I-SECOND SUBMODULES OF A MODULE

F. Farshadifar and H. Ansari-Toroghy

Abstract

Let R be a commutative ring with identity, I an ideal of R, and M be an R-module. In this paper, we will introduce the concept of I-second submodules of M as a generalization of second submodules of M and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $r m \in P$, we have $m \in P$ or $r \in\left(P:_{R} M\right)$ [9]. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [14].

A proper ideal P of R is weakly prime if for $a, b \in R$ with $0 \neq a b \in P$, either $a \in P$ or $b \in P$. Weakly prime ideals were studied in some detail in [3]. A proper submodule N of M is called weakly prime if for $r \in R$ and $m \in M$ with $0 \neq r m \in N$, either $m \in N$ or $r \in\left(N:_{R} M\right)$ [10].

Let I be an ideal of R. In [1], the author gave a generalization of weakly prime ideals and said that such ideals I-prime ideals. A proper ideal P of R is called I-prime ideal if for $a, b \in R, a b \in P \backslash I P$, implies $a \in P$ or $b \in P$ [1]. Akray and Hussein in [2] extended I-prime ideals to I-prime submodules. A proper submodule P of M is called an I-prime submodule of M if for $r \in R, m \in M, r m \in P \backslash I P$ implies that $m \in P$ or $r \in\left(P:_{R} M\right)$ [2].

The main purpose of this paper is to introduce and study the notion of I-second submodules of an R-module M as a dual notion of I-prime submodules, where I is an ideal of R and investigate some properties of this class of modules.

[^0]Keywords and phrases: Second submodule; weak second submodule; I-prime ideal; I-second submodule.

2. Main results

A proper submodule N of an R-module M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

We use the following basic fact without further comment.
Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

Lemma 2.2. [4, 2.10] For a submodule S of an R-module M the following statements are equivalent:
(a) S is a second submodule of M;
(b) $S \neq 0$ and $r S \subseteq K$, where $r \in R$ and K is a submodule of M, implies that either $r S=0$ or $S \subseteq K$;
(c) $S \neq 0$ and $r S \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, implies that either $r S=0$ or $S \subseteq K$.

Theorem 2.3. Let I be an ideal of R. For a non-zero submodule S of an R-module M the following statements are equivalent:
(a) For each $r \in R$, a submodule K of $M, r \in\left(K:_{R} S\right) \backslash\left(K:_{R}\left(S:_{M} I\right)\right)$ implies that $S \subseteq K$ or $r \in A n n_{R}(S)$;
(b) For each $r \notin\left(r S:_{R}\left(S:_{M} I\right)\right)$, we have $r S=S$ or $r S=0$;
(c) $\left(K:_{R} S\right)=A n n_{R}(S) \cup\left(K:_{R}\left(S:_{M} I\right)\right)$, for any submodule K of M with $S \nsubseteq K$;
(d) $\left(K:_{R} S\right)=\operatorname{Ann}_{R}(S)$ or $\left(K:_{R} S\right)=\left(K:_{R}\left(S:_{M} I\right)\right.$, for any submodule K of M with $S \nsubseteq K$.

Proof. (a) \Rightarrow (b) Let $r \notin\left(r S:_{R}\left(S:_{M} I\right)\right.$). Then as $r S \subseteq r S$, we have $S \subseteq r S$ or $r S=0$ by part (a). Thus $r S=S$ or $r S=0$.
(b) \Rightarrow (a) Let $r \in R$ and K be a submodule of M such that $r \in\left(K:_{R} S\right) \backslash\left(K:_{R}\right.$ $\left.\left(S:_{M} I\right)\right)$. Then if $r \in\left(r S:_{R}\left(S:_{M} I\right)\right)$, then $r \in\left(K:_{R}\left(S:_{M} I\right)\right)$ which is a contradiction. Thus $r \notin\left(r S:_{R}\left(S:_{M} I\right)\right)$. Now by part (b), $r S=S$ or $r S=0$. So $S \subseteq K$ or $r S=0$, as needed.
(a) $\Rightarrow(\mathrm{c})$ Let $r \in\left(K:_{R} S\right)$ and $S \nsubseteq K$. If $r \notin\left(K:_{R}\left(S:_{M} I\right)\right)$, then $r \in A n n_{R}(S)$ by part (a). Hence, $\left(K:_{R} S\right) \subseteq A n n_{R}(S)$. If $r \in\left(K:_{R}\left(S:_{M} I\right)\right.$), then $\left(K:_{R} S\right) \subseteq$ $\left(K:_{R}\left(S:_{M} I\right)\right)$. Therefore, $\left(K:_{R} S\right) \subseteq A n n_{R}(S) \cup\left(K:_{R}\left(S:_{M} I\right)\right)$. The other inclusion always holds.
$(c) \Rightarrow(d)$ This follows from the fact that if an ideal is a union of two ideals, then it is equal to one of them.
$(\mathrm{d}) \Rightarrow$ (a) This is clear.

