studied by Mushtaq et al. [6, 7].

Other notions and results on AG-groupoids and AG**-groupoids, one can find in [2–
5,8–11,13].
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274 Semilattice decomposition of locally associative Γ-AG∗∗-groupoids

M.K. Sen [12] introduced the concept of Γ-semigroup in 1981. The non-associative
Γ-AG-groupoid is the generalization of an associative Γ-semigroup.

Let S and Γ be two non-empty sets. Denote by the letters of English alphabet
the elements of S and by the letters of Greek alphabet the elements of Γ. Any map
from S × Γ × S to S will be called a Γ-multiplication in S and denoted by (·)Γ.
The result of this multiplication for a, b ∈ S and α ∈ Γ is denoted by aαb. A Γ-
AG-groupoid [1] S is an ordered pair (S, (·)Γ) where S and Γ are non-empty sets
and (·)Γ is a Γ-multiplication on S which satisfies the following Γ-left invertive law:
∀(a, b, c, α, β) ∈ S3 × Γ2,

(xαy)βz = (zαy)βx. (2)

A Γ-AG-groupoid also satisfies the Γ-medial law ∀(w, x, y, z, α, β, γ) ∈ S4 × Γ3,

(wαx)β(yγz) = (wαy)β(xγz). (3)

Note that if a Γ-AG-groupoid contains a left identity, then it becomes an AG-
groupoid with left identity. A Γ-AG-groupoid is called a Γ-AG∗∗-groupoid [1] if it
satisfies the following law ∀(x, y, z, α, β) ∈ S3 × Γ2,

xα(yβz) = yα(xβz). (4)

A Γ-AG∗∗-groupoid also satisfies the following Γ-paramedial law

∀(w, x, y, z, α, β, γ) ∈ S4 × Γ3, (wαx)β(yγz) = (zαy)β(xγw).

Other concepts and results on Γ-AG**-groupoids one can find in [1].
In this paper, we introduce a new non-associative algebraic structure namely lo-

cally associative Γ-AG**-groupoids and decompose it using Γ-congruences. An AG-
groupoid S is called a locally associative Γ-AG-groupoid if (aαa)βa = aα(aβa) holds
for all a ∈ S and α, β ∈ Γ. If S is a locally associative AG-groupoid, then it is easy
to see that (SΓa)ΓS = SΓ(aΓS) or (SΓS)ΓS = SΓ(SΓS). For particular α ∈ Γ, let
us denote aαa = a2

α for some α ∈ Γ and aαa = a2
Γ, for all α ∈ Γ, i.e., aΓa = a2

Γ and
generally aΓaΓa . . . aΓa = anΓ (n times).

2. Main results

Let S be an Γ-AG∗∗-groupoid and a relation ρΓ be defined on S as follows : aρΓb if
and only if there exists a positive integer n such that aΓbnΓ = bn+1

Γ and bΓanΓ = an+1
Γ ,

for all a and b in S.

Proposition 2.1. If S is a locally associative Γ-AG∗∗-groupoid, then aΓan+1
Γ =

(an+1
Γ )Γa, for all a in S and positive integer n.

Proof. aΓan+1
Γ = aΓ(anΓΓa) = anΓΓ(aΓa) = (an−1

Γ Γa)Γ(aΓa)

= (aΓa)Γ(aΓan−1
Γ ) = (aΓa)ΓanΓ = (anΓΓa)Γa = (an+1

Γ )Γa.

Proposition 2.2. In a locally associative Γ-AG∗∗-groupoid S, amΓ ΓanΓ = am+n
Γ , for

all a ∈ S and positive integers m,n.
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Proof. am+1
Γ ΓanΓ = (amΓ Γa)ΓanΓ = (anΓΓa)ΓamΓ = (aΓanΓ)ΓamΓ = (amΓ ΓanΓ)Γa

= am+n
Γ Γa = am+n+1

Γ .

Proposition 2.3. If S is a locally associative Γ-AG∗∗-groupoid, then for all a, b ∈ S,
(aΓb)nΓ = anΓΓbnΓ for a positive integer n ≥ 1 and (aΓb)nΓ = bnΓΓanΓ, for n ≥ 2.

