HYPERBOLIC SETS FOR THE FLOWS ON PSEUDO-RIEMANNIAN MANIFOLDS

Mohammad Reza Molaei

Abstract. In this paper we introduce and consider the hyperbolic sets for the flows on pseudo-Riemannian manifolds. If Λ is a hyperbolic set for a flow Φ, then we show that at each point of Λ we have a unique decomposition for its tangent space up to a distribution on the ambient pseudo-Riemannian manifold. We prove that we have such decomposition for many points arbitrarily close to a given member of Λ.

1. Introduction

Hyperbolic sets for vector fields and discrete dynamical systems on Riemannian manifolds have been considered deeply by many mathematicians and physicists [1, 3, 5–8, 11–13], and nowadays it is one of the main tools for considering qualitative behavior of dynamical systems [3, 6]. We have extended this notion for discrete dynamical systems created by a diffeomorphism from a finite dimensional pseudo-Riemannian manifold to itself in [10], and here we present an extension of this notion for the flows on finite dimensional pseudo-Riemannian manifolds. We prove that the hyperbolic behavior creates a unique decomposition for the tangent space at each point of a hyperbolic set (see Theorem 2.2) with the exponential behavior on two components of this decomposition. By using a connection which preserves the pseudo-metric on parallel transition we find a kind of convergence of suitable bases of the decomposition of a sequence of points to suitable bases of their limit point (see Theorem 3.1).

2. Hyperbolic behavior on a set

We assume that M is a finite dimensional smooth manifold with a smooth pseudo-Riemannian metric g. If $p \in M$, then the vectors in the tangent space $T_p M$ are divided
into three classes named timelike, spacelike, and null classes. A vector \(v \in T_p M \) belongs to timelike class, spacelike class or null class if \(g_p(v, v) < 0 \), \(g_p(v, v) > 0 \), or \(g_p(v, v) = 0 \) respectively. The nondegeneracy of \(g \) implies that its matrix in a local coordinate has no zero eigenvalues. The number of positive eigenvalues minus the number of negative eigenvalues of the matrix \(g \) at \(p \in M \) is called the signature of \(g \) at \(p \). Since \(g \) is continuous on \(M \) then its eigenvalues vary continuously, so the nondegeneracy of \(g \) implies that they are nonzero continuous functions on \(M \). Hence if \(M \) is a connected manifold then the signature of \(g \) is constant at each point of \(M \).

We assume that \(\Phi = \{ \phi^t : t \in \mathbb{R} \} \) is a \(C^1 \)-flow on \(M \), i.e., the map \((t, p) \mapsto \phi^t(p) \) is a \(C^1 \)-map, \(\phi^0 \) is the identity map, and \(\phi^s \circ \phi^t = \phi^{t+s} \) for all \(t, s \in \mathbb{R} \). A subset \(\Lambda \) of \(M \) is called an invariant set for \(\Phi \) if \(\phi^t(\Lambda) = \Lambda \) for all \(t \in \mathbb{R} \).

Definition 2.1. An invariant set \(\Lambda \) for \(\Phi \) is called a hyperbolic set for \(\Phi \) up to a distribution \(p \mapsto E^n(p) \), if there exist positive constants \(a \) and \(b \) with \(b < 1 \) and a decomposition \(T_p M = E^0(p) \oplus E^s(p) \oplus E^u(p) \oplus E^n(p) \) for each \(p \in C \) such that:

(i) Each non-zero vector in the subspace \(E^s(p) \) or the subspace \(E^u(p) \) is timelike or spacelike, each vector of \(E^u(p) \) is a null vector, and \(E^0(p) \) is the subspace generated by the vector \(X(p) = \frac{1}{2} \phi^1(p)|_{t=0} \);

(ii) \(D\phi^t(p)E^s(p) = E^s(\phi^t(p)) \) and \(D\phi^t(p)E^u(p) = E^u(\phi^t(p)) \) for all \(t \in \mathbb{R} \);

(iii) if \(v \in E^s(p) \) and \(t > 0 \) then \(|g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v))| \leq ab^t|g_p(v, v)| \) and \(\lim_{t \to \infty} g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v)) = 0 \) for each non-null vector \(v \in T_p M \) with the following property: \(|g_{\phi^t(p)}(D\phi^t(p)(w), D\phi^t(p)(w))| \leq ab^t|g_p(w, w)| \) for all \(t > 0 \);

(iv) if \(v \in E^u(p) \) and \(t > 0 \) then \(|g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v))| \geq a^{-1}b^{-t}|g_p(v, v)| \).

