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Abstract. The present paper introduce a study of hemi-slant ξ⊥-Lorentzian submer-
sion from (LCS)n-manifolds with an example. We obtain some results and investigate the
geometry of foliations. Necessary and sufficient conditions for such submersion to be totally
geodesic have been obtained. Finally, we study such submersions with totally umbilical
fibers.

1. Introduction

Lorentzian concircular structure manifolds (briefly, (LCS)n-manifolds) were intro-
duced in [23]. They are a generalization of LP-Sasakian manifold [20]. This manifold
has many applications, see [7, 25]. In [19], it has shown that Lorentzian concir-
cular spacetime coincide with generalized Robertson-Walker space-time. So, these
manifolds are interesting for geometry as well as for physics. For detailed study of
(LCS)n-manifolds we refer to [24] and for study of submanifolds of these manifolds
we refer to [5, 8, 14–16].

O’Neill [21, 22] and Gray [11] introduced the study of semi-Riemannain submer-
sions between semi-Riemannain manifolds and the study of Lorentzian submersion was
introduced by Majid [18] and Falcitelli et al. [10], respectively. Recently, Gündüzalp et
al. [13] studied para contact semi-Riemannain submersions, Faghfouri et al. [9] studied
anti-invariant semi-Riemannian submersions, Akyol et al. [2] studied semi-invariant
semi-Riemannian submersions and Gündüzalp et al. [12] studied slant submersions
from Lorentzian almost paracontact manifolds. On the other hand, Akyol et al. [3]
studied semi-slant ξ⊥-Riemannian submersions as a generalization of anti-invariant
ξ⊥-Riemannian submersions [17] and semi-invariant ξ⊥-Riemannian submersions [4].
Also, Tastan et al. [26] studied hemi-slant submersions from Kählerian manifolds.

2010 Mathematics Subject Classification: 53C15, 53C43, 53C50

Keywords and phrases: (LCS)n-manifold; Lorentzian submersion; hemi-slant ξ⊥-Lorentzian
submersion.

106



T. Pal, S. K. Hui 107

Here, we have studied hemi-slant ξ⊥-Lorentzian submersions from (LCS)n-mani-
folds and the structure of the paper is as follows. Section 2 studies (LCS)n-manifolds
and semi-Riemannian submersions. In Section 3, we define hemi-slant ξ⊥-Lorentzian
submersions, present an example, find the integrability conditions for distributions
and investigate the geometry of leaves of different distributions including horizontal
and vertical distribution. In Section 4, we find a necessary and sufficient condition
for a hemi-slant ξ⊥-Lorentzian submersion to be totally geodesic. In this section we
also study hemi-slant ξ⊥-Lorentzian submersions with totally umbilical fibers.

2. Preliminaries

(LCS)n-manifold is a Lorentzian manifold M of dimension n endowed with the unit
timelike concircular vector field ξ, its associated 1-form η and a (1, 1) tensor field
φ such that ∇Xξ = αφX, α being a non-zero scalar function satisfying ∇Xα =
(Xα) = dα(X) = ρη(X), where ρ = −(ξα) is another scalar, and ∇ is the Levi-Civita
connection of the Lorentzian metric g. If α = 1, then this manifold reduces to the
LP -Sasakian manifold [20].

In a (LCS)n-manifold (n > 2) M , the following relations hold [23,24]:

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (1)

φ2X = X + η(X)ξ, (2)

(∇Xφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X}, (3)

A differential map π : M → N between a Lorentzian manifold (M, gM ) and a
semi-Riemannian manifold (N, gN ) is called a Lorentzian submersion if π∗ is onto
and it satisfies
(i) The fibers π−1(q), q ∈ N , are semi-Riemannian submanifolds of M .

(ii) π∗ preserves scalar product of vectors normal to fibers.
For each q ∈ N , π−1(q) is a submanifold of M of dimension k(= dimM −dimN).