Proof. We have

(aΓb)2
Γ = (aΓb)Γ(aΓb) = (aΓa)Γ(bΓb) = a2

ΓΓb2Γ

(aΓb)k+1
Γ = (aΓb)kΓΓ(aΓb) = (akΓΓbkΓ)Γ(aΓb) = (akΓΓa)Γ(bkΓΓb) = ak+1

Γ Γbk+1
Γ .

Let n ≥ 2. Then by (4) and (2), we get

(aΓb)nΓ = anΓΓbnΓ = (aΓan−1
Γ )Γ(bΓbn−1

Γ ) = bΓ((aΓan−1
Γ )Γbn−1

Γ )) = bΓ((bn−1
Γ Γan−1

Γ )Γa)

= bΓ((bΓa)n−1
Γ Γa) = (bΓa)n−1

Γ Γ(bΓa) = (bΓa)nΓ = bnΓΓanΓ.

Proposition 2.4. In a locally associative Γ-AG∗∗-groupoid S, (amΓ )nΓ = amnΓ for all
a ∈ S and positive integers m,n.

Proof. (am+1
Γ )nΓ = (amΓ Γa)nΓ = (amΓ )nΓΓanΓ = amnΓ ΓanΓ = amn+n

Γ = a
n(m+1)
Γ . �

Theorem 2.5. Let S be a locally associative Γ-AG∗∗-groupoid. If aΓbmΓ = bm+1
Γ and

bΓanΓ = an+1
Γ , for a, b ∈ S and positive integers m,n, then aρΓb.

Proof. If n > m, then bn−mΓ Γ(aΓbmΓ ) = bn−mΓ Γbm+1
Γ , aΓ(bn−mΓ ΓbmΓ ) = bn−m+m+1

Γ ,
aΓbn−m+m

Γ = bn+1
Γ , aΓbnΓ = bn+1

Γ . �

Theorem 2.6. The relation ρΓ on a locally associative Γ-AG∗∗-groupoid is a congru-
ence relation.

Proof. Evidently ρΓ is reflexive and symmetric. For transitivity we may proceed as
follows.

Let aρΓb and bρΓc so that there exist positive integers n,m such that aΓbnΓ =
bn+1
Γ , bΓanΓ = an+1

Γ , and bΓcmΓ = cm+1
Γ , cΓbmΓ = bm+1

Γ .
Let k = (n + 1)(m + 1) − 1, that is, k = n(m + 1) + m. Using (2), (4) and

Proposition 2.2, 2.3 and 2.4, we get

aΓckΓ = aΓc
n(m+1)+m
Γ = aΓ(c

n(m+1)
Γ ΓcmΓ ) = aΓ{(cm+1

Γ )nΓΓcmΓ } = aΓ{(bΓcmΓ )nΓΓcmΓ }

= aΓ{(bnΓΓcmnΓ )ΓcmΓ } = aΓ(c
m(n+1)
Γ ΓbnΓ) = c

m(n+1)
Γ Γ(aΓbnΓ)

= c
m(n+1)
Γ Γbn+1

Γ = (cmΓ Γb)n+1
Γ = bn+1

Γ Γc
m(n+1)
Γ = (bΓcmΓ )n+1

Γ = ck+1
Γ .

Similarly, cΓak = ak+1
Γ . Thus ρΓ is an equivalence relation. To show that ρΓ is

compatible, assume that aρΓb such that for some positive integer n, aΓbnΓ = bn+1
Γ and

bΓanΓ = an+1
Γ .

Let c ∈ S, then by identity (3) and Propositions 2.4 and 2.1, we get

(aΓc)Γ(bΓc)nΓ = (aΓc)Γ(bnΓΓcnΓ) = (aΓbnΓ)Γ(cΓcnΓ) = bn+1
Γ Γcn+1

Γ = (bΓc)n+1
Γ .

Similarly, (bΓc)Γ(aΓc)nΓ = (aΓc)n+1
Γ . Hence ρΓ is a congruence relation on S. �
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Lemma 2.7. Let S be a locally associative Γ-AG∗∗-groupoid; then aΓbρΓbΓa, for all
a, b ∈ S.
Proof. (aΓb)Γ(bΓa)n+1

Γ = (aΓb)Γ(an+1
Γ Γbn+1

Γ ) = (aΓan+1
Γ )Γ(bΓbn+1

Γ )

= an+2
Γ Γbn+2

Γ = (bΓa)n+2
Γ .

