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I-SECOND SUBMODULES OF A MODULE

F. Farshadifar and H. Ansari-Toroghy

Abstract. Let R be a commutative ring with identity, I an ideal of R, and M be an
R-module. In this paper, we will introduce the concept of I-second submodules of M as a
generalization of second submodules of M and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will
denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r ∈ R and m ∈M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [9]. A non-zero

submodule N of M is said to be second if for each a ∈ R, the homomorphism N
a→ N

is either surjective or zero [14].

A proper ideal P of R is weakly prime if for a, b ∈ R with 0 6= ab ∈ P , either
a ∈ P or b ∈ P . Weakly prime ideals were studied in some detail in [3]. A proper
submodule N of M is called weakly prime if for r ∈ R and m ∈M with 0 6= rm ∈ N ,
either m ∈ N or r ∈ (N :R M) [10].

Let I be an ideal of R. In [1], the author gave a generalization of weakly prime
ideals and said that such ideals I-prime ideals. A proper ideal P of R is called I-prime
ideal if for a, b ∈ R, ab ∈ P \ IP , implies a ∈ P or b ∈ P [1]. Akray and Hussein
in [2] extended I-prime ideals to I-prime submodules. A proper submodule P of M
is called an I-prime submodule of M if for r ∈ R, m ∈M , rm ∈ P \ IP implies that
m ∈ P or r ∈ (P :R M) [2].

The main purpose of this paper is to introduce and study the notion of I-second
submodules of an R-module M as a dual notion of I-prime submodules, where I is
an ideal of R and investigate some properties of this class of modules.
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2. Main results

A proper submodule N of an R-module M is said to be completely irreducible if
N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies that N = Ni

for some i ∈ I. It is easy to see that every submodule of M is an intersection of
completely irreducible submodules of M [11].

We use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M . To prove N ⊆ K,
it is enough to show that if L is a completely irreducible submodule of M such that
K ⊆ L, then N ⊆ L.

Lemma 2.2. [4, 2.10] For a submodule S of an R-module M the following statements
are equivalent:
(a) S is a second submodule of M ;

(b) S 6= 0 and rS ⊆ K, where r ∈ R and K is a submodule of M , implies that either
rS = 0 or S ⊆ K;

(c) S 6= 0 and rS ⊆ L, where r ∈ R and L is a completely irreducible submodule of
M, implies that either rS = 0 or S ⊆ K.

Theorem 2.3. Let I be an ideal of R. For a non-zero submodule S of an R-module
M the following statements are equivalent:
(a) For each r ∈ R, a submodule K of M , r ∈ (K :R S) \ (K :R (S :M I)) implies
that S ⊆ K or r ∈ AnnR(S);

(b) For each r /∈ (rS :R (S :M I)), we have rS = S or rS = 0;

(c) (K :R S) = AnnR(S)∪ (K :R (S :M I)), for any submodule K of M with S 6⊆ K;

(d) (K :R S) = AnnR(S) or (K :R S) = (K :R (S :M I)), for any submodule K of
M with S 6⊆ K.

Proof. (a) ⇒ (b) Let r /∈ (rS :R (S :M I)). Then as rS ⊆ rS, we have S ⊆ rS or
rS = 0 by part (a). Thus rS = S or rS = 0.

(b) ⇒ (a) Let r ∈ R and K be a submodule of M such that r ∈ (K :R S) \ (K :R
(S :M I)). Then if r ∈ (rS :R (S :M I)), then r ∈ (K :R (S :M I)) which is a
contradiction. Thus r /∈ (rS :R (S :M I)). Now by part (b), rS = S or rS = 0. So
S ⊆ K or rS = 0, as needed.

(a)⇒ (c) Let r ∈ (K :R S) and S 6⊆ K. If r /∈ (K :R (S :M I)), then r ∈ AnnR(S)
by part (a). Hence, (K :R S) ⊆ AnnR(S). If r ∈ (K :R (S :M I)), then (K :R S) ⊆
(K :R (S :M I)). Therefore, (K :R S) ⊆ AnnR(S) ∪ (K :R (S :M I)). The other
inclusion always holds.

(c) ⇒ (d) This follows from the fact that if an ideal is a union of two ideals, then
it is equal to one of them.

(d) ⇒ (a) This is clear. �
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Definition 2.4. Let I be an ideal of R. We say that a non-zero submodule S of an
R-module M is an I-second submodule of M if satisfies the equivalent conditions of
Theorem 2.3. This can be regarded as a dual notion of I-prime submodule. In case,
I = 0 we say that S is a weak second submodule of M .

