MATEMATICKI VESNIK

MATEMATUYKN BECHUK research paper
72, 2 (2020), 106-116 OPWUTMHAJIHYA HAYYIHU PaJ]
June 2020

HEMI-SLANT ¢1-LORENTZIAN SUBMERSIONS FROM
(LCS),-MANIFOLDS

Tanumoy Pal and Shyamal Kumar Hui

Abstract. The present paper introduce a study of hemi-slant £*-Lorentzian submer-
sion from (LC'S),-manifolds with an example. We obtain some results and investigate the
geometry of foliations. Necessary and sufficient conditions for such submersion to be totally
geodesic have been obtained. Finally, we study such submersions with totally umbilical
fibers.

1. Introduction

Lorentzian concircular structure manifolds (briefly, (LCS),-manifolds) were intro-
duced in [23]. They are a generalization of LP-Sasakian manifold [20]. This manifold
has many applications, see [7,25]. In [19], it has shown that Lorentzian concir-
cular spacetime coincide with generalized Robertson-Walker space-time. So, these
manifolds are interesting for geometry as well as for physics. For detailed study of
(LCS),-manifolds we refer to [24] and for study of submanifolds of these manifolds
we refer to [5,8,14-16].

O’Neill [21,22] and Gray [11] introduced the study of semi-Riemannain submer-
sions between semi-Riemannain manifolds and the study of Lorentzian submersion was
introduced by Majid [18] and Falcitelli et al. [10], respectively. Recently, Giindiizalp et
al. [13] studied para contact semi-Riemannain submersions, Faghfouri et al. [9] studied
anti-invariant semi-Riemannian submersions, Akyol et al. [2] studied semi-invariant
semi-Riemannian submersions and Giindiizalp et al. [12] studied slant submersions
from Lorentzian almost paracontact manifolds. On the other hand, Akyol et al. [3]
studied semi-slant ¢é--Riemannian submersions as a generalization of anti-invariant
¢L-Riemannian submersions [17] and semi-invariant ¢--Riemannian submersions [4].
Also, Tastan et al. [26] studied hemi-slant submersions from K&hlerian manifolds.
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Here, we have studied hemi-slant ¢--Lorentzian submersions from (LC'S),,-mani-
folds and the structure of the paper is as follows. Section 2 studies (LC'S),-manifolds
and semi-Riemannian submersions. In Section 3, we define hemi-slant £+-Lorentzian
submersions, present an example, find the integrability conditions for distributions
and investigate the geometry of leaves of different distributions including horizontal
and vertical distribution. In Section 4, we find a necessary and sufficient condition
for a hemi-slant ¢--Lorentzian submersion to be totally geodesic. In this section we
also study hemi-slant £*--Lorentzian submersions with totally umbilical fibers.

2. Preliminaries

(LCS),-manifold is a Lorentzian manifold M of dimension n endowed with the unit
timelike concircular vector field &, its associated 1-form n and a (1,1) tensor field
¢ such that Vx¢& = a¢X, a being a non-zero scalar function satisfying Vxa =
(Xa) = da(X) = pn(X), where p = —(£«) is another scalar, and V is the Levi-Civita
connection of the Lorentzian metric g. If @ = 1, then this manifold reduces to the
L P-Sasakian manifold [20].

In a (LCS),-manifold (n > 2) M, the following relations hold [23,24]:

n€) =—1, ¢¢=0, n(¢X) =0, g(¢X,¢Y)=g(X,Y)+n(X)n(Y), (1)

¢*X = X +(X)E, (2)
(Vx@)Y = a{g(X,Y)§ + 2n(X)n(Y)E + n(Y) X}, (3)

A differential map 7 : M — N between a Lorentzian manifold (M, gy) and a
semi-Riemannian manifold (N, gy) is called a Lorentzian submersion if 7, is onto

and it satisfies
(i) The fibers 771(q), ¢ € N, are semi-Riemannian submanifolds of M.

(ii) . preserves scalar product of vectors normal to fibers.