Definition 2.4. Let I be an ideal of R. We say that a non-zero submodule S of an R-module M is an I-second submodule of M if satisfies the equivalent conditions of Theorem 2.3. This can be regarded as a dual notion of I-prime submodule. In case, $I=0$ we say that S is a weak second submodule of M.

Let I be an ideal of R. Clearly every second submodule is an I-second submodule. But the converse is not true in general as we see in the following example.
Example 2.5. (a) If $I=0$, then every module is an I-second submodule of itself but every module is not a second module. For example, the \mathbb{Z}-module \mathbb{Z} is weak second which is not second.
(b) Consider the \mathbb{Z}-module \mathbb{Z}_{12}. Take $I=4 \mathbb{Z}$ as an ideal of \mathbb{Z} and $S=\overline{3} \mathbb{Z}_{12}$ as a submodule of \mathbb{Z}_{12}. Then S is an I-second submodule of \mathbb{Z}_{12}. But S is not a second submodule.

Example 2.6. Let I be an ideal of R and S a non-zero submodule of an R-module M. If for each $r \in R$, a completely irreducible submodule L of $M, r \in\left(L:_{R} S\right) \backslash\left(L:_{R}\right.$ $\left(S:_{M} I\right)$) implies that $S \subseteq L$ or $r \in A n n_{R}(S)$ we cannot conclude that (similar to Lemma $2.2(\mathrm{c}) \Rightarrow(\mathrm{a})), S$ is an I-second submodule of M. For example, consider \mathbb{Z} as a \mathbb{Z}-module. Then $2 \mathbb{Z}$ satisfies the mentioned condition above but it is not an I-second submodule of \mathbb{Z} for ideal $I=4 \mathbb{Z}$ of \mathbb{Z}.

Let I be an ideal of R and M be an R-module. If $I=R$, then every submodule is an I-second submodule. So in the rest of this paper we can assume that $I \neq R$.

Theorem 2.7. Let M be an R-module. Then we have the following.
(a) Let I, J be ideals of R such that $I \subseteq J$. If S is an I-second submodule of M, then S is an J-second submodule of M. In particular, every weak second submodule is an I-second submodule for each ideal I of R.
(b) If S an I-second submodule of M which is not second, then $\operatorname{Ann}_{R}(S)\left(S:_{M} I\right) \subseteq S$.