In the case of Riemannian manifolds we put the compactness condition in the definition of a hyperbolic set, but here we remove this condition. Since the spheres in pseudo-Riemannian manifolds may not be compact, we cannot use this tool here.

Theorem 2.2. If \(\Lambda \) is a hyperbolic set for \(\Phi \) up to a distribution \(p \mapsto E^n(p) \), then for each \(p \in \Lambda \), the tangent space of \(M \) at \(p \) has a unique decomposition with the properties described in Definition 2.1.

Proof. Suppose that for a given \(p \in \Lambda \) we have

\[
T_p M = E^0(p) \oplus E^s_1(p) \oplus E^u_1(p) \oplus E^n(p) = E^0(p) \oplus E^s_2(p) \oplus E^u_2(p) \oplus E^n(p),
\]

where \(E^s_1(\cdot) \), and \(E^u_1(\cdot) \) satisfy the axioms of Definition 2.1. Then \(E^s_1(p) \oplus E^u_1(p) = E^s_2(p) \oplus E^u_2(p) \). Hence a given \(u \in E^s_1(p) \) can be written as \(u = v + w \), where \(v \in E^s_2(p) \) and \(w \in E^u_2(p) \). Since \(w \in E^u_2(p) \) then for each \(t > 0 \) we have

\[
a^{-1}b^{-t}|g_p(w, w)| \leq |g_{\phi^t(p)}(D\phi^t(p)(w), D\phi^t(p)(w))| = |g_{\phi^t(p)}(D\phi^t(p)(u - v), D\phi^t(p)(u - v))| = |g_{\phi^t(p)}(D\phi^t(p)(u), D\phi^t(p)(u)) + g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v)) - 2g_{\phi^t(p)}(D\phi^t(p)(u), D\phi^t(p)(v))| \leq |g_{\phi^t(p)}(D\phi^t(p)(u), D\phi^t(p)(u))| + |g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v))|
\]
M.R. Molaei 119

\[+ 2|g_{\phi^t(p)}(D\phi^t(p)(u), D\phi^t(p)(v))] \leq abt|g_p(u,u)| + abt|g_p(v,v)| + 2|g_{\phi^t(p)}(D\phi^t(p)(u), D\phi^t(p)(v))| \]

Axiom (iii) of Definition 2.1 implies that the right-hand side of the former inequality tends to zero when \(t \) tends to infinity. Thus \(|g_p(w,w)| = 0 \). Hence \(w \in E^n(p) \cap E_s^1(p) = \{0\} \). Therefore \(E_s^1(p) \subseteq E^1_s(p) \). By replacing \(E_s^1(p) \) with \(E^1_s(p) \) we have \(E_s^2(p) \subseteq E^1_s(p) \). Thus \(E_s^2(p) = E^1_s(p) \), and this implies \(E_s^2(p) = E^1_s(p) \). Hence we have a unique decomposition for \(T_pM \). □

We now give an example of a hyperbolic set up to a pseudo-Riemannian metric on \(\mathbb{R}^2 \) which is not a hyperbolic set with any Riemannian metric on \(\mathbb{R}^2 \).

Example 2.3. \(\mathbb{R}^2 \) with the metric \(g((a,b),(c,d)) = ac - bd \) is a Lorentzian manifold. Let \(\Phi \) be the flow of the smooth vector field \(X(a,b) = (-ab + b^2, -ab + a^2) \). The set \(\Lambda = \{(x,x) : x > 0\} \) is a hyperbolic set for \(\Phi \) up to the distribution \(E^n(\cdot) = \{(a,a) : a \in \mathbb{R}\} \). Since \(X(x,x) = \{(0,0)\} \), then \(E^0(x,x) = \{(0,0)\} \). For \(x > 0 \) we have \(E^u(x,x) = \{(0,0)\} \), \(E^s(x,x) = \{(-x,x) : x \in \mathbb{R}\} \) and \(T_{(x,x)}\mathbb{R}^2 = E^0(x,x) \oplus E^s(x,x) \oplus E^u(x,x) \) (see Figure 1).