Similarly, (bΓa)Γ(aΓb)n+1
Γ = (aΓb)n+2

Γ . Hence aΓbρΓbΓa, for all a, b ∈ S. �

A relation ρΓ on an AG-groupoid S is called separative if aΓbρΓa
2
Γ and aΓbρΓb

2
Γ

imply that aρΓ.

Theorem 2.8. The relation ρΓ is separative.

Proof. Let a, b ∈ S, aΓbρΓa
2
Γ and aΓbρΓb

2
Γ. Then by the definition of ρΓ, there exist

positive integers m and n such that,

(aΓb)Γ(a2
Γ)mΓ = (a2

Γ)m+1
Γ , a2

ΓΓ(aΓb)mΓ = (aΓb)m+1
Γ

and (aΓb)Γ(b2Γ)nΓ = (b2Γ)n+1
Γ , b2ΓΓ(aΓb)nΓ = (aΓb)n+1

Γ .

Then (aΓb)Γa2m
Γ = (aΓb)Γ(amΓ ΓamΓ ) = (aΓamΓ )Γ(bΓamΓ )

= (am+1
Γ )Γ(bΓamΓ ) = bΓ(am+1

Γ ΓamΓ ) = bΓa2m+1
Γ ,

but (aΓb)Γa2m
Γ = (a2

Γ)m+1
Γ = a2m+2

Γ , which implies that bΓa2m+1
Γ = a2m+2

Γ . Also,
(aΓb)Γ(b2Γ)nΓ = (b2Γ)n+1

Γ implies that b2n+1
Γ Γa = b2n+2

Γ . Also, we get b2n+2
Γ Γb2Γ =

(b2n+1
Γ Γa)Γb2Γ, which implies that b2n+4

Γ = b2ΓΓ(aΓb2n+1
Γ ) = aΓ(b2ΓΓb2n+1

Γ ) = aΓb2n+3
Γ .

Hence by Theorem 2.5, aρΓb. �

Theorem 2.9. Let S be a locally associative Γ-AG∗∗-groupoid. Then S/ρΓ is a max-
imal separative commutative image of S.

Proof. By Theorem 2.8, ρΓ is separative, and hence S/ρΓ is separative. We now show
that ρΓ is contained in every separative congruence relation σΓ on S. Let aρΓb, so
that there exists a positive integer n such that aΓbnΓ = bn+1

Γ and bΓanΓ = an+1
Γ .

We need to show that aσΓb, where σΓ is a separative congruence on S. Let k be
any positive integer such that

aΓbkΓΓσΓb
k+1
Γ and bΓakΓσΓa

k+1
Γ (5)

Suppose that k ≥ 3.

(aΓbk−1
Γ )2

Γ = (aΓbk−1
Γ )Γ(aΓbk−1

Γ ) = a2
ΓΓb2k−2

Γ = (aΓa)Γ(bk−2
Γ ΓbkΓ)

= (aΓbk−2
Γ )Γ(aΓbkΓ) = (aΓbk−2

Γ )Γbk+1
Γ .

Therefore (aΓbk−2
Γ )Γ(aΓbkΓ)σΓ(aΓbk−2

Γ )Γbk+1
Γ .

Using the identity (2) and Proposition 2.2, we get

(aΓbk−2
Γ )Γbk+1

Γ = (bk+1
Γ Γbk−2

Γ )Γa = b2k−1
Γ Γa = (bkΓΓbk−1

Γ )Γa = (aΓbk−1
Γ )ΓbkΓ

Also (aΓbk−1
Γ )ΓbkΓ = (bkΓΓbk−1

Γ )Γa = b2k−1
Γ Γa = (bk−1

Γ ΓbkΓ)Γa = (aΓbkΓ)Γbk−1
Γ ,

implying that (aΓbk−1
Γ )2

ΓσΓ(aΓbkΓ)Γbk−1
Γ .