Let I be an ideal of R. Clearly every second submodule is an I-second submodule.
But the converse is not true in general as we see in the following example.

Example 2.5. (a) If I = 0, then every module is an I-second submodule of itself but
every module is not a second module. For example, the Z-module Z is weak second
which is not second.

(b) Consider the Z-module Z12. Take I = 4Z as an ideal of Z and S = 3̄Z12 as a
submodule of Z12. Then S is an I-second submodule of Z12. But S is not a second
submodule.

Example 2.6. Let I be an ideal of R and S a non-zero submodule of an R-module
M . If for each r ∈ R, a completely irreducible submodule L of M , r ∈ (L :R S)\(L :R
(S :M I)) implies that S ⊆ L or r ∈ AnnR(S) we cannot conclude that (similar to
Lemma 2.2 (c) ⇒ (a)), S is an I-second submodule of M . For example, consider
Z as a Z-module. Then 2Z satisfies the mentioned condition above but it is not an
I-second submodule of Z for ideal I = 4Z of Z.

Let I be an ideal of R and M be an R-module. If I = R, then every submodule
is an I-second submodule. So in the rest of this paper we can assume that I 6= R.

Theorem 2.7. Let M be an R-module. Then we have the following.
(a) Let I, J be ideals of R such that I ⊆ J . If S is an I-second submodule of M , then
S is an J-second submodule of M . In particular, every weak second submodule is an
I-second submodule for each ideal I of R.

(b) If S an I-second submodule of M which is not second, then AnnR(S)(S :M I) ⊆ S.

Proof. (a) The result follows from the fact that I ⊆ J implies that (rS :R S) \ (rS :R
(S :M J)) ⊆ (rS :R S) \ (rS :R (S :M I)), for each r ∈ R.

(b) Assume on the contrary that AnnR(S)(S :M I) 6⊆ S. We show that S is second.
Let rS ⊆ K for some r ∈ R and a submodule K of M . If r /∈ (K :R (S :M I)), then
S is a I-second submodule implies that S ⊆ K or r ∈ AnnR(S) as needed. So
assume that r ∈ (K :R (S :M I)). First, suppose that r(S :M I) 6⊆ S. Then
there exists a submodule L of M such that S ⊆ L but r(S :M I) 6⊆ L. Then
r ∈ (K ∩ L :R S) \ (K ∩ L :R (S :M I)). So S ⊆ K ∩ L or r ∈ AnnR(S) and hence
S ⊆ K or r ∈ AnnR(S). So we can assume that r(S :M I) ⊆ S. On the other hand, if
AnnR(S)(S :M I) 6⊆ K, then there exists t ∈ AnnR(S) such that t /∈ (K :R (S :M I)).
Then t + r ∈ (K :R S) \ (K :R (S :M I)). Thus S ⊆ K or t + r ∈ AnnR(S) and
hence S ⊆ K or r ∈ AnnR(S). So we can assume that AnnR(S)(S :M I) ⊆ K. Since
AnnR(S)(S :M I) 6⊆ S, there exist t ∈ AnnR(S), a submodule T of M such that
S ⊆ T and t(S :M I) 6⊆ T . Now we have r + t ∈ (K ∩ T :R S) \ (K ∩ T :R (S :M I)).
So S is an I-second submodule gives S ⊆ K ∩ T or r + t ∈ AnnR(S). Hence S ⊆ K
or r ∈ AnnR(S), as requested. �
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An R-module M is said to be a comultiplication module if for every submodule N
of M there exists an ideal I of R such that N = (0 :M I) [5].

Theorem 2.8. Let I be an ideal of R, M an R-module, and S be a submodule of M .
Then we have the following.

(a) If S is an I-second submodule of M such that AnnR((S :M I)) ⊆ IAnnR(S),
then AnnR(S) is an I-prime ideal of R.

(b) If M is a comultiplication R-module and AnnR(S) is an I-prime ideal of R, then
S is an I-second submodule of M .

Proof. (a) Let ab ∈ AnnR(S) \ IAnnR(S) for some a, b ∈ R. Then aS ⊆ (0 :M b). As
ab /∈ IAnnR(S) and AnnR((S :M I)) ⊆ IAnnR(S), we have ab /∈ AnnR((S :M I)).
This implies that a /∈ ((0 :M b) :R (S :M I)). Thus a ∈ AnnR(S) or S ⊆ (0 :M b).
Hence a ∈ AnnR(S) or b ∈ AnnR(S), as needed.