![Figure 1](image)

Figure 1: \(\Lambda = \{(x,x) : x > 0\} \) is a hyperbolic set for the flow of \(X(a,b) = (-ab+b^2, -ab+a^2) \).

3. Hyperbolic decomposition

Now we assume that \(\nabla \) is a Levi-Civita connection on a pseudo-Riemannian manifold \(M \), i.e., it is a torsion free pseudo-Riemannian connection on \(M \) compatible with the metric \(g \). This means that in a local coordinate of \(p \in M \) we have \(\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k \), where \(\{\partial_i : i = 1, \ldots, m\} \) is a basis for \(T_pM \), and the Christoffel symbols \(\Gamma^k_{ij} \) are determined by the following equations [9]: \(\frac{1}{2}(\partial_j g_{li} + \partial_l g_{ij} - \partial_i g_{lj}) = g_{lk}\Gamma^k_{ij} \), where \(g_{ij} = g(\partial_i, \partial_j) \).
The reader has to pay attention at this point that we use Einstein’s summation convention.

If $\gamma : (-\epsilon, \epsilon) \to M$ is a smooth curve passing through p, then a smooth map $X : (-\epsilon, \epsilon) \to TM$ is called a smooth vector field along γ if $X(t) \in T_{\gamma(t)}M$. A vector field Y along γ is called a parallel vector field if $DY/dt = 0$, where DY/dt is the covariant derivative of Y which is defined in a local chart by

$$\frac{DY}{dt}(t) = \frac{dY^j}{dt}(t)\partial_j + Y^j(t)\frac{\partial \gamma^i}{\partial x^j}(t)\Gamma^j_{ik}(\gamma(t))\partial_i,$$

where $Y = Y^k\partial_k$. If we take $v \in T_pM$ then the existence and uniqueness theorem for ordinary differential equations implies that equation (1) with the initial condition $Y(0) = v$ has a unique solution $Y(t)$. We denote the parallel vector field $Y(t)$ deduced from the initial condition $Y(0) = v$ by $P_t(v)$ or $v(t)$. As in [10], if $v \in T_{\gamma(t)}M$ and E is a subspace of $T_{\gamma(t)}M$ with the basis B_E, where $t \in (-\epsilon, \epsilon)$, then $d(v, B_E)$ is defined by $d(v, B_E) = \inf\{|g_{\gamma(t)}(v(s-t) - s, v(s-t) - w)| : w \in B_E\}$. For $s, t \in (-\epsilon, \epsilon)$, if E and F are two subspaces of $T_{\gamma(s)}M$ and $T_{\gamma(t)}M$ with the basis B_E and B_F, respectively, then $d(B_E, B_F)$ is defined by $d(B_E, B_F) = \max\{|a, b\}$, where $a = \max\{d(v, B_F) : v \in B_E\}$, and $b = \max\{d(u, B_E) : u \in B_F\}$. We now assume that Λ is a hyperbolic set for the flow Φ up to an r-dimensional distribution $q \rightarrow E^a(q)$, and $\gamma : (-\epsilon, \epsilon) \to M$ is a smooth curve passing through $p \in \Lambda$. With these assumptions we have the next theorem.

Theorem 3.1. Suppose $\{t_n\}$ is a sequence with $\gamma(t_n) \in \Lambda$ and $t_n \to 0$. If $P_t(E^0(p)) = E^0(\gamma(t))$, then for a subsequence $\{s_n\}$ of $\{t_n\}$, there exist bases $B_{E^s(\gamma(s_n))}$ and $B_{E^u(\gamma(s_n))}$ for $E^s(\gamma(s_n))$ and $E^u(\gamma(s_n))$, and bases $B_{E^c(p)}$ and $B_{E^u(p)}$ for $E^c(p)$ and $E^u(p)$ so that $d(B_{E^s(a(s_n))}, B_{E^c(p)}) \to 0$, and $d(B_{E^u(a(s_n))}, B_{E^c(p)}) \to 0$.