Proof. (a) The result follows from the fact that $I \subseteq J$ implies that $\left(r S:_{R} S\right) \backslash\left(r S:_{R}\right.$ $\left.\left(S:_{M} J\right)\right) \subseteq\left(r S:_{R} S\right) \backslash\left(r S:_{R}\left(S:_{M} I\right)\right.$, for each $r \in R$.
(b) Assume on the contrary that $A n n_{R}(S)\left(S:_{M} I\right) \nsubseteq S$. We show that S is second. Let $r S \subseteq K$ for some $r \in R$ and a submodule K of M. If $r \notin\left(K:_{R}\left(S:_{M} I\right)\right.$), then S is a I-second submodule implies that $S \subseteq K$ or $r \in A n n_{R}(S)$ as needed. So assume that $r \in\left(K:_{R}\left(S:_{M} I\right)\right)$. First, suppose that $r\left(S:_{M} I\right) \nsubseteq S$. Then there exists a submodule L of M such that $S \subseteq L$ but $r\left(S:_{M} I\right) \nsubseteq L$. Then $r \in\left(K \cap L:_{R} S\right) \backslash\left(K \cap L:_{R}\left(S:_{M} I\right)\right)$. So $S \subseteq K \cap L$ or $r \in A n n_{R}(S)$ and hence $S \subseteq K$ or $r \in \operatorname{Ann}_{R}(S)$. So we can assume that $r\left(S:_{M} I\right) \subseteq S$. On the other hand, if $A n n_{R}(S)\left(S:_{M} I\right) \nsubseteq K$, then there exists $t \in A n n_{R}(S)$ such that $t \notin\left(K:_{R}\left(S:_{M} I\right)\right.$). Then $t+r \in\left(K:_{R} S\right) \backslash\left(K:_{R}\left(S:_{M} I\right)\right)$. Thus $S \subseteq K$ or $t+r \in A n n_{R}(S)$ and hence $S \subseteq K$ or $r \in A n n_{R}(S)$. So we can assume that $A n n_{R}(S)\left(S:_{M} I\right) \subseteq K$. Since $A n n_{R}(S)\left(S:_{M} I\right) \nsubseteq S$, there exist $t \in A n n_{R}(S)$, a submodule T of M such that $S \subseteq T$ and $t\left(S:_{M} I\right) \nsubseteq T$. Now we have $r+t \in\left(K \cap T:_{R} S\right) \backslash\left(K \cap T:_{R}\left(S:_{M} I\right)\right)$. So S is an I-second submodule gives $S \subseteq K \cap T$ or $r+t \in A n n_{R}(S)$. Hence $S \subseteq K$ or $r \in A n n_{R}(S)$, as requested.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$ [5].

Theorem 2.8. Let I be an ideal of R, M an R-module, and S be a submodule of M. Then we have the following.
(a) If S is an I-second submodule of M such that $\operatorname{Ann}_{R}\left(\left(S:_{M} I\right)\right) \subseteq \operatorname{IAnn}_{R}(S)$, then $A n n_{R}(S)$ is an I-prime ideal of R.
(b) If M is a comultiplication R-module and $A n n_{R}(S)$ is an I-prime ideal of R, then S is an I-second submodule of M.

Proof. (a) Let $a b \in A n n_{R}(S) \backslash I A n n_{R}(S)$ for some $a, b \in R$. Then $a S \subseteq\left(0:_{M} b\right)$. As $a b \notin I A n n_{R}(S)$ and $A n n_{R}\left(\left(S:_{M} I\right)\right) \subseteq I A n n_{R}(S)$, we have $a b \notin A n n_{R}\left(\left(S:_{M} I\right)\right)$. This implies that $a \notin\left(\left(0:_{M} b\right):_{R}\left(S:_{M} I\right)\right)$. Thus $a \in A n n_{R}(S)$ or $S \subseteq\left(0:_{M} b\right)$. Hence $a \in A n n_{R}(S)$ or $b \in A n n_{R}(S)$, as needed.
(b) Let $r \in\left(K:_{R} S\right) \backslash\left(K:_{R}\left(S:_{M} I\right)\right)$ for some $r \in R$ and submodule K of M. As M is a comultiplication R-module, there exists an ideal J of R such that $K=\left(0:_{M} J\right)$. Thus $r J \subseteq \operatorname{Ann}_{R}(S)$. Since $r \notin\left(K:_{R}\left(S:_{M} I\right)\right)$, we have $\operatorname{Jr}\left(S:_{M} I\right) \neq 0$. This implies that $J r \nsubseteq A n n_{R}\left(\left(S:_{M} I\right)\right.$. Since always $I A n n_{R}\left(S \subseteq A n n_{R}\left(\left(S:_{M} I\right)\right)\right.$, we have $r J \nsubseteq I A n n_{R}(S)$. Thus by assumption, $r \in A n n_{R}(S)$ or $J \subseteq A n n_{R}(S)$ and so $S \subseteq\left(0:_{M} J\right)=K$.

The next corollary follows from Theorem 2.11, by setting $I=0$.
Corollary 2.9. Let M an R-module and S be a submodule of M. Then we have the following.
(a) If M is faithful and S is a weak second submodule of M, then $A n n_{R}(S)$ is a weakly prime ideal of R.
(b) If M is a comultiplication R-module and $A n n_{R}(S)$ is a weakly prime ideal of R, then S is a weak second submodule of M.

The following example shows that the condition " M is a comultiplication R module" in Corollary 2.9 (b) cannot be omitted.