Since aΓbkΓσΓb
k+1
Γ and (aΓbkΓ)Γbk−1

Γ σΓb
k+1
Γ Γbk−1

Γ , hence (aΓbk−1
Γ )2

ΓσΓ(bkΓ)2
Γ. It fur-

ther implies that (aΓbk−1
Γ )2

ΓσΓ(aΓbk−1
Γ )ΓbkΓσΓ(bkΓ)2

Γ. Thus aΓbk−1
Γ σΓb

k
Γ. Similarly,

bΓak−1
Γ σΓa

k
Γ. Thus if (5) holds for k, it holds for k − 1.
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Now obviously (5) yields aΓb3Γσ
′
Γb

4
Γ and bΓa3

Γσ
′
Γa

4
Γ. Also, we get

(aΓb3Γ)Γa2
Γσ
′
Γb

4
ΓΓa2

Γ and (bΓa3
Γ)Γb2Γσ

′
Γa

4
ΓΓb2Γ,

(a2
ΓΓb3Γ)Γaσ′ΓΓb4ΓΓa2

Γ and (b2ΓΓa3
Γ)Γbσ′Γa

4
ΓΓb2Γ,

(b3ΓΓa2
Γ)Γaσ′Γa

2
ΓΓb4Γ and (a3

ΓΓb2Γ)Γbσ′Γb
2
ΓΓa4

Γ,

a3
ΓΓb3Γσ

′
Γa

2
ΓΓb4Γ and b3ΓΓa3

Γσ
′
Γb

2
ΓΓa4

Γ,

a3
ΓΓb3Γσ

′
Γa

2
ΓΓb4Γ and a3

ΓΓb3Γσ
′
Γb

2
ΓΓa4

Γ,

which imply that (b2ΓΓa)2
Γσ
′
Γa

3
ΓΓb3Γσ

′
Γ(a2

ΓΓb)2
Γ, and as σ′Γ is separative and

(b2ΓΓa)Γ(a2
ΓΓb) = (b2ΓΓa2

Γ)Γ(aΓb) = (a2
ΓΓb2Γ)Γ(aΓb) = a3

ΓΓb3Γ, so a2
ΓΓbσ′Γb

2
ΓΓa. Now

we get: (a2
ΓΓb)Γaσ′ΓΓ(b2ΓΓa)Γa, (aΓb)Γa2

Γσ
′
Γa

2
ΓΓb2Γ, a2

ΓΓ(bΓa)σ′Γa
2
ΓΓb2Γ, bΓa3

Γσ
′
Γa

2
ΓΓb2Γ,

but bΓa3
Γσ
′
Γa

4
Γ.

Thus (bΓa)2
Γσ
′
ΓbΓa

3
Γσ
′
Γ(a2

Γ)2
Γ. Now since σ′Γ is separative and a2

ΓΓ(bΓa) = bΓa3
Γ, so

we get bΓaσ′Γa
2
Γ.

Similarly we can obtain aΓbσ′Γb
2
Γ.

Also it is easy to show that (5) holds for k = 2. Thus if (5) holds for k, it holds
for k = 1. By induction down from k, it follows that (5) holds for k = 1, aΓbσΓb

2
Γ and

bΓaσΓa
2
Γ. Now using (2) and Proposition 2.4 on aΓbσΓb

2
Γ, we get (bΓa)2

ΓσΓb
3
ΓΓa, and

again using (4) and (2) on aΓbσΓb
2
Γ we get b3ΓΓaσΓb

4
Γ. So (bΓa)2

ΓσΓb
3
ΓΓaσΓb

4
Γ implies

that bΓaσΓb
2
Γ which further implies that aΓbσΓbΓa. Thus we obtain aσΓb. Hence

ρΓ ⊆ σΓ and so S/ρΓ is the maximal separative commutative image of S. �

Lemma 2.10. If xΓa = x (a = a2
Γ) for some x in a locally associative Γ-AG∗∗-groupoid

S, then xnΓΓa = xnΓ for some positive integer n.

Proof. Let n = 2. By using (3), we get

x2
ΓΓa = (xΓx)Γ(aΓa) = (xΓa)Γ(xΓa) = xΓx = x2

Γ.

Let the result be true for k, that is, xkΓΓa = xkΓ. Then by (3) and Proposition 2.1, we
get xk+1

Γ Γa = (xΓxkΓ)Γ(aΓa) = (xΓa)Γ(xkΓΓa) = xΓxkΓ = xk+1
Γ . Hence xnΓΓa = xnΓ for

all positive integers n. �

Lemma 2.11. If S is a Γ-AG-groupoid, then QΓ = {x ∈ S | xΓa = x and a = a2
Γ} is

a commutative subsemigroup.

Proof. As aΓa = a, we have a ∈ QΓ. Now if x, y ∈ QΓ, then by identity (3),
xΓy = (xΓa)Γ(yΓa) = (xΓy)Γ(aΓa) = (xΓy)Γa.