Proof. Since $0 \leq \dim(E^s(\gamma(t_n))) \leq m = \dim M$ for all $n \in N$, then there exist a subsequence $\{s_n \in [-\frac{\epsilon}{2}, \frac{\epsilon}{2}] : n \in N\}$ of $\{t_n\}$ and a constant $k \in N$ such that $\dim(E^s(\gamma(s_n))) = k$ for all $n \in N$. We take a pseudo-orthonormal basis $B_{E^s(\gamma(s_1))} = \{v_{n1}, v_{n2}, \ldots, v_{nk}\}$ for $E^s(\gamma(s_1))$. The pseudo-orthonormal basis is a basis with $g_{\gamma(s_1)}(v_{ni}, v_{nj}) = \delta_{ij}$. Clearly $B_{E^c(\gamma(s_n))} = \{v_{n1} = v_{11}(s_n - s_1), v_{n2} = v_{12}(s_n - s_1), \ldots, v_{nk} = v_{ik}(s_n - s_1)\}$ is a pseudo-orthonormal basis for $E^c(\gamma(s_n))$. If we fix i, then the sequence $\{v_{ni}\}$ is a convergence sequence in TM, and its limit is $v_i = \lim_{n \to \infty} v_{1i}(s_n - s_1) = v_{i1}^{-1}(s_1)$. Since g is a smooth tensor, then its continuity implies that $v_i \notin E^u(p)$. Moreover, the condition $P_t(E^0(p)) = E^0(\gamma(t))$ implies $v_i \notin E^0(p)$, so $v_i \in E^c(p) \oplus E^u(p)$. Hence $v_i = w + u$ with $u \in E^c(p)$ and $w \in E^u(p)$. If $t > 0$, then $a^{-1/b^{-1}}|g_p(w, w)| \leq |g_{\phi_t(p)}(D\phi_t(p)(w), D\phi_t(p)(w))|$

$= |g_{\phi_t(p)}(D\phi_t(p)(v_i - u), D\phi_t(p)(v_i - u))|$

$\leq |g_{\phi_t(p)}(D\phi_t(p)(v_i), D\phi_t(p)(v_i))| + |g_{\phi_t(p)}(D\phi_t(p)(u), D\phi_t(p)(u))|$

$+ 2|g_{\phi_t(p)}(D\phi_t(p)(v_i), D\phi_t(p)(u))|$

$= \lim_{n \to \infty} |g_{\phi_t(\gamma(s_n))}(D\phi_t(\gamma(s_n))(v_{ni}), D\phi_t(\gamma(s_n))(v_{ni}))|$

$+ |g_{\phi_t(p)}(D\phi_t(p)(u), D\phi_t(p)(u))|$.

\[+ 2 \lim_{n \to \infty} |g_{\varphi^t(\gamma(s_n))}(D\varphi^t(\gamma(s_n)))(v_{n1}), D\varphi^t(\gamma(s_n))(u(s_n))| \]
\[\leq (\lim_{n \to \infty} ab'g_{\varphi^t(\gamma(s_n))}(v_{n1}, v_{n1})) + ab'g_p(u, u) \]
\[+ 2 \lim_{n \to \infty} |g_{\varphi^t(\gamma(s_n))}(D\varphi^t(\gamma(s_n)))(v_{n1}), D\varphi^t(\gamma(s_n))(u(s_n))| \]
\[= ab'g_p(v_1, v_1) + ab'g_p(u, u) \]
\[+ 2 \lim_{n \to \infty} |g_{\varphi^t(\gamma(s_n))}(D\varphi^t(\gamma(s_n)))(v_{n1}), D\varphi^t(\gamma(s_n))(u(s_n))| = 0. \]