Example 2.10. Let $R=\mathbb{Z}, M=\mathbb{Z} \oplus \mathbb{Z}$, and $S=2 \mathbb{Z} \oplus 0$. Then M is not a comultiplication R-module. Clearly, $A n n_{R}(S)=0$ is a weakly prime ideal of R. But S is not a weak second submodule of M.

Proposition 2.11. Let I be an ideal of R and M be an R-module. Let N be an I-second submodule of M. Then we have the following statements.
(a) If K is a submodule of M with $K \subset N$, then N / K is an I-second submodule of M / K.
(b) Let N be a finitely generated submodule of M and S be a multiplicatively closed subset of R with $A n n_{R}(N) \cap S=\emptyset$. Then $S^{-1} N$ is an $S^{-1} I$-second submodule of $S^{-1} M$.

Proof. (a) This follows from the fact that $r \notin\left(r(S / K):_{R}\left(S / K:_{M / K} I\right)\right)$ implies that $r \notin\left(r S:_{R}\left(S:_{M} I\right)\right)$.
(b) As $A n n_{R}(N) \cap S=\emptyset$ and N is finitely generated, $S^{-1} N \neq 0$ by using [8, P. 43, Exe. 1]. Now the claim follows from the fact that $r / s \notin\left((r / s) S^{-1} N: S_{S^{-1} R}\right.$ $\left(S^{-1} N:{ }_{S^{-1} M} S^{-1} I\right)$ implies that $r \notin\left(r N:_{R}\left(N:_{M} I\right)\right)$.

Theorem 2.12. Let M be a primary R-module. Then every proper weak second submodule of M is a primary submodule of M.
Proof. Let N be a proper weak second submodule of M and $r x \in N$ for some $r \in R$ and $x \in M$. If $r \notin\left(r N:_{R} M\right)$, then $r N=0$ or $r N=N$ since N is weak second. In the first case, $r^{2} x \in r N=0$. Now as M is primary, $x=0$ or $r \in \sqrt{A n n_{R}(M)}$. This implies that $x \in N$ or $r \in \sqrt{A n n_{R}(M / N)}$, as needed. If $r N=N$, then $r x=r n$ for some $n \in N$. This implies that $x=n \in N$ or $r \in \sqrt{A n n_{R}(M)} \subseteq \sqrt{A n n_{R}(M / N)}$ since M is primary. Now suppose that $r \in\left(r N:_{R} M\right)$. Then $r x \in r M \subseteq r N$. Therefore, similarly to the pervious case we are done.
Proposition 2.13. Let I be an ideal of R, M and M be R-modules, and let f : $M \rightarrow M^{\prime}$ be an R-monomorphism. If N is an I-second submodule of M^{\prime} such that $N \subseteq \operatorname{Im}(f)$, then $f^{-1}\left(N^{\prime}\right)$ is an I-second submodule of M.
Proof. As $N \neq 0$ and $N \subseteq \operatorname{Im}(f)$, we have $f^{-1}(N) \neq 0$. Let $r \notin\left(r f^{-1}(N):_{R}\right.$ $\left.\left(f^{-1}(N):_{M} I\right)\right)$; then one can see that $r \notin\left(r N:_{R}\left(N:_{\dot{M}} I\right)\right)$ by using assumptions. Thus $r N^{\prime}=0$ or $r N ́ N=N$. This implies that $r f^{-1}\left(N^{\prime}\right)=0$ or $r f^{-1}\left(N^{\prime}\right)=f^{-1}\left(N^{\prime}\right)$ as requested.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is of the form $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.
Lemma 2.14. Let $R=R_{1} \times R_{2}$ be a decomposable ring, $I=I_{1} \times I_{2}$ an ideal of R, and $M=M_{1} \times M_{2}$ be an R-module, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. If $\left(0:_{M_{2}} I_{2}\right) \neq 0$ and S_{1} is a non-zero R_{1}-submodule of M_{1}, then the following statements are equivalent:
(a) S_{1} is a second R_{1}-submodule of M_{1};
(b) $S_{1} \times 0$ is a second R-submodule of $M=M_{1} \times M_{2}$;
(c) $S_{1} \times 0$ is an I-second R-submodule of $M=M_{1} \times M_{2}$.