For each ¢ € N, 77 1(q) is a submanifold of M of dimension k(= dim M — dim NV).
The submanifolds 7=!(q) are called fibers, and a vector field X on M is called
horizontal (resp. vertical) if it is always orthogonal (resp. tangent) to fibers. If X
is horizontal and m-related to a vector field X, on N then X is called basic. The pro-
jection morphisms on the vertical distribution ker m, and the horizontal distribution
(ker 7, ) are denoted by V and H, respectively [10]. The O’Neill’s tensors [21] on M
are

TeF = HVyeVF +VVyeHF, AgF =VVygHEF +HVygVF (4)

for E, F € x(M), where V is the Levi-Civita connection of (M, gar). For U, V € ker m,
and X, Y € (kerm,)~ on M, we have TyV = TyU, AxY = —Ay X = IV[X,Y].
Also from (4), we have

VoV =TuV + VyV, VuX =HVuX + To X, (5)
VxU=AxU +VVxU, VxY =HVxY + AxY, (6)
for X,Y € (kerm,)* and U,V € ker 7., where VuV =VVyV and HVy X = AxU, if
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X is basic. Clearly 7 acts on the fiber as the second fundamental form and A acts on
the horizontal distribution. If 7 = 0, then 7 is said to be a submersion with totally
geodesic fibers and it is said to be a submersion with totally umbilical fibers if

for any E, F € kerm,. If H = 0, then 7 is said to be minimal [10]. Now, we recall

that if (M, gar) and (N, gn) bare semi-Riemannian manifolds and 7 : M — N is a
smooth map, then the second fundamental form of 7 is given by

(V) (E,F) =Vin.F —m.(VgF), (8)
for E, F € I'(TM), where V™ is the pull back connection and for convenience we
denote by V the Levi-Civita connection of the metrics gy; and gy. 7 is said to be
harmonic if trace(Vm,) = 0 and it is called a totally geodesic map if (Vr,)(E, F) =0,
for E, F € T'(TM) [6]. Throughout the paper we consider (M, gas) to be an (LCS),-
manifold and (N, gn) a semi-Riemannian manifold.

A Lorentzian submersion 7 : M — N is said to be anti-invariant [9] if ¢(ker m,) C
(ker 7,)* and is said to be slant (or #-slant) [13] if the angle (X ) between ¢X and
(kerm, — {&,}) is constant, i.e., it is independent of the choice of the non-zero vector
X ekerm, —{&,} and p € M. 6 is known as the slant angle of the slant submersion.
Also, 7 is said to be hemi-slant [26] if ker 7, admits two complementary orthogonal
distributions D? and D+ such that DY is slant and D+ is anti-invariant, i.e.,

kerm, = D’ & D+ (9)
Hemi-slant submersion is natural generalization of anti-invariant, semi-invariant and
slant submersion. If the dimensions of D+ and D? are n; and ng, then 7 is:
(i) an anti-invariant submersion, if ny = 0,
ii) an invariant submersion, if ny =0, 8 = 0,

(
(iii) a proper slant submersion with slant angle ¢, if n; = 0 and 6 # 0, 7,
(iv) a semi-invariant submersion, if § = 0,n; # 0.

A hemi-slant submersion is proper if n; # 0 and 6 # 0, 7.

3. Hemi-slant {*-Lorentzian submersion

A hemi-slant Lorentzian submersion 7 : M — N is said to be a hemi-slant &*--Lo-
rentzian submersion if € is orthogonal to ker w,. Now we will construct an example
of a hemi-slant ¢t-Lorentzian submersion from an (LCS),-manifold onto a semi-
Riemannian manifold.

EXAMPLE 3.1. Let (R?,¢,&,7,9) denote the manifold R? with the (LCS)-structure
given by

1 i 9 LSS i i i
n:§(—dz+;ydx),5235,9:—77@774-@;(&% ®dx' @ dy* ® dy*,
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0 0 0 0 0
¢(@) = oy ¢(@) = a7 ¢($) = 5.3 ¢(@) = 5.4

0 0 0 0 0 0 0 0 0
¢(8T;1) = 5.1 ¢(87y2) = 5.2 ¢(87y3) = o5 ¢(8Tf1) = T (&) =0,
where (z1,..., 2% y!, ..., y%, 2) are Cartesian coordinates. For o, 3 € R, let 7 : R? —
R® be a submersion defined by
Y

1.2 .3 4,1 .2 3 4 1, o 2 1, o 2 T
o,y YT, Yy, Yy, 2) = (cosaxrT +sinax”, cos + sin R , ——F—,
( yLys Yy z) e ( By By B
Then it follows that ker 7, = span{Jy, J2, Js3, J4}, where J; = sin a% — cos a%,
Jo = sinﬂaiylfcosﬂaiyz, Jz = %qta%a, Jy = %Jra%z; and (ker 7, )t = span{ Ly, Lo,
L3, Ly, &}, where Ly = cosaa%1 +sina%, Ly = cosﬁa%1 —&—Sinﬁa%z, L3 = 8%3 — 8%3,
Ly = 32 — 8%. Then, g(¢Ji,J2) = §cos(a — B),¢Js = L3 and ¢Jy = Ly. Thus
span{Jy, Jo} is a slant distribution with slant angle | — §| and span{Js, Js} is an
anti-invariant distribution.