Hence the above inequality is valid if \(|g_p(w, w)| = 0\), and this implies that \(w = 0\), and \(v_i \in E^s(p)\). Therefore \(\{v_1, v_2, \ldots, v_k\} \) is a pseudo-orthonormal subset of \(E^s(p)\). Hence \(\dim(E^s(p)) \geq k\). The similar calculations imply that \(\dim(E^u(p)) \geq m - r - k\). Therefore \(\dim(E^s(p)) = k\) and \(\dim(E^u(p)) = m - r - k\). As a result \(B_{E^s(p)} = \{v_1, v_2, \ldots, v_k\}\) is a basis for \(E^s(p)\), and we have \(d(B_{E^s(\gamma(s_n))}, B_{E^s(p)}) \to 0\), when \(n \to \infty\). The similar calculations imply that \(d(B_{E^u(\alpha(s_n))}, B_{E^u(p)}) \to 0\).

\[\Box \]

Figure 2: Λ = \{(0, a) : a > 0\} is a partial hyperbolic set for the flow of \(X(a, b) = (-ab, a^2)\) on the Lorentzian manifold \(\mathbb{R}^2\).

4. Conclusion

We see that if we separate the null vectors via a null distribution then we can detect the hyperbolic dynamics on pseudo-Riemannian manifolds. In Example 2.3 we see that a set of stationary points of a vector field is a hyperbolic set by the given Lorentzian metric. This set is not a hyperbolic set in the case of Riemannian metrics.

The notion of partial hyperbolic set as another main object in smooth dynamical systems on Riemannian manifolds [2,4] can be extended for a \(C^1\) flow \(\Phi = \{\varphi^t : t \in \mathbb{R}\}\) on a pseudo-Riemannian manifolds via the results of this paper. In fact we say that an invariant set \(\Lambda\) is a partial hyperbolic set for \(\Phi\) if for each \(p \in \Lambda\) there exist a splitting \(T_p M = E_p \oplus F_p \oplus G_p\), and positive real numbers \(a, b < 1, c\) with the
Hyperbolic sets for the flows

following properties:
(i) $D\phi^t(p)E_p = E_{\phi^t(p)}$, $D\phi^t(p)F_p = F_{\phi^t(p)}$, and $D\phi^t(p)G_p = G_{\phi^t(p)}$ for all $p \in \Lambda$;
(ii) $E_p \neq \{0\}$, $F_p \neq \{0\}$ and there is no any non-zero null vector in $E_p \cup F_p$;
(iii) if $v \in E_p$ and $t > 0$ then $|g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v))| \leq ab^t|g_p(v, v)|$ and
\[\lim_{t \to \infty} g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(w)) = 0 \] for each non-null vector $w \in T_pM$ with
the following property $|g_{\phi^t(p)}(D\phi^t(p)(w), D\phi^t(p)(w))| \leq ab^t|g_p(w, w)|$ for all $t > 0$;
(iv) if $0 \neq v \in E_p$, $0 \neq w \in F_p$ and $t > 0$ then
\[|g_{\phi^t(p)}(D\phi^t(p)(v), D\phi^t(p)(v))||g_{\phi^{-t}(p)}(D\phi^{-t}(p)(w), D\phi^{-t}(p)(w))| \leq cb^t|g_p(v, v)||g_p(w, w)|; \]
(v) each vector of G_p is a null vector.

We see that any hyperbolic set is a partially hyperbolic set (in this case $c = a^2$),
but the converse is not true. For example with the space of Example 2.3 the set
$\Lambda = \{(0, a) : a \in \mathbb{R} \text{ and } a > 0\}$ is a partially hyperbolic set for the flow of the
vector field $X(a, b) = (\frac{-ab^2}{1+b^2}, \frac{a^2}{1+b^2})$ on \mathbb{R}^2, but it is not a hyperbolic set up to any null
distribution on \mathbb{R}^2 (see Figure 2).

The consideration of partially hyperbolic sets in pseudo-Riemannian manifolds
may be a topic for further research.

We conclude this paper by posing a problem on hyperbolic sets: Suppose Λ is a
hyperbolic set for a flow Φ on M with the metric g. Is there any other metric \tilde{g} on M
such that Λ is also a hyperbolic set with the metric \tilde{g} and in Definition 2.1, a takes
the value one?

ACKNOWLEDGEMENT. Our special thanks to the referee for his/her valuable comments.

References

(received 23.08.2018; in revised form 06.02.2018; available online 12.09.2019)

Mahani Mathematical Research Center and Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: mrmolaei@uk.ac.ir