Proof. (a) \Rightarrow (b) follows from $[7,2.23]$ and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is clear.
(c) \Rightarrow (a) Let $r \in R_{1}$. Then $\left(0:_{M_{2}} I_{2}\right) \neq 0$ implies that $\left(r_{1}, 1\right)\left(S_{1} \times 0:_{M_{1} \times M_{2}} I\right) \nsubseteq$ $\left(r_{1}, 1\right)\left(S_{1} \times 0\right)$. Thus by part (c), $\left(r_{1}, 1\right)\left(S_{1} \times 0\right)=\left(S_{1} \times 0\right)$ or $\left(r_{1}, 1\right)\left(S_{1} \times 0\right)=0 \times 0$. Hence $r_{1} S_{1}=S_{1}$ or $r_{1} S_{1}=0$, as needed.
ThEOREM 2.15. Let $R=R_{1} \times R_{2}$ be a decomposable ring and $M=M_{1} \times M_{2}$ be an R-module, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Let I be an ideal of R such that $\left(0:_{M_{1}} I_{1}\right) \neq 0$ and $\left(0:_{M_{2}} I_{2}\right) \neq 0$. If $S=S_{1} \times S_{2}$ is an I-second R-submodule of $M=M_{1} \times M_{2}$, then either $\left(S:_{M} I\right)=S$ or S is a second submodule of M.

Proof. Let $\left(S:_{M} I\right) \neq S$. Then either $\left(S_{1}:_{M_{1}} I_{1}\right) \neq S_{1}$ or $\left(S_{2}:_{M_{2}} I_{2}\right) \neq S_{2}$. Suppose that $\left(S_{2}:_{M_{2}} I_{2}\right) \neq S_{2}$. Then $\left(S_{2}:_{R_{2}}\left(S_{2}:_{M_{2}} I_{2}\right)\right) \neq R$. Hence $1 \notin\left(S_{2}:_{R_{2}}\left(S_{2}:_{M_{2}}\right.\right.$ $\left.I_{2}\right)$). If $S_{1}=0$, then the result follows from Lemma 2.14. So suppose that $S_{1} \neq 0$. As $(0,1) \notin\left((0,1)\left(S_{1} \times S_{2}\right):_{R}\left(S_{1} \times S_{2}:_{M} I\right)\right.$), we have $(0,1)\left(S_{1} \times S_{2}\right)=S_{1} \times S_{2}$ or $(0,1)\left(S_{1} \times S_{2}\right)=0 \times S_{2}$ since $S=S_{1} \times S_{2}$ is an I-second R-submodule of M. Therefore, $S_{2}=0$. Hence by Lemma 2.14, $S=S_{1} \times 0$ is a second R-submodule of M.

Example 2.16. Let $R_{1}=R_{2}=M_{1}=M_{2}=S_{1}=\mathbb{Z}_{6}$. Then by Theorem 2.15, $S_{1} \times 0$ is not a weak second submodule of $M_{1} \times M_{2}$.
Theorem 2.17. Let I be an ideal of R, M_{1}, M_{2} be R-modules, and let N be a submodule of M_{1}. Then $N \oplus 0$ is an I-second submodule of $M_{1} \oplus M_{2}$ if and only if N is an I-second submodule of M_{1} and for $r \in\left(r N:_{R}\left(N:_{M_{1}} I\right)\right), r N \neq 0$, and $r N \neq N$, we have $r \in \operatorname{Ann}_{R}\left(\left(0:_{M_{2}} I\right)\right)$.
Proof. (\Rightarrow) Let $r \notin\left(r N:_{R}\left(N:_{M_{1}} I\right)\right)$. Then $r \notin\left(r(N \oplus 0):_{R}\left(N \oplus 0:_{M} I\right)\right)$. Since $N \oplus 0$ is an I-second submodule, either $r(N \oplus 0)=N \oplus 0$ or $r(N \oplus 0)=0 \oplus 0$. Thus either $r N=N$ or $r N=0$, so N is I-second. Now, let $r \in\left(r N:_{R}\left(N:_{M_{1}} I\right)\right), r N \neq 0$, and $r N \neq N$. Assume on the contrary that $r \notin \operatorname{Ann}_{R}\left(\left(0:_{M_{2}} I\right)\right)$. Then there exists $x_{2} \in M_{2}$ such that $I x_{2}=0$ and $r x_{2} \neq 0$. This implies that $r\left(0, x_{2}\right) \in r\left(N \oplus 0:_{M}\right.$ $I) \backslash r(N \oplus 0)$. So since $N \oplus 0$ is an I-second submodule, either $r(N \oplus 0)=N \oplus 0$ or $r(N \oplus 0)=0 \oplus 0$. Thus either $r N=N$ or $r N=0$, which is a contradiction. Therefore, $r \in A n n_{R}\left(\left(0:_{M_{2}} I\right)\right)$.
(\Leftarrow) Let $r \notin\left(r(N \oplus 0):_{R}\left(N \oplus 0:_{M} I\right)\right)$. Then if $r N=N$ or $r N=0$, the result is clear. So suppose that $r N \neq N$ and $r N \neq 0$. We show that $r \notin\left(r N:_{R}\left(N:_{M_{1}} I\right)\right)$ and this contradiction proves the result because N is an I-second submodule of M_{1}. Assume on the contrary that $r \in\left(r N:_{R}\left(N:_{M_{1}} I\right)\right)$. Then by assumption, $r \in$ $A n n_{R}\left(\left(0:_{M_{2}} I\right)\right)$. This implies that if $\left(x_{1}, x_{2}\right) \in N \oplus\left(0:_{M} I\right)$, then $r\left(x_{1}, x_{2}\right) \in r(N \oplus$ $0)$. Therefore, $r \in\left(r(N \oplus 0):_{R}\left(N \oplus 0:_{M} I\right)\right)$, which is a desired contradiction.