(b) Let r ∈ (K :R S)\(K :R (S :M I)) for some r ∈ R and submodule K of M . As
M is a comultiplication R-module, there exists an ideal J of R such that K = (0 :M J).
Thus rJ ⊆ AnnR(S). Since r /∈ (K :R (S :M I)), we have Jr(S :M I) 6= 0. This
implies that Jr 6⊆ AnnR((S :M I). Since always IAnnR(S ⊆ AnnR((S :M I)), we
have rJ 6⊆ IAnnR(S). Thus by assumption, r ∈ AnnR(S) or J ⊆ AnnR(S) and so
S ⊆ (0 :M J) = K. �

The next corollary follows from Theorem 2.11, by setting I = 0.

Corollary 2.9. Let M an R-module and S be a submodule of M . Then we have
the following.

(a) If M is faithful and S is a weak second submodule of M , then AnnR(S) is a
weakly prime ideal of R.

(b) If M is a comultiplication R-module and AnnR(S) is a weakly prime ideal of R,
then S is a weak second submodule of M .

The following example shows that the condition “M is a comultiplication R-
module” in Corollary 2.9 (b) cannot be omitted.

Example 2.10. Let R = Z, M = Z ⊕ Z, and S = 2Z ⊕ 0. Then M is not a
comultiplication R-module. Clearly, AnnR(S) = 0 is a weakly prime ideal of R. But
S is not a weak second submodule of M .

Proposition 2.11. Let I be an ideal of R and M be an R-module. Let N be an
I-second submodule of M . Then we have the following statements.

(a) If K is a submodule of M with K ⊂ N , then N/K is an I-second submodule of
M/K.

(b) Let N be a finitely generated submodule of M and S be a multiplicatively closed
subset of R with AnnR(N) ∩ S = ∅. Then S−1N is an S−1I-second submodule of
S−1M .
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Proof. (a) This follows from the fact that r /∈ (r(S/K) :R (S/K :M/K I)) implies that
r /∈ (rS :R (S :M I)).

(b) As AnnR(N) ∩ S = ∅ and N is finitely generated, S−1N 6= 0 by using [8, P.
43, Exe. 1]. Now the claim follows from the fact that r/s /∈ ((r/s)S−1N :S−1R

(S−1N :S−1M S−1I) implies that r /∈ (rN :R (N :M I)). �

Theorem 2.12. Let M be a primary R-module. Then every proper weak second
submodule of M is a primary submodule of M .

Proof. Let N be a proper weak second submodule of M and rx ∈ N for some r ∈ R
and x ∈ M . If r /∈ (rN :R M), then rN = 0 or rN = N since N is weak second. In
the first case, r2x ∈ rN = 0. Now as M is primary, x = 0 or r ∈

√
AnnR(M). This

implies that x ∈ N or r ∈
√

AnnR(M/N), as needed. If rN = N , then rx = rn for

some n ∈ N . This implies that x = n ∈ N or r ∈
√
AnnR(M) ⊆

√
AnnR(M/N)

since M is primary. Now suppose that r ∈ (rN :R M). Then rx ∈ rM ⊆ rN .
Therefore, similarly to the pervious case we are done. �

Proposition 2.13. Let I be an ideal of R, M and Ḿ be R-modules, and let f :
M → Ḿ be an R-monomorphism. If Ń is an I-second submodule of Ḿ such that
Ń ⊆ Im(f), then f−1(Ń) is an I-second submodule of M .

Proof. As Ń 6= 0 and Ń ⊆ Im(f), we have f−1(Ń) 6= 0. Let r /∈ (rf−1(Ń) :R
(f−1(Ń) :M I)); then one can see that r /∈ (rŃ :R (Ń :Ḿ I)) by using assumptions.

Thus rŃ = 0 or rŃ = Ń . This implies that rf−1(Ń) = 0 or rf−1(Ń) = f−1(Ń) as
requested. �

Let Ri be a commutative ring with identity and Mi be an Ri-module, for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M is
of the form N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Lemma 2.14. Let R = R1 × R2 be a decomposable ring, I = I1 × I2 an ideal of
R, and M = M1 ×M2 be an R-module, where M1 is an R1-module and M2 is an
R2-module. If (0 :M2

I2) 6= 0 and S1 is a non-zero R1-submodule of M1, then the
following statements are equivalent:
(a) S1 is a second R1-submodule of M1;

(b) S1 × 0 is a second R-submodule of M = M1 ×M2;

(c) S1 × 0 is an I-second R-submodule of M = M1 ×M2.

