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I-SECOND SUBMODULES OF A MODULE

F. Farshadifar and H. Ansari-Toroghy

Abstract. Let R be a commutative ring with identity, I an ideal of R, and M be an
R-module. In this paper, we will introduce the concept of I-second submodules of M as a
generalization of second submodules of M and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will
denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r € R and m € M with rm € P, we have m € Porr € (P :g M) [9]. A non-zero
submodule N of M is said to be second if for each a € R, the homomorphism N % N
is either surjective or zero [14].

A proper ideal P of R is weakly prime if for a,b € R with 0 # ab € P, either
a € P or b e P. Weakly prime ideals were studied in some detail in [3]. A proper
submodule N of M is called weakly prime if for r € R and m € M with 0 # rm € N,
either m € N or r € (N :zp M) [10].

Let I be an ideal of R. In [1], the author gave a generalization of weakly prime
ideals and said that such ideals I-prime ideals. A proper ideal P of R is called I-prime
ideal if for a,b € R, ab € P\ IP, implies a € P or b € P [1]. Akray and Hussein
in [2] extended I-prime ideals to I-prime submodules. A proper submodule P of M
is called an I-prime submodule of M if for r € R, m € M, rm € P\ IP implies that
méePorre(P:gM)I2.

The main purpose of this paper is to introduce and study the notion of I-second
submodules of an R-module M as a dual notion of I-prime submodules, where I is
an ideal of R and investigate some properties of this class of modules.
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2. Main results

A proper submodule N of an R-module M is said to be completely irreducible if
N = ;s Ni, where {N;}ic is a family of submodules of M, implies that N = N;
for some ¢ € I. It is easy to see that every submodule of M is an intersection of
completely irreducible submodules of M [11].

We use the following basic fact without further comment.

REMARK 2.1. Let N and K be two submodules of an R-module M. To prove N C K,
it is enough to show that if L is a completely irreducible submodule of M such that
K CL,then N C L.

LEMMA 2.2. [4, 2.10] For a submodule S of an R-module M the following statements
are equivalent:
(a) S is a second submodule of M ;

(b) S#0 and rS C K, where r € R and K is a submodule of M, implies that either
rS=0o0rSCK;

(¢) S#0 and rS C L, where r € R and L is a completely irreducible submodule of
M, implies that either rS =0 or S C K.

THEOREM 2.3. Let I be an ideal of R. For a non-zero submodule S of an R-module
M the following statements are equivalent:

(a) For each r € R, a submodule K of M, r € (K :g S)\ (K :g (S :a I)) implies
that S C K orr € Anng(S);

(b) For eachr ¢ (rS :g (S :m I)), we have rS =S orrS = 0;
(c) (K:rS)=Anng(S)U(K :g (S :pm 1)), for any submodule K of M with S € K;

(d) (K :g S) = Anng(S) or (K :g S) = (K :g (S :ar I)), for any submodule K of
M with S € K.

Proof. (a) = (b) Let r ¢ (rS :g (S :as I)). Then as rS C 7S, we have S C S or
rS =0 by part (a). Thus S =S or S = 0.

(b) = (a) Let r € R and K be a submodule of M such that r € (K :g S)\ (K :g
(S :m I)). Thenif r € (rS :g (S :m I)), then r € (K :g (S :p I)) which is a
contradiction. Thus r ¢ (S :g (S :p I)). Now by part (b), rS = S or rS = 0. So
S C K or rS =0, as needed.

(a) = (c)Letre (K:g S)and SZ K. If r ¢ (K :g (S :ap I)), then r € Anng(S)
by part (a). Hence, (K :g S) C Anng(S). If r € (K :gp (S :pm I)), then (K :g §) C
(K :g (S :p I)). Therefore, (K :g S) C Anng(S)U (K :g (S :p I)). The other
inclusion always holds.

(¢) = (d) This follows from the fact that if an ideal is a union of two ideals, then
it is equal to one of them.

(d) = (a) This is clear. U
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DEFINITION 2.4. Let I be an ideal of R. We say that a non-zero submodule S of an
R-module M is an I-second submodule of M if satisfies the equivalent conditions of
Theorem 2.3. This can be regarded as a dual notion of I-prime submodule. In case,
I =0 we say that S is a weak second submodule of M.

Let I be an ideal of R. Clearly every second submodule is an I-second submodule.
But the converse is not true in general as we see in the following example.

EXAMPLE 2.5. (a) If I =0, then every module is an I-second submodule of itself but
every module is not a second module. For example, the Z-module Z is weak second
which is not second.

(b) Consider the Z-module Zi3. Take I = 47 as an ideal of Z and S = 3Z3 as a
submodule of Zi5. Then S is an I-second submodule of Z12. But S is not a second
submodule.

EXAMPLE 2.6. Let I be an ideal of R and S a non-zero submodule of an R-module
M. If for each r € R, a completely irreducible submodule L of M, r € (L :g S)\(L :r
(S :am I)) implies that S C L or r € Anng(S) we cannot conclude that (similar to
Lemma 2.2 (c) = (a)), S is an I-second submodule of M. For example, consider
Z as a Z-module. Then 27 satisfies the mentioned condition above but it is not an
I-second submodule of Z for ideal I = 4Z of Z.

Let I be an ideal of R and M be an R-module. If I = R, then every submodule
is an I-second submodule. So in the rest of this paper we can assume that I # R.

THEOREM 2.7. Let M be an R-module. Then we have the following.

(a) Let I,J be ideals of R such that I C J. If S is an I-second submodule of M, then
S is an J-second submodule of M. In particular, every weak second submodule is an
I-second submodule for each ideal I of R.

(b) If S an I-second submodule of M which is not second, then Anng(S)(S :p I) C S.

Proof. (a) The result follows from the fact that I C J implies that (rS:g S)\ (7S :r
(S:mJ)C(rS:rS)\(rS:r (S:mI)), for each r € R.

(b) Assume on the contrary that Anng(S)(S 1 I) € S. We show that S is second.
Let S C K for some r € R and a submodule K of M. If r ¢ (K :g (S :a I)), then
S is a I-second submodule implies that S C K or r € Anng(S) as needed. So
assume that r € (K :p (S :p I)). First, suppose that 7(S :pr I) € S. Then
there exists a submodule L of M such that S C L but r(S :py I) € L. Then
re(KNL:g S)\(KNL:g(S:pmI)). SoSCKNLorre Anng(S