A non-zero R-module M is said to be secondary if for each $a \in R$ the endomorphism of M given by multiplication by a is either surjective or nilpotent [13].

Corollary 2.18. Let I and P be ideals of R, M_{1}, M_{2} be R-modules, and let N be a submodule of M_{1}. Let $S_{i}(1 \leq i \leq n)$ be P-secondary submodules of M_{1} with $\sum_{i=1}^{n} S_{i}=\left(N:_{M_{1}} I\right)$. If N is an I-second submodule of M_{1} and $P \subseteq A n n_{R}\left(\left(0:_{M_{2}}\right.\right.$ $I)$), then $N \oplus 0$ is an I-second submodule of $M_{1} \oplus M_{2}$.
Proof. Let $r \in\left(r N:_{R}\left(N:_{M_{1}} I\right)\right), r N \neq 0$, and $r N \neq N$. Then we will prove that $r \in A n n_{R}\left(\left(0:_{M_{2}} I\right)\right)$ and hence the result is obtained by Theorem 2.17. Assume on the contrary that $r \notin \operatorname{Ann}_{R}\left(\left(0:_{M_{2}} I\right)\right)$. Hence $r \notin P$. On the other hand, $r\left(\sum_{i=1}^{n} S_{i}\right)=r\left(N:_{M_{1}} I\right) \subseteq r N$. But $\sum_{i=1}^{n} S_{i}$ is a P-secondary submodule by [13, 2.1], so either $r\left(\sum_{i=1}^{n} S_{i}\right)=\sum_{i=1}^{n} S_{i}$ or $r \in P$. This implies that $r N=N$ or $r \in P$, which is a contradiction. Thus $r \in \operatorname{Ann}_{R}\left(\left(0:_{M_{2}} I\right)\right)$.
Theorem 2.19. Let I be an ideal of R and M be an R-module. Then we have the following.
(a) If $\bigcap_{n=1}^{\infty} I^{n} M=0$ and every proper submodule of M is I-prime, then every nonzero submodule of M is I-second.
(b) If $\sum_{n=1}^{\infty}\left(0:_{M} I^{n}\right)=M$ and every non-zero submodule of M is I-second, then every proper submodule of M is I-prime.