Also, by direct decomposition, we find that gn(meLi,7m«L1) = gnm(L1,L1),
gn(mLla, melo) = gn(La, L2), gn(mals, mls) = gn(Ls, L3), gn(meLla, mels) =
grr(La, Ly), gn(€,€) = g (€,€), where gy and gy are the metrics of R? and R®.
Thus 7 is a hemi-slant ¢+-Lorentzian submersion.

For any E € ker,, let E = PE + QF, where PE € DY and QF € D+ and take

OF = tE + Wk, (10)
where tE € ker 7, and wE € (ker7,)*. Also for any X € (kerm,)*, we have
6X = bX + cX, (11)

where bX € ker, and c¢X € (ker,)* and hence (ker 7,)t = wD? © ¢D+ & p, where
 is a ¢-invariant distribution of (ker mr,)=L.

The proof of the following theorem is similar to [5, Theorem 3.1].

THEOREM 3.2. Let m be a &*-Lorentzian submersion from (M, gar) onto (N, gn).
Then 7 is a hemi-slant Lorentzian submersion if and only if there exist a constant
A €10,1] and a distribution D on ker m, such that

(i) D={V € ker m,|t?V = \V},

(i) ¢V = wV, for any € ker m, and orthogonal to D.
Furthermore, if 0 is the slant angle of 7, then X\ = cos? 6.

For any U € D?, we get
t2U = cos? OU. (12)

Consequently, we obtain g(tU,tV) = cos? 8g(U, V) and g(wU,wV) = sin? 8g(U, V) for
every U,V € DY.

LEMMA 3.3. Let m be a hemi-slant &*-Lorentzian submersion from (M, gyr) onto
(N,gn). Then we have t* +bw =1, wt+cw =0, > +wb=1+n®E, th+ bc = 0.

Proof. Proof of this lemma follows from (10), (11) and (2). U

3z2).
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LEMMA 3.4. Let m be a hemi-slant £*-Lorentzian submersion from (M, gar) onto
(N,gn). Then we have
(i) tD’ =D, (i) tD+ = {0}, (iii) bwD? =D?,  (iv) b¢D+ = D+.

By using (3), (5), (6), (10) and (11), we can easily obtain the following assertions.

LEMMA 3.5. Let 7 be a hemi-slant &*-Lorentzian submersion from (M, gar) onto
(N,gn). Then

VEtF + TpwF = bTpF + tVgF, (13)
TetF 4+ HV gwF = ¢TgF + wVgF + ag(E, F)E, (14)
TebX + HVEcX = cHVEX + wTEX,

VebX + TpeX = bHV X +tTeX + an(X)E,

AxbY + HV xcY = cHV xY + wAxY + afg(X,Y)E 4+ 2n(X)n(Y)E +n(Y)X]
wVxbY + AxcY = bHV Y +tAxY
Now, the covariant derivatives of t and w are defined by (Vgt)F = VytF —tVgF

and (Vpw)F = HVgwF — wVpF, for E,F € kerm,. Then from (13) and (14), we
get the following.

COROLLARY 3.6. Let 7 be a hemi-slant £ -Lorentzian submersion from (M, gys) onto
(N,gn). Thent is parallel if and only if TewF = bTgF and w is parallel if and only
if TetF = cTyF + ag(E, F)¢, where E, F € ker,.

THEOREM 3.7. Let 7 be a hemi-slant &+ -Lorentzian submersion from (M, gar) onto
(N,gn). Then DY is integrable if and only if

g (HVywV — HVywU, ¢Z) = gy (TywtU — TywtV, Z),
forU, V€ D’ and Z € D*+.
Proof. For U, V € DY and Z € D+, we have from (1) that
gu(VuV, Z) = gu(VutV,02) + gu(VowV, 02) = gu (VudtV, Z) + gu (VowV, ¢ Z)

= gu(Vut®V, Z) + gu(VuwtV, Z) + g (VowV, ¢Z).
By virtue of (5) and (12), the above equation yields

sin? 0grr (Vo' V, Z) = gu(TowtV, Z) 4+ gy (HVywV, ¢Z). (15)
Thus we obtain
sin? 0gar ([U, V], Z) = gu(TowtV — TywtU, Z) + gu(HVywV — HVvwU, ¢Z). 0O
COROLLARY 3.8. Let 7 be a hemi-slant £+ -Lorentzian submersion from (M, gar) onto

(N,gn). If HVywV — HVywU € wD? & p and TywtV — TywtU € D, for every
U, VeD’ and Z € D+, then D? is integrable.