Proof. (a) ⇒ (b) follows from [7, 2.23] and (b) ⇒ (c) is clear.
(c)⇒ (a) Let r ∈ R1. Then (0 :M2 I2) 6= 0 implies that (r1, 1)(S1×0 :M1×M2 I) 6⊆

(r1, 1)(S1 × 0). Thus by part (c), (r1, 1)(S1 × 0) = (S1 × 0) or (r1, 1)(S1 × 0) = 0× 0.
Hence r1S1 = S1 or r1S1 = 0, as needed. �

Theorem 2.15. Let R = R1 × R2 be a decomposable ring and M = M1 ×M2 be an
R-module, where M1 is an R1-module and M2 is an R2-module. Let I be an ideal
of R such that (0 :M1

I1) 6= 0 and (0 :M2
I2) 6= 0. If S = S1 × S2 is an I-second

R-submodule of M = M1 ×M2, then either (S :M I) = S or S is a second submodule
of M .
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Proof. Let (S :M I) 6= S. Then either (S1 :M1
I1) 6= S1 or (S2 :M2

I2) 6= S2. Suppose
that (S2 :M2

I2) 6= S2. Then (S2 :R2
(S2 :M2

I2)) 6= R. Hence 1 /∈ (S2 :R2
(S2 :M2

I2)). If S1 = 0, then the result follows from Lemma 2.14. So suppose that S1 6= 0.
As (0, 1) /∈ ((0, 1)(S1 × S2) :R (S1 × S2 :M I)), we have (0, 1)(S1 × S2) = S1 × S2

or (0, 1)(S1 × S2) = 0 × S2 since S = S1 × S2 is an I-second R-submodule of M .
Therefore, S2 = 0. Hence by Lemma 2.14, S = S1 × 0 is a second R-submodule
of M . �

Example 2.16. Let R1 = R2 = M1 = M2 = S1 = Z6. Then by Theorem 2.15, S1× 0
is not a weak second submodule of M1 ×M2.

Theorem 2.17. Let I be an ideal of R, M1, M2 be R-modules, and let N be a sub-
module of M1. Then N ⊕ 0 is an I-second submodule of M1 ⊕M2 if and only if N is
an I-second submodule of M1 and for r ∈ (rN :R (N :M1 I)), rN 6= 0, and rN 6= N ,
we have r ∈ AnnR((0 :M2 I)).

Proof. (⇒) Let r /∈ (rN :R (N :M1 I)). Then r /∈ (r(N ⊕ 0) :R (N ⊕ 0 :M I)). Since
N ⊕ 0 is an I-second submodule, either r(N ⊕ 0) = N ⊕ 0 or r(N ⊕ 0) = 0⊕ 0. Thus
either rN = N or rN = 0, so N is I-second. Now, let r ∈ (rN :R (N :M1

I)), rN 6= 0,
and rN 6= N . Assume on the contrary that r /∈ AnnR((0 :M2

I)). Then there exists
x2 ∈ M2 such that Ix2 = 0 and rx2 6= 0. This implies that r(0, x2) ∈ r(N ⊕ 0 :M
I) \ r(N ⊕ 0). So since N ⊕ 0 is an I-second submodule, either r(N ⊕ 0) = N ⊕ 0
or r(N ⊕ 0) = 0 ⊕ 0. Thus either rN = N or rN = 0, which is a contradiction.
Therefore, r ∈ AnnR((0 :M2

I)).
(⇐) Let r /∈ (r(N ⊕ 0) :R (N ⊕ 0 :M I)). Then if rN = N or rN = 0, the result

is clear. So suppose that rN 6= N and rN 6= 0. We show that r 6∈ (rN :R (N :M1
I))

and this contradiction proves the result because N is an I-second submodule of M1.
Assume on the contrary that r ∈ (rN :R (N :M1 I)). Then by assumption, r ∈
AnnR((0 :M2 I)). This implies that if (x1, x2) ∈ N ⊕ (0 :M I), then r(x1, x2) ∈ r(N ⊕
0). Therefore, r ∈ (r(N ⊕ 0) :R (N ⊕ 0 :M I)), which is a desired contradiction. �

A non-zero R-module M is said to be secondary if for each a ∈ R the endomor-
phism of M given by multiplication by a is either surjective or nilpotent [13].