The submanifolds π−1(q) are called fibers, and a vector field X on M is called
horizontal (resp. vertical) if it is always orthogonal (resp. tangent) to fibers. If X
is horizontal and π-related to a vector field X∗ on N then X is called basic. The pro-
jection morphisms on the vertical distribution kerπ∗ and the horizontal distribution
(kerπ∗)

⊥ are denoted by V and H, respectively [10]. The O’Neill’s tensors [21] on M
are

TEF = H∇VEVF + V∇VEHF, AEF = V∇HEHF +H∇HEVF (4)

for E,F ∈ χ(M), where∇ is the Levi-Civita connection of (M, gM ). For U, V ∈ kerπ∗
and X, Y ∈ (kerπ∗)

⊥ on M , we have TUV = TV U , AXY = −AYX = 1
2V[X,Y ].

Also from (4), we have

∇UV = TUV + ∇̂UV, ∇UX = H∇UX + TUX, (5)

∇XU = AXU + V∇XU, ∇XY = H∇XY +AXY, (6)

for X,Y ∈ (kerπ∗)
⊥ and U, V ∈ kerπ∗, where ∇̂UV = V∇UV and H∇UX = AXU , if
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X is basic. Clearly T acts on the fiber as the second fundamental form and A acts on
the horizontal distribution. If T ≡ 0, then π is said to be a submersion with totally
geodesic fibers and it is said to be a submersion with totally umbilical fibers if

TEF = gM (E,F )H, (7)

for any E,F ∈ kerπ∗. If H ≡ 0, then π is said to be minimal [10]. Now, we recall
that if (M, gM ) and (N, gN ) bare semi-Riemannian manifolds and π : M → N is a
smooth map, then the second fundamental form of π is given by

(∇π∗)(E,F ) = ∇πEπ∗F − π∗(∇EF ), (8)

for E, F ∈ Γ(TM), where ∇π is the pull back connection and for convenience we
denote by ∇ the Levi-Civita connection of the metrics gM and gN . π is said to be
harmonic if trace(∇π∗) = 0 and it is called a totally geodesic map if (∇π∗)(E,F ) = 0,
for E, F ∈ Γ(TM) [6]. Throughout the paper we consider (M, gM ) to be an (LCS)n-
manifold and (N, gN ) a semi-Riemannian manifold.

A Lorentzian submersion π : M → N is said to be anti-invariant [9] if φ(kerπ∗) ⊆
(kerπ∗)

⊥ and is said to be slant (or θ-slant) [13] if the angle θ(X) between φX and
(kerπ∗ − {ξp}) is constant, i.e., it is independent of the choice of the non-zero vector
X ∈ kerπ∗ − {ξp} and p ∈M . θ is known as the slant angle of the slant submersion.
Also, π is said to be hemi-slant [26] if kerπ∗ admits two complementary orthogonal
distributions Dθ and D⊥ such that Dθ is slant and D⊥ is anti-invariant, i.e.,

kerπ∗ = Dθ ⊕D⊥. (9)

Hemi-slant submersion is natural generalization of anti-invariant, semi-invariant and
slant submersion. If the dimensions of D⊥ and Dθ are n1 and n2, then π is:

(i) an anti-invariant submersion, if n2 = 0,

(ii) an invariant submersion, if n1 = 0, θ = 0,

(iii) a proper slant submersion with slant angle θ, if n1 = 0 and θ 6= 0, π2 ,

(iv) a semi-invariant submersion, if θ = 0, n1 6= 0.

A hemi-slant submersion is proper if n1 6= 0 and θ 6= 0, π2 .

3. Hemi-slant ξ⊥-Lorentzian submersion

A hemi-slant Lorentzian submersion π : M → N is said to be a hemi-slant ξ⊥-Lo-
rentzian submersion if ξ is orthogonal to kerπ∗. Now we will construct an example
of a hemi-slant ξ⊥-Lorentzian submersion from an (LCS)n-manifold onto a semi-
Riemannian manifold.