THEOREM 3.9. Let m be a hemi-slant £*-Lorentzian submersion from (M, gyr) onto
(N,gn). Then D+ is integrable if and only if

g (HV 20W — HVw o Z,wU) = gu(Tw Z — Ta W, wtl),
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for every Z, W € D+ and U € D?.

Proof. For Z, W € D+ and U € DY, we have from (1), (3) and (10) that
gu(VZzW.U) = gu(VZzW, ¢tU) + gu (V zoW,wU)
= gu (VW 2U) + ga (V2 W, wtU) + gar (V20W,wU).

By virtue of (5) and (12), the above equation yields

sin® 0ga (VZzW,U) = g (HV 26W,wU) + gar (T W, wtU). (16)
Thus we find
sin® Ogp ([Z, W], U) = gn(HV 26W — HV w ¢ Z,wU) + gu(TzW — Tw Z,wtU). O
COROLLARY 3.10. Let 7 be a hemi-slant ¢--Lorentzian submersion from (M, gur)

onto (N, gn). If HV z26W — HVw¢Z and TzW — Tw Z both belong to ¢D+ @ u, for
every Z, W € D+ and U € D?, then D+ is integrable.

THEOREM 3.11. Let w be a hemi-slant £*-Lorentzian submersion from (M, gys) onto
(N,gn). Then DY describes a totally geodesic foliation if and only if

g (HVywV, 0Z) + gy (TowtV, Z) =0 (17)
and g (HVywtV, X)) + gp (HVywV, eX) + gu (ApwV, bX) =0, (18)
for every U, V. € D, Z € D+ and X € (kerm,)> .

Proof. Since 6 # 0, Z, the relation (17) follows from (15). Also, for U, V € D and
X € (kerm,)t, we have from (1), (3), (10) and (11) that
g (VuV, X) = gu(Vut?V, X) + gy (VowtV, X) — gu (Vo o)tV, X)
+ g (VywV,bX) 4+ gu (VowV, eX) + an(X)gam (oU, V)
By virtue of (3), (5) and (12), the above relation yields
sin® 0ga (Vo V, X) = gu(HVpwtV, X) + gy (ApwV, bX) + gu(HVpwV, eX). (19)
which gives (18). The converse part also follows from (15) and (19). U
THEOREM 3.12. Let m be a hemi-slant £*-Lorentzian submersion from (M, gns) onto
(N,gn). Then D+ describes a totally geodesic foliation if and only if
g (HV 2oW,wU) + g (Tz W, wtU) =0 (20)
and g (HV 26W, eX) = gar (VzthX + TzwbX, W), (21)
for every U € D?, Z, W € D+ and X € (kerm,)> .

Proof. Since 6 # 0, Z, (20) follows from (16). Also, for Z, W € DY and X € (ker,)™,
from (3), (10) and (11), we get
g (VzW, X) = gu(V2W, b X) + gn (Vz W, wbX) + g (VoW cX)
= —gm(VztbX, W) — gp (VzwbX, W) 4+ gr (VzdW, cX)
which by virtue of (5), yields
gu(VZW, X) = —gar(V tbX, W) — gur (TzwbX, W) + gar(HV 2¢W, ¢X),  (22)
from which (21) follows. The converse part follows from (16) and (22). U
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PROPOSITION 3.13. Let w be a hemi-slant £+-Lorentzian submersion from (M, gs)
onto (N, gn). Then ker, becomes a direct product of D° and D if and only if (17),
(18), (20) and (21) hold simultaneously.