Corollary 2.18. Let I and P be ideals of R, M1, M2 be R-modules, and let N
be a submodule of M1. Let Si (1 ≤ i ≤ n) be P -secondary submodules of M1 with∑n

i=1 Si = (N :M1
I). If N is an I-second submodule of M1 and P ⊆ AnnR((0 :M2

I)), then N ⊕ 0 is an I-second submodule of M1 ⊕M2.

Proof. Let r ∈ (rN :R (N :M1
I)), rN 6= 0, and rN 6= N . Then we will prove that

r ∈ AnnR((0 :M2
I)) and hence the result is obtained by Theorem 2.17. Assume

on the contrary that r /∈ AnnR((0 :M2
I)). Hence r /∈ P . On the other hand,

r(
∑n

i=1 Si) = r(N :M1 I) ⊆ rN . But
∑n

i=1 Si is a P -secondary submodule by [13, 2.1],
so either r(

∑n
i=1 Si) =

∑n
i=1 Si or r ∈ P . This implies that rN = N or r ∈ P , which

is a contradiction. Thus r ∈ AnnR((0 :M2
I)). �

Theorem 2.19. Let I be an ideal of R and M be an R-module. Then we have the
following.
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(a) If
⋂∞

n=1 I
nM = 0 and every proper submodule of M is I-prime, then every non-

zero submodule of M is I-second.

(b) If
∑∞

n=1(0 :M In) = M and every non-zero submodule of M is I-second, then
every proper submodule of M is I-prime.

Proof. (a) Let S be a non-zero submodule of M , r ∈ (K :R S) \ (K :R (S :M I))
for some r ∈ R and a submodule K of M and rS 6= 0. If rS 6⊆ IK, then as K is
I-prime, we have rM ⊆ K or S ⊆ K. If rM ⊆ K, then r(S :M I) ⊆ K which is a
contradiction. So S ⊆ K and we are done. Now suppose that rS ⊆ IK. As rS 6= 0
and

⋂∞
n=1 I

nK = 0, there exists a positive integer t such that rS 6⊆ ItK. Therefore,
there is a positive integer h such that rS ⊆ Ih−1K but rS 6⊆ IhK, where 2 ≤ h ≤ t.
Thus since Ih−1K is I-prime, S ⊆ Ih−1K or rM ⊆ Ih−1K. If rM ⊆ Ih−1K, then
r(S :M I) ⊆ K which is a contradiction. So S ⊆ Ih−1 ⊆ K as needed.

(b) Let P be a proper submodule of M , rK ⊆ P \ IP for some r ∈ R and a
submodule K of M and rM 6⊆ P . If r(K :M I) 6⊆ P , then as K is I-second, we
have rK = 0 or K ⊆ P . If rK = 0, then rK ⊆ IP which is a contradiction. So
K ⊆ P and we are done. Now suppose that r(K :M I) ⊆ P . As rM 6⊆ P and∑∞

n=1(K :M In) = M , there exists a positive integer t such that r(K :M It) 6⊆ P .
Therefore, there is a positive integer h such that r(K :M Ih−1) ⊆ P but r(K :M
Ih) 6⊆ P , where 2 ≤ h ≤ t. Thus since (K :M Ih−1) is I-second, (K :M Ih−1) ⊆ P or
r(K :M Ih−1) = 0. If r(K :M Ih−1) = 0, then 0 = rK ⊆ IP which is a contradiction.
So K ⊆ (K :M Ih−1) ⊆ P as needed. �

By setting I = 0 in the previous theorem we get the following.

Corollary 2.20. Let I be an ideal of R and M be an R-module. Then every proper
submodule of M is weakly prime if and only if every non-zero submodule of M is weak
second.

Corollary 2.21. Let (R,m) be a local ring and M be an R-module. Then we have
the following.
(a) If M is a Noetherian R-module and every proper submodule of M is I-prime,
then every non-zero submodule of M is I-second.

(b) If M is an Artinian R-module and every non-zero submodule of M is I-second,
then every proper submodule of M is I-prime.

Proof. Part (a) follows from [12, 4.6] and Theorem 2.19, while (b) follows from [6, 3.2]
and Theorem 2.19. �
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