Example 3.1. Let (R9, φ, ξ, η, g) denote the manifold R9 with the (LCS)-structure
given by

η =
1

3
(−dz +

n∑
i=1

yidxi), ξ = 3
∂

∂z
, g = −η ⊗ η +

1

9

n∑
i=1

dxi ⊗ dxi ⊕ dyi ⊗ dyi,
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φ(
∂

∂x1
) =

∂

∂y1
, φ(

∂

∂x2
) =

∂

∂y2
, φ(

∂

∂x3
) =

∂

∂x3
, φ(

∂

∂x4
) =

∂

∂x4
,

φ(
∂

∂y1
) =

∂

∂x1
, φ(

∂

∂y2
) =

∂

∂x2
, φ(

∂

∂y3
) = − ∂

∂y3
, φ(

∂

∂y4
) = − ∂

∂y4
, φ(

∂

∂z
) = 0,

where (x1, . . . , x4, y1, . . . , y4, z) are Cartesian coordinates. For α, β ∈ R, let π : R9 →
R5 be a submersion defined by

(x1, x2, x3, x4, y1, y2, y3, y4, z) 7→ (cosαx1+ sinαx2, cosβy1+ sinβy2,
x3−y3√

3
,
x4−y4√

3
, 3z).

Then it follows that kerπ∗ = span{J1, J2, J3, J4}, where J1 = sinα ∂
∂x1 − cosα ∂

∂x2 ,

J2 = sinβ ∂
∂y1−cosβ ∂

∂y2 , J3 = ∂
∂x3 + ∂

∂y3 , J4 = ∂
∂x4 + ∂

∂y4 and (kerπ∗)
⊥ = span{L1, L2,

L3, L4, ξ}, where L1 = cosα ∂
∂x1 +sinα ∂

∂x2 , L2 = cosβ ∂
∂y1 +sinβ ∂

∂y2 , L3 = ∂
∂x3 − ∂

∂y3 ,

L4 = ∂
∂x4 − ∂

∂y4 . Then, g(φJ1, J2) = 1
9 cos(α − β),φJ3 = L3 and φJ4 = L4. Thus

span{J1, J2} is a slant distribution with slant angle |α − β| and span{J3, J4} is an
anti-invariant distribution.

Also, by direct decomposition, we find that gN (π∗L1, π∗L1) = gM (L1, L1),
gN (π∗L2, π∗L2) = gM (L2, L2), gN (π∗L3, π∗L3) = gM (L3, L3), gN (π∗L4, π∗L4) =
gM (L4, L4), gN (ξ, ξ) = gM (ξ, ξ), where gM and gN are the metrics of R9 and R5.
Thus π is a hemi-slant ξ⊥-Lorentzian submersion.

For any E ∈ kerπ∗, let E = PE +QE, where PE ∈ Dθ and QE ∈ D⊥ and take

φE = tE + ωE, (10)

where tE ∈ kerπ∗ and ωE ∈ (kerπ∗)
⊥. Also for any X ∈ (kerπ∗)

⊥, we have

φX = bX + cX, (11)

where bX ∈ kerπ∗ and cX ∈ (kerπ∗)
⊥ and hence (kerπ∗)

⊥ = ωDθ ⊕φD⊥⊕µ, where
µ is a φ-invariant distribution of (kerπ∗)

⊥.
The proof of the following theorem is similar to [5, Theorem 3.1].

Theorem 3.2. Let π be a ξ⊥-Lorentzian submersion from (M, gM ) onto (N, gN ).
Then π is a hemi-slant Lorentzian submersion if and only if there exist a constant
λ ∈ [0, 1] and a distribution D on kerπ∗ such that
(i) D = {V ∈ kerπ∗|t2V = λV },
(ii) φV = ωV , for any ∈ kerπ∗ and orthogonal to D.
Furthermore, if θ is the slant angle of π, then λ = cos2 θ.

For any U ∈ Dθ, we get

t2U = cos2 θU. (12)

Consequently, we obtain g(tU, tV ) = cos2 θg(U, V ) and g(ωU, ωV ) = sin2 θg(U, V ) for
every U, V ∈ Dθ.

Lemma 3.3. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then we have t2 + bω = I, ωt+ cω = 0, c2 + ωb = I + η ⊗ ξ, tb+ bc = 0.