THEOREM 3.14. Let 7 be a hemi-slant £*-Lorentzian submersion from (M, gys) onto
(N,gn). Then the following assertions are equivalent:
(i) kerm, & is integrable
(ii) the following relations hold:

gM(HVy¢Z, CX) — gM(HVX¢Z, CY) =

g (AybX — AxbY, ¢Z) — an(X)gm (Y, ¢Z) — n(Y)gum (X, 6Z)] (23)
and gy (HVxY —HVy X, wtU) = g (AybX — AxbY,wU)

+9m (HVyeX — HV xcY,wU) — an(X)gu (Y,wU) —n(Y)gm (X, wU)], (24)
for X, Y € (kerm,)t , Z € D and U € DY
(#ii) the following relations hold:
gn (V) (Y, 0X) = (V) (X, 0Y), 1.0 Z) = gu (HV x ¢ Z, ¢Y')

—gu(HVy¢Z,cX) — a[n(X)gu (Y, 0Z) = n(Y)gu (X, 2]
and  gn(Vm)(Y,bX) — (Vr,)(X,bY), mwU) = g (HVy X — HV x Y, wtlU)

+gpm (HVycX — HV xcY,wU) — an(X)gu (Y, wU) — n(Y)gu (X, wU)]
for X,Y € (kerm,)* , Z € Dt and U € DY.

Proof. For X,Y € (kerm,)* and Z € D*, we have from (1), (3) and (11) that
g (VxY,2) = gu(VxbY,0Z) — gu(cY,VxdZ) — an(Y)gu (X, ¢Z).
By virtue of (5), the above equation yields
g (VxY,Z) = gu(AxbY, 0Z) — gu(HV x9Z,cY) — an(Y)gu (X, 9Z).  (25)
Thus we find
(X, Y], Z) = grr(AxbY — AybX, 6Z) — gai(HV xdZ, ¢Y)
+ 9 (HVy¢Z,cX) — aln(Y)gu (X, 0Z) — n(X)gm (Y, ¢Z)].  (26)
Also, for X,Y € (kerm,)* and U € DY, we have from (1), (3), (10) and (11) that
g (VxY,U) = gy (VxY, 12U) 4+ gar (Vx Y, wtU) + g (VxbY, wU)
+ gm (VxeY,wlU) — an(Y)gu (X, wU).
Using (5) and (12) in the above equation, we obtain
sin® Ogr (VxY,U) = gy (HV XY, wtU) + gy (AxbY,wU)
+ g (HV xcY,wU) — an(Y)gn (X, wU). (27)
Thus we get
sin® Ogar ([X,Y],U) = gu(HVxY — HVy X, wtU) + ga (AxbY — AybX,wl)
+ g (HV xcY — HVyceX,wU)
— alg(Y)gar (X, 0U) — (X)gar (Y, wU)]. (28)
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From (26) and (28), we get (1)< (ii).
Now, from (8), we have

Im (AxDY, ¢0Z) = —gn (V) (X, 0Y), 100 2) (29)
and gm(AybX, 0Z) = —gn (V) (Y, X)), mepZ) (30)
Using (29) and (30) in (23) and (24), respectively, we get (ii)<(iii). U

THEOREM 3.15. Let 7 be a hemi-slant &+ -Lorentzian submersion from (M, gns) onto
(N,gn). Then the following statements are equivalent:
(i) (kerm,): describes a totally geodesic foliation,

(i) the following relations hold:

gm (AxDY, 0Z) = gu(HV x¢Z,cY) + an(Y)gu (X, ¢Z)
and  gu(AxbY,wU) = —gn(HV x Y, wtU) + gar(HV xcY, wU)—an(Y) g (X, wU),
for X, Y € (kerm,)t , Z € Dt and U € DY.
(#ii) the following relations hold:

o (T7) (X, BY ), 70 Z)= — grr(HV x 67, ) — an(Y )gns (X, 67)
and gy ((Vr)(X,0Y), mwlU)=gpm (HV x Y, wtU)+gm (VxcY,wU)—an(Y)gm (X, ¢ 2),
for every X, Y € (kerm,)*, Z € D+ and U € DY.

Proof. From (25) and (27), it is clear that (i)<(ii). Using (29) in (25) and (30) in
(27), we obtain (ii)<(iii). O

THEOREM 3.16. Let 7 be a hemi-slant £+ -Lorentzian submersion from (M, gns) onto
(N,gn). Then the following assertions are equivalent:
(i) ker . describes a totally geodesic foliation,

(ii) the following relation holds:
gu (TebX,wF) — cos? 0gr (TePF, X) = gar (HV gwtPF, X) 4 gar (HV gwF, cX).
(iii) the following relation holds:
cos? Ogn (V) (E, PF), 1. X)—gn (V) (B, bX), mewF) =
g (HV gwitPF, X) + gy (HV pwF, cX),
for E,F € (kerm,), and X € (kerm,)* .