To prove that QΓ is commutative and associative, assume that x, y and z belong to
QΓ. Then by using (2), we get xΓy = (xΓa)Γy = (yΓa)Γx = yΓx. Also, (xΓy)Γz =
(zΓy)Γx = xΓ(yΓz). Hence QΓ is a commutative subsemigroup of S. �

Theorem 2.12. Let ρΓ and σΓ be separative congruences on locally associative Γ-
AG∗∗-groupoid S and x2

ΓΓa = x2
Γ (a = a2

Γ) for all x ∈ S. If ρΓ ∩ (QΓ × QΓ) ⊆
σΓ ∩ (QΓ ×QΓ), then ρΓ ⊆ σΓ.

Proof. If xρΓy, then (x2
ΓΓ(xΓy))2

ΓρΓ(x2
ΓΓ(xΓy)Γ(x2

ΓΓy2
Γ)ρΓ(x2

ΓΓy2
Γ)2

Γ. It follows that
(x2

ΓΓ(xΓy))2
Γ, (x

2
ΓΓy2

Γ)2
Γ ⊆ QΓ. Now by (3), (2), (4), respectively, we get

(x2
ΓΓ(xΓy))Γ(x2

ΓΓy2
Γ) = (x2

ΓΓx2
Γ)Γ(xΓy)Γy2

Γ) = (x2
ΓΓx2

Γ)Γ(y3
ΓΓx)
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= x4
ΓΓ(y3

ΓΓx) = y3
ΓΓ(x4

ΓΓx) = y3
ΓΓx5

Γ

and (y3
ΓΓx5

Γ)Γa = (y3
ΓΓx5

Γ)Γ(aΓa) = (y3
ΓΓa)Γ(x5

ΓΓa) = y3
ΓΓx5

Γ .

So x2
ΓΓ(xΓy)Γ(x2

ΓΓy2
Γ) ⊆ QΓ. Hence x2

ΓΓ(xΓy))2
ΓσΓ(x2

ΓΓ(xΓy)Γ(x2
ΓΓy2

Γ)σΓ(x2
ΓΓy2

Γ)2
Γ

implies that x2
ΓΓ(xΓy)σΓx

2
ΓΓy2

Γ.
Since x2

ΓΓy2
ΓρΓx

4
Γ and (x2

ΓΓy2
Γ), x4

Γ ⊆ QΓ, thus x2
ΓΓy2

ΓσΓx
4
Γ. From Proposition 2.4,

we get (x2
Γ)2

ΓσΓx
2
ΓΓ(xΓy)σΓ(xΓy)2

Γ, which implies that x2
ΓσΓxΓy. Finally, x2

ΓρΓy
2
Γ

and x2
Γ, y

2
Γ ⊆ QΓ, implying that x2

ΓσΓy
2
Γ, x

2
ΓσΓxΓyσΓy

2
Γ. Thus xσΓy because σΓ is

separative. �

Lemma 2.13. Every left zero congruence is commutative.

Proof. Let aσΓa and bσΓb which imply that aΓbσΓaΓb, (aΓb)Γ(aΓb)σ(aΓb)2
Γ = (bΓΓa)2

Γ

and so we obtain aΓbσΓbΓa. �

The relation ηΓ is defined on S by aηΓb if and only if there exist some positive
integers m,n such that bmΓ ⊆ aΓS and anΓ ⊆ bΓS.

Theorem 2.14. Let S be a locally associative Γ-AG∗∗-groupoid. Then the relation ηΓ

is the least semilattice congruence on S.

Proof. The relation ηΓ is obviously reflexive and symmetric. To show the transitivity,
let aηΓb and bηΓc, where a, b, c ∈ S. Then aΓx = bmΓ and bΓy = cnΓ, for some x, y ∈ S.
Using (4), we get cmnΓ = (cnΓ)mΓ = (bΓy)mΓ = ymΓ ΓbmΓ = ymΓ Γ(aΓx) = aΓ(ymΓ Γx),

implying that ckΓ = aΓz, where k = mn and z = (ymΓ Γx). Similarly, bΓx′ = am
′

Γ and

cΓy′ = bn
′

Γ implying that ak
′

Γ = cΓz′.
Let a, b, c ∈ S and aηΓb ⇔ (∃m,n ∈ Z+)(∃x, y ∈ S), bmΓ = aΓx, anΓ = bΓy. If

m = 1, n > 1, that is, b = aΓx, anΓ = bΓy for some x, y ∈ S, then b3Γ = (bΓb)Γ(aΓx) =
aΓ(b2ΓΓx) ⊆ aΓS.