Proof. Proof of this lemma follows from (10), (11) and (2). �
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Lemma 3.4. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then we have
(i) tDθ = Dθ, (ii) tD⊥ = {0}, (iii) bωDθ = Dθ, (iv) bφD⊥ = D⊥.

By using (3), (5), (6), (10) and (11), we can easily obtain the following assertions.

Lemma 3.5. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then

∇̂EtF + TEωF = bTEF + t∇̂EF, (13)

TEtF +H∇EωF = cTEF + ω∇̂EF + αg(E,F )ξ, (14)

TEbX +H∇EcX = cH∇EX + ωTEX,
∇̂EbX + TEcX = bH∇EX + tTEX + αη(X)E,

AXbY +H∇XcY = cH∇XY + ωAXY + α[g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X]

ω∇XbY +AXcY = bH∇XY + tAXY

Now, the covariant derivatives of t and ω are defined by (∇Et)F = ∇̂U tF − t∇̂EF
and (∇Eω)F = H∇EωF − ω∇̂EF , for E,F ∈ kerπ∗. Then from (13) and (14), we
get the following.

Corollary 3.6. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then t is parallel if and only if TEωF = bTEF and ω is parallel if and only
if TEtF = cTUF + αg(E,F )ξ, where E,F ∈ kerπ∗.

Theorem 3.7. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then Dθ is integrable if and only if

gM (H∇UωV −H∇V ωU, φZ) = gM (TV ωtU − TUωtV, Z),

for U, V ∈ Dθ and Z ∈ D⊥.

Proof. For U, V ∈ Dθ and Z ∈ D⊥, we have from (1) that

gM (∇UV,Z) = gM (∇U tV, φZ) + gM (∇UωV, φZ) = gM (∇UφtV, Z) + gM (∇UωV, φZ)

= gM (∇U t2V,Z) + gM (∇UωtV, Z) + gM (∇UωV, φZ).

By virtue of (5) and (12), the above equation yields

sin2 θgM (∇UV,Z) = gM (TUωtV, Z) + gM (H∇UωV, φZ). (15)

Thus we obtain

sin2 θgM ([U, V ], Z) = gM (TUωtV − TV ωtU,Z) + gM (H∇UωV −H∇V ωU, φZ).

Corollary 3.8. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). If H∇UωV − H∇V ωU ∈ ωDθ ⊕ µ and TUωtV − TV ωtU ∈ Dθ, for every
U, V ∈ Dθ and Z ∈ D⊥, then Dθ is integrable.

Theorem 3.9. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then D⊥ is integrable if and only if

gM (H∇ZφW −H∇WφZ, ωU) = gM (TWZ − TZW,ωtU),
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for every Z, W ∈ D⊥ and U ∈ Dθ.

Proof. For Z, W ∈ D⊥ and U ∈ Dθ, we have from (1), (3) and (10) that

gM (∇ZW,U) = gM (∇ZW,φtU) + gM (∇ZφW,ωU)

= gM (∇ZW, t2U) + gM (∇ZW,ωtU) + gM (∇ZφW,ωU).

By virtue of (5) and (12), the above equation yields

sin2 θgM (∇ZW,U) = gM (H∇ZφW,ωU) + gM (TZW,ωtU). (16)

Thus we find

sin2 θgM ([Z,W ], U) = gM (H∇ZφW −H∇WφZ, ωU) + gM (TZW − TWZ, ωtU).

Corollary 3.10. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM )
onto (N, gN ). If H∇ZφW −H∇WφZ and TZW − TWZ both belong to φD⊥ ⊕ µ, for
every Z, W ∈ D⊥ and U ∈ Dθ, then D⊥ is integrable.

Theorem 3.11. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then Dθ describes a totally geodesic foliation if and only if

gM (H∇UωV, φZ) + gM (TUωtV, Z) = 0 (17)

and gM (H∇UωtV,X) + gM (H∇UωV, cX) + gM (AUωV, bX) = 0, (18)

for every U, V ∈ Dθ, Z ∈ D⊥ and X ∈ (kerπ∗)
⊥.

Proof. Since θ 6= 0, π2 , the relation (17) follows from (15). Also, for U, V ∈ Dθ and
X ∈ (kerπ∗)

⊥, we have from (1), (3), (10) and (11) that

gM (∇UV,X) = gM (∇U t2V,X) + gM (∇UωtV,X)− gM ((∇Uφ)tV,X)

+ gM (∇UωV, bX) + gM (∇UωV, cX) + αη(X)gM (φU, V )

By virtue of (3), (5) and (12), the above relation yields

sin2 θgM (∇UV,X) = gM (H∇UωtV,X) + gM (AUωV, bX) + gM (H∇UωV, cX). (19)

which gives (18). The converse part also follows from (15) and (19). �

Theorem 3.12. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then D⊥ describes a totally geodesic foliation if and only if

gM (H∇ZφW,ωU) + gM (TZW,ωtU) = 0 (20)

and gM (H∇ZφW, cX) = gM (∇̂ZtbX + TZωbX,W ), (21)

for every U ∈ Dθ, Z, W ∈ D⊥ and X ∈ (kerπ∗)
⊥.

Proof. Since θ 6= 0, π2 , (20) follows from (16). Also, for Z, W ∈ Dθ and X ∈ (kerπ∗)
⊥,

from (3), (10) and (11), we get

gM (∇ZW,X) = gM (∇ZW, tbX) + gM (∇ZW,ωbX) + gM (∇ZφW, cX)

= −gM (∇ZtbX,W )− gM (∇ZωbX,W ) + gM (∇ZφW, cX)

which by virtue of (5), yields

gM (∇ZW,X) = −gM (∇̂ZtbX,W )− gM (TZωbX,W ) + gM (H∇ZφW, cX), (22)

from which (21) follows. The converse part follows from (16) and (22). �
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Proposition 3.13. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM )
onto (N, gN ). Then kerπ∗ becomes a direct product of Dθ and D⊥ if and only if (17),
(18), (20) and (21) hold simultaneously.

Theorem 3.14. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then the following assertions are equivalent:
(i) kerπ∗

⊥ is integrable

(ii) the following relations hold:

gM (H∇Y φZ, cX)− gM (H∇XφZ, cY ) =

gM (AY bX −AXbY, φZ)− α[η(X)gM (Y, φZ)− η(Y )gM (X,φZ)] (23)

and gM (H∇XY −H∇YX,ωtU) = gM (AY bX −AXbY, ωU)

+gM (H∇Y cX −H∇XcY, ωU)− α[η(X)gM (Y, ωU)− η(Y )gM (X,ωU)], (24)

for X, Y ∈ (kerπ∗)
⊥ , Z ∈ D⊥ and U ∈ Dθ.

(iii) the following relations hold:

gN ((∇π∗)(Y, bX)− (∇π∗)(X, bY ), π∗φZ) = gM (H∇XφZ, cY )

−gM (H∇Y φZ, cX)− α[η(X)gM (Y, φZ)− η(Y )gM (X,φZ)]

and gN ((∇π∗)(Y, bX)− (∇π∗)(X, bY ), π∗ωU) = gM (H∇YX −H∇XY, ωtU)

+gM (H∇Y cX −H∇XcY, ωU)− α[η(X)gM (Y, ωU)− η(Y )gM (X,ωU)]

for X,Y ∈ (kerπ∗)
⊥ , Z ∈ D⊥ and U ∈ Dθ.

Proof. For X,Y ∈ (kerπ∗)
⊥ and Z ∈ D⊥, we have from (1), (3) and (11) that

gM (∇XY, Z) = gM (∇XbY, φZ)− gM (cY,∇XφZ)− αη(Y )gM (X,φZ).

By virtue of (5), the above equation yields

gM (∇XY,Z) = gM (AXbY, φZ)− gM (H∇XφZ, cY )− αη(Y )gM (X,φZ). (25)

Thus we find

gM ([X,Y ], Z) = gM (AXbY −AY bX, φZ)− gM (H∇XφZ, cY )

+ gM (H∇Y φZ, cX)− α[η(Y )gM (X,φZ)− η(X)gM (Y, φZ)]. (26)

Also, for X,Y ∈ (kerπ∗)
⊥ and U ∈ Dθ, we have from (1), (3), (10) and (11) that

gM (∇XY,U) = gM (∇XY, t2U) + gM (∇XY, ωtU) + gM (∇XbY, ωU)

+ gM (∇XcY, ωU)− αη(Y )gM (X,ωU).