Proof. (a) Let S be a non-zero submodule of $M, r \in\left(K:_{R} S\right) \backslash\left(K:_{R}\left(S:_{M} I\right)\right)$ for some $r \in R$ and a submodule K of M and $r S \neq 0$. If $r S \nsubseteq I K$, then as K is I-prime, we have $r M \subseteq K$ or $S \subseteq K$. If $r M \subseteq K$, then $r\left(S:_{M} I\right) \subseteq K$ which is a contradiction. So $S \subseteq K$ and we are done. Now suppose that $r S \subseteq I K$. As $r S \neq 0$ and $\bigcap_{n=1}^{\infty} I^{n} K=0$, there exists a positive integer t such that $r S \nsubseteq I^{t} K$. Therefore, there is a positive integer h such that $r S \subseteq I^{h-1} K$ but $r S \nsubseteq I^{h} K$, where $2 \leq h \leq t$. Thus since $I^{h-1} K$ is I-prime, $S \subseteq I^{h-1} K$ or $r M \subseteq I^{h-1} K$. If $r M \subseteq I^{h-1} K$, then $r\left(S:_{M} I\right) \subseteq K$ which is a contradiction. So $S \subseteq I^{h-1} \subseteq K$ as needed.
(b) Let P be a proper submodule of $M, r K \subseteq P \backslash I P$ for some $r \in R$ and a submodule K of M and $r M \nsubseteq P$. If $r\left(K:_{M} I\right) \nsubseteq P$, then as K is I-second, we have $r K=0$ or $K \subseteq P$. If $r K=0$, then $r K \subseteq I P$ which is a contradiction. So $K \subseteq P$ and we are done. Now suppose that $r\left(K:_{M} I\right) \subseteq P$. As $r M \nsubseteq P$ and $\sum_{n=1}^{\infty}\left(K:_{M} I^{n}\right)=M$, there exists a positive integer t such that $r\left(K:_{M} I^{t}\right) \nsubseteq P$. Therefore, there is a positive integer h such that $r\left(K:_{M} I^{h-1}\right) \subseteq P$ but $r\left(K:_{M}\right.$ $\left.I^{h}\right) \nsubseteq P$, where $2 \leq h \leq t$. Thus since $\left(K:_{M} I^{h-1}\right)$ is I-second, $\left(K:_{M} I^{h-1}\right) \subseteq P$ or $r\left(K:_{M} I^{h-1}\right)=0$. If $r\left(K:_{M} I^{h-1}\right)=0$, then $0=r K \subseteq I P$ which is a contradiction. So $K \subseteq\left(K:_{M} I^{h-1}\right) \subseteq P$ as needed.

By setting $I=0$ in the previous theorem we get the following.
Corollary 2.20. Let I be an ideal of R and M be an R-module. Then every proper submodule of M is weakly prime if and only if every non-zero submodule of M is weak second.

Corollary 2.21. Let (R, m) be a local ring and M be an R-module. Then we have the following.
(a) If M is a Noetherian R-module and every proper submodule of M is I-prime, then every non-zero submodule of M is I-second.
(b) If M is an Artinian R-module and every non-zero submodule of M is I-second, then every proper submodule of M is I-prime.

Proof. Part (a) follows from [12, 4.6] and Theorem 2.19, while (b) follows from [6, 3.2] and Theorem 2.19.

References

[1] I. Akray, I-prime ideals, Journal of Algebra and Related Topics, 4(2) (2016), 41-47.
[2] I. Akray, H. S. Hussein, I-prime submodules, to be appear.
[3] D.D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[4] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., 9(2) (2012), 329-338.
[5] H. Ansari-Toroghy, F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189-1201.
[6] H. Ansari-Toroghy, F. Farshadifar, On dual versions of Krull's intersection Theorem, Int. Math. Forum, 2(54) (2007), 2655-2659.
[7] H. Ansari-Toroghy, F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche, $\mathbf{7 2 (1 1)}$ (2017), 123-135.
[8] M. Atiyah, I. MacDonald, Introduction to commutative Algebra, Reading: Addison-Wesley., 1969 Jan.
[9] J. Dauns, Prime submodules, J. Reine Angew. Math. 298 (1978), 156-181.
[10] S. Ebrahimi Atani, F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38(3) (2007), 247-252.
[11] L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121-145.
[12] T.W. Hungerford, Algebra, Graduate Texts in Mathematics. Springer-Verlag, New York, 1974.
[13] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math. XI (1973), 23-43.
[14] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273-278.
(received 29.08.2018; in revised form 27.12.2018; available online 26.07.2019)
Department of Mathematics, Farhangian University, Tehran, Iran
E-mail: f.farshadifar@cfu.ac.ir
Department of pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
E-mail: ansari@guilan.ac.ir

[^0]: 2010 Mathematics Subject Classification: 13C13, 13C99