Similarly we can consider the case m = n = 1. Suppose that m,n > 1. Then
using (2) and Proposition 2.4, we obtain

(bΓc)mΓ = bmΓ ΓcmΓ = (aΓx)ΓcmΓ = (aΓx)Γ(cΓcm−1
Γ ) = (aΓc)Γ(xΓcm−1

Γ ) = (aΓc)Γy,

where y = xΓcm−1
Γ . Thus aΓcηΓbΓc and cΓaηΓcΓb.

Now to show that ηΓ is a semilattice congruence on S, first we need to show that
aηΓb implies aΓbηΓa.

Let aηΓb; then bmΓ = aΓx and anΓ = bΓy for some x, y ∈ S. So by Proposition 2.4
and (3), we get (aΓb)mΓ = amΓ ΓbmΓ = amΓ Γ(aΓx) = aΓ(amΓ Γx). Also, anΓ = bΓy implies
that an+2

Γ = a2
ΓΓanΓ = (aΓa)Γ(bΓy) = (aΓb)Γ(aΓy). Hence aΓbηΓa which implies that

a2
ΓηΓa, (a

2
Γ)ηΓ = (a)ηΓ and so S/ηΓ is idempotent.

Next we show that ηΓ is commutative. By Proposition 2.4, (aΓb)2
Γ = (bΓa)2

Γ,
which shows that aΓbηΓbΓa that is, (a)ηΓΓ(b)ηΓ = (b)ηΓΓ(a)ηΓ , that is, S/ηΓ is a com-
mutative AG-groupoid and so it is left zero commutative semigroup of idempotents.
Therefore, ηΓ is a semilattice congruence on S. Next we will show that ηΓ is contained
in any other left zero semilattice congruence ρΓ on S. Let aηΓb; then bmΓ = aΓx and
anΓ = bΓy. Now since aρΓa

2
Γ and bρΓb

2
Γ, it implies that aΓxρΓa

2
ΓΓx, aρΓa

n
Γ and bρΓb

m
Γ

which further implies that aρΓbΓy and bρΓaΓx. It can be easily seen that aΓbρΓbΓa.
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Also since bρΓb
2
Γ and ρΓ is compatible, so we get bΓyρΓb

2
ΓΓy. We can easily see that

bΓaρΓaΓbρΓaρΓbΓyρΓb
2
ΓΓy which implies that bΓaρΓb

2
ΓΓy. Similarly, we can show

that aΓbρΓa
2
ΓΓx. So aρΓbΓyρΓb

2
ΓΓyρΓbΓaρΓaΓbρΓa

2
ΓΓxρΓaΓxρΓb implies that aρΓb.

Thus ηΓ is a least semilattice congruence on S. �

Theorem 2.15. ηΓ is separative.

Proof. Let a2
ΓηΓaΓb and aΓbηΓb

2
Γ, then there exist positive integers m,m′, n, n′ such

that (a2
Γ)mΓ = (aΓb)2

ΓΓx, (aΓb)m
′

Γ = (a2
Γ)2

ΓΓx′ and (aΓb)n
′

Γ = (b2Γ)2
ΓΓy′, (b2Γ)nΓ = (aΓb)2

ΓΓy.

Now we get, a2m+2
Γ = a2m

Γ Γa2
Γ = (a2

Γ)mΓ Γa2
Γ = ((aγb)2

ΓΓx)Γa2
Γ

= (a2
ΓΓx)Γ(aΓb)2

Γ = (a2
ΓΓx)Γ(a2

ΓΓb2Γ) = (a2
ΓΓx)Γ(b2ΓΓa2

Γ)

= b2ΓΓ((a2
ΓΓx)Γa2

Γ = b2ΓΓt6, where t6 = ((a2
ΓΓx)Γa2

Γ)

Similarly, b2n+2
Γ = b2nΓ Γb2Γ = ((aΓb)2

ΓΓy)Γb2Γ = (b2ΓΓy)Γ(a2
ΓΓb2Γ)

= a2
ΓΓ((b2ΓΓy)Γb2Γ) = a2

ΓΓt7, where t7 = ((b2ΓΓy)Γb2Γ).