Using (5) and (12) in the above equation, we obtain

sin2 θgM (∇XY,U) = gM (H∇XY, ωtU) + gM (AXbY, ωU)

+ gM (H∇XcY, ωU)− αη(Y )gM (X,ωU). (27)

Thus we get

sin2 θgM ([X,Y ], U) = gM (H∇XY −H∇YX,ωtU) + gM (AXbY −AY bX, ωU)

+ gM (H∇XcY −H∇Y cX, ωU)

− α[η(Y )gM (X,ωU)− η(X)gM (Y, ωU)]. (28)
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From (26) and (28), we get (i)⇔(ii).
Now, from (8), we have

gM (AXbY, φZ) = −gN ((∇π∗)(X, bY ), π∗φZ) (29)

and gM (AY bX, φZ) = −gN ((∇π∗)(Y, bX), π∗φZ) (30)

Using (29) and (30) in (23) and (24), respectively, we get (ii)⇔(iii). �

Theorem 3.15. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then the following statements are equivalent:
(i) (kerπ∗)

⊥ describes a totally geodesic foliation,

(ii) the following relations hold:

gM (AXbY, φZ) = gM (H∇XφZ, cY ) + αη(Y )gM (X,φZ)

and gM (AXbY, ωU) = −gM (H∇XY, ωtU) + gM (H∇XcY, ωU)−αη(Y )gM (X,ωU),

for X, Y ∈ (kerπ∗)
⊥ , Z ∈ D⊥ and U ∈ Dθ.

(iii) the following relations hold:

gN ((∇π∗)(X, bY ), π∗φZ)=− gM (H∇XφZ, cY )− αη(Y )gM (X,φZ)

and gN ((∇π∗)(X, bY ), π∗ωU)=gM (H∇XY, ωtU)+gM (∇XcY, ωU)−αη(Y )gM (X,φZ),

for every X, Y ∈ (kerπ∗)
⊥, Z ∈ D⊥ and U ∈ Dθ.

Proof. From (25) and (27), it is clear that (i)⇔(ii). Using (29) in (25) and (30) in
(27), we obtain (ii)⇔(iii). �

Theorem 3.16. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then the following assertions are equivalent:
(i) kerπ∗ describes a totally geodesic foliation,

(ii) the following relation holds:

gM (TEbX, ωF )− cos2 θgM (TEPF,X) = gM (H∇EωtPF,X) + gM (H∇EωF, cX).

(iii) the following relation holds:

cos2 θgN ((∇π∗)(E,PF ), π∗X)−gN ((∇π∗)(E, bX), π∗ωF ) =

gM (H∇EωtPF,X) + gM (H∇EωF, cX),

for E,F ∈ (kerπ∗), and X ∈ (kerπ∗)
⊥.

Proof. For E,F ∈ (kerπ∗), and X ∈ (kerπ∗)
⊥, we have from (1), (3), (9)–(11) that

gM (∇EF,X) = gM (∇EφtPF,X) + gM (∇EωPF, bX) + gM (∇EωPF, cX)

+ gM (∇EφQF, cX) + gM (∇EφQF, bX).

By virtue of (5) and (12), the above relation yields

gM (∇EF,X) = cos2 θgM (TUPF,X) + gM (H∇EωtPF,X) + gM (H∇EωPF, cX)

+ gM (H∇EφQF, cX)− gM (TEbX, ωPF )− gM (TEbX, φQF ).

Since ωF = ωPF ⊕ φQF , we obtain

gM (∇EF,X) = cos2 θgM (TEPF,X) + gM (H∇EωtPF,X)
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+ gM (∇EωF, cX)− gM (TEbX, ωF ). (31)

From (31), we obtain (i)⇔(ii) and using (8) in (31), we get (ii)⇔(iii). �

4. Totally geodesicness and totally umbilical fibers

Theorem 4.1. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). Then π is a totally geodesic map if and only if

gM (AXPE, Y ) = − sec2 θ{gM (H∇XωtPE, Y ) + gM (H∇XωE, cY )

+ gM (AXωE, bY ) + αη(Y )gM (φX,E)} (32)

and gM (TEPF,X) = − sec2 θ{gM (H∇EωtPF,X)

+ gM (H∇EωF, cX) + gM (TEωF, bX)}, (33)

for E,F ∈ kerπ∗ and X,Y ∈ (kerπ∗)
⊥.

Proof. For E ∈ kerπ∗ and X ∈ (kerπ∗)
⊥, from (8) we have

gN ((∇π∗)(X,E), π∗Y ) = −gM (∇XE, Y ). (34)

Using (1), (3), (10) and (11) in (34), we get

gN ((∇π∗)(X,E), π∗Y ) = −gM (∇Xt2PE, Y )− gM (∇XωtPE, Y )− gM (∇XωPE, bY )

− gM (∇XωPE, cY )− gM (∇XφQE, bY )

− gM (∇XφQE, cY )− αη(Y )gM (φX, Y ).

Using (5), (12) and the fact that ωE = ωPE ⊕ φQE, we find

gN ((∇π∗)(X,E), π∗Y ) = − cos2 θgM (AXPE, Y )− gM (H∇XωtPE, Y ) (35)

− gM (AXωE, bY )− gM (H∇XωE, cY )− αη(Y )gM (φX, Y ).

Thus (32) follows from (35), and (33) can be obtained in a similar way. �

Theorem 4.2. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). If ω is parallel with respect to ∇ on kerπ∗, then
(i) cTZW = −αgM (Z,W )ξ ∈ µ, (ii) cTUZ = 0, i.e., φTUZ ∈ kerπ∗,

(iii) TZU = sec2 θcTZtU , (iv) TV U = sec2 θ [cTV tU + αgM (tU, V )ξ],
for U, V ∈ Dθ and Z,W ∈ D⊥.

Proof. If ω is parallel, then for E, F ∈ kerπ∗, we have from Corollary 3.6 that

TEtF − cTEF = αgM (E,F )ξ. (36)

Now, for Z,W ∈ D⊥, we have tZ = tW = 0. Thus for U ∈ Dθ, we get (i) and (ii).
Also, from (36), we find TZtU = cTZU and TV tU = cTV U + αgM (U, V )ξ. Replacing
U by tU , we get (iii) and (iv), respectively. �

Corollary 4.3. Let π be a hemi-slant ξ⊥-Lorentzian submersion from (M, gM ) onto
(N, gN ). If ω is parallel with respect to ∇ on kerπ∗, then
(i) the fibers of π are not geodesic in D⊥ and Dθ,
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(ii) the fibers of π are mixed geodesic if and only if c ≡ 0.

Theorem 4.4. Let π be a hemi-slant ξ⊥-Lorentzian submersion with totally umbilical
fibers from (M, gM ) onto (N, gN ). Then one of the following holds:
(i) Fibers of π are minimal. (ii) dimD⊥ = 1. (iii) H ∈ Γ(ωDθ ⊕ µ).

Proof. For W,Z ∈ D⊥, we have from (3) that

∇WφZ − φ(∇WZ) = αgM (W,Z)ξ. (37)

Using (5) in (37), then taking inner product with W , we obtain

gM (φZ, TWW ) = gM (TWZ, φW ). (38)

Using (7) in (38), we find

gM (H,φZ) =
gM (W,Z)

gM (W,W )
gM (H,φW ). (39)

Interchanging W and Z in (39), we get

gM (H,φW ) =
gM (W,Z)

gM (Z,Z)
gM (H,φZ). (40)

Substituting (39) in (40), we obtain(
1− gM (Z,W )2

gM (W,W )gM (Z,Z)

)
gM (H,φW ) = 0,

from which the theorem follows. �
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