Proof. For E, F € (kerm,), and X € (ker,)%, we have from (1), (3), (9)—(11) that
90 (VEF, X) = gar (VedtPF, X) + gai (VswPF, bX) + gus (VgwPF, cX)
+ g (VEGOF, cX) + g (VEpOF, bX).
By virtue of (5) and (12), the above relation yields
g (VEF, X) = cos? 0ga (TuPF, X) + gu(HV gwtPF, X) + g (HV pwPF, cX)
+ g (HVEGQF, cX) — gr (TbX, wPF) — gr (TebX, 9QOF).
Since wF = wPF @ ¢QF, we obtain
g (VEF, X) = cos? 09 (TEPF, X) + gy (HV pwtPF, X)
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+gM(VEUJF,CX) —gM(TEbX,wF) (31)
From (31), we obtain (i)<(ii) and using (8) in (31), we get (ii)<(iii). U

4. Totally geodesicness and totally umbilical fibers

THEOREM 4.1. Let 7 be a hemi-slant &*-Lorentzian submersion from (M, gar) onto
(N,gn). Then 7 is a totally geodesic map if and only if

g (AxPE,Y) = —sec® 0{gn(HVxWtPE,Y) + g (HV xwE, cY)

+ 9 (AxwE, bY) + an(Y)gu (¢ X, E)} (32)
and g (TePF, X) = —sec? 0{ gy (HV pwtPF, X)
+ g (HV pwF, cX) + gy (TpwF, bX)}, (33)

for E,F € kerm, and X,Y € (kerm,)" .

Proof. For E € ker, and X € (kerm,)", from (8) we have
gn (V) (X, E), 7,.Y) = —gar (VX E,Y). (34)
Using (1), (3), (10) and (11) in (34), we get
an (V) (X, E),m.Y) = —gu(Vxt*PE,Y) — gu(VxwtPE,Y) — ga (VxwPE, bY)
— g (VxWPE, ¢Y) — gn(Vx¢pQE, bY)
—gu(Vx¢QE,cY) — an(Y)gu (¢X,Y).
Using (5), (12) and the fact that wE = wPE ® ¢QF, we find

gn((Vm) (X, B), m.Y) = —cos® Ogrr (AxPE,Y) — gu (HV xwtPE,Y) (35)
— gu(AxwE,bY) — gy (HVxwE, cY) — an(Y)gm (¢ X,Y).
Thus (32) follows from (35), and (33) can be obtained in a similar way. U

THEOREM 4.2. Let m be a hemi-slant £*-Lorentzian submersion from (M, gyr) onto
(N, gn). If w is parallel with respect to V on ker 7., then
(i) cTzW = —agu(Z,W)E € p,  (it) cTuZ =0, i.e., ¢TuZ € ker my,

(iii) TzU = sec? 0cTztU,  (iv) TvU = sec? 0 [cTytU + agn (tU, V)E],
for U,V € D? and Z,W € D+.

Proof. If w is parallel, then for E, F € kerm,, we have from Corollary 3.6 that
TetF — c¢TgF = agy (E, F)E. (36)
Now, for Z,W € D+, we have tZ = tW = 0. Thus for U € DY, we get (i) and (ii).

Also, from (36), we find TztU = cTzU and TytU = cTy U + agy (U, V)E. Replacing
U by tU, we get (iii) and (iv), respectively. O

COROLLARY 4.3. Let  be a hemi-slant &+ -Lorentzian submersion from (M, gar) onto
(N, gn). If w is parallel with respect to V on ker 7., then
(i) the fibers of m are not geodesic in D+ and DY,
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(i) the fibers of m are mized geodesic if and only if ¢ = 0.

THEOREM 4.4. Let m be a hemi-slant £+ -Lorentzian submersion with totally umbilical
fibers from (M, gpr) onto (N,gn). Then one of the following holds:
(i) Fibers of m are minimal. (i) dim D+ =1.  (ii) H € T'(wD? @ p).

Proof. For W, Z € D+, we have from (3) that

VwoZ — ¢(VwZ) = agu(W, Z)8. (37)
Using (5) in (37), then taking inner product with W, we obtain
g (9Z, TwW) = gu(Tw Z, oW). (38)
Using (7) in (38), we find
gu (W, 2)
H,67) =M 020 00 (H, oW). 39
gu(H,9Z) gM(W,W)gM( W) (39)
Interchanging W and Z in (39), we get
How) =920 (0 67). 40
gu(H, W) gM(Z,Z)gM( ¢Z) (40)

Substituting (39) in (40), we obtain

g (Z,W)? B
( g (W, W)gum (2, Z)> gu (H, W) =0,

from which the theorem follows. O
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