Hence ηΓ is separative. �

Theorem 2.16. Let S be a locally associative Γ-AG∗∗-groupoid. Then S/ηΓ is a
maximal semilattice separative image of S.

Proof. By Theorem 2.14, ηΓ is the least semilattice congruence on S and S/ηΓ is a
semilattice. Hence S/ηΓ is a maximal semilattice separative image of S. �

Theorem 2.17. Every locally associative Γ-AG∗∗-groupoid S is uniquely expressible
as a semilattice Y of Archimedean locally associative Γ-AG**-groupoids (Sπ)Γ(π ∈ Y ).
The semilattice Y is isomorphic with the maximal semilattice separative image S/ηΓ

of S and (Sπ)Γ(π ∈ Y ) are the equivalence classes of S modηΓ.

Proof. By Theorem 2.14, ηΓ is the least semilattice congruence on S. Next we will
prove that the equivalence classes modηΓ are Archimedean locally associative Γ-AG**-
groupoids and the semilattice Y is isomorphic to S/ηΓ. Let a, b ∈ (Sπ)Γ, where
π ∈ Y ; then aηΓb implies that amΓ ⊆ bΓS, bnΓ ⊆ aΓS, so amΓ = bΓx and bnΓ = aΓy,
where x, y ∈ S. If x ∈ Sϑ, ϑ 6= π, then π = πϑ, using (4), and we get am+1

Γ =
aΓamΓ = aΓ(bΓx) = bΓ(aΓx) ⊆ bΓ(Sπϑ)Γ = bΓ(Sπ)Γ. Similarly, one can show that
bn+1
Γ ⊆ aΓ(Sπ)Γ. This shows that (Sπ)Γ is right Archimedean and so it is locally

associative Archimedean Γ-AG∗∗-groupoid S.
Next we show the uniqueness. Let S be a semilattice Y of Archimedean AG∗∗-

groupoid (Sπ)Γ, π ∈ Y . We need to show that (Sπ)Γ are equivalent classes of S
modηΓ. Let a, b ∈ S. Then we show that aηΓb if and only if a and b belong to the
same (Sπ)Γ. If a and b both belong to the same (Sπ)Γ, then each divides the power
of the other. Since (Sπ)Γ is Archimedean, aηΓb by the definition. Conversely, if aηΓb,
then aΓx = bmΓ and bΓy = anΓ for some x, y ∈ S and some m,n ∈ Z+. If x ∈ (Sϑ)Γ,
then aΓx ⊆ (Sπϑ)Γ and bmΓ ⊆ (Sϑ)Γ, so that πϑ = ϑ. Hence ϑ ≤ π, in the semilattice
Y . By symmetry, it follows that π ≤ ϑ, that is, π = ϑ. �



280 Semilattice decomposition of locally associative Γ-AG∗∗-groupoids

References

[1] Faisal, N. Yaqoob, K. Hila, On fuzzy (2; 2)-regular ordered Γ-AG**-Groupoids, Politehn. Univ.
Bucharest Sci. Bull. Ser. A Appl. Math. Phys. Vol. 74(2) (2012), 87–104.

[2] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., 61(1-4)(1992),
101–106.

[3] M. A. Kazim, M. Naseerudin, On almost-semigroups, The Alig. Bull. Math., 2 (1972), 1–7.

[4] M. Khan, S. Anis, On semilattice Decomposition of an Abel-Grassmann’s groupoid, Acta Math.
Sinica, English Series Vol. 28(7) (2012), 1461–1468.

[5] W. Khan, F. Yousafzai, K. Hila, Congruences and decompositions of AG**-groupoids, Miskolc
Math. Notes 19(2) (2018), 931–944.

[6] Q. Mushtaq, Q. Iqbal, Decomposition of a locally associative LA-semigroup, Semigroup Forum,
41 (1990), 154–164.

[7] Q. Mushtaq, S. M. Yusuf, On locally associative LA-semigroups, J. Nat. Sci. Math., 1 (1979),
57–62.

[8] Q. Mushtaq, S. Yusuf, On LA-semigroups, Aligarh Bull. Math., 8 (1978), 65–70.
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[10] P.V. Protić, M. Božinović, Some congruences on an AG∗∗-groupoid, Filomat, 9(3) (1995),
879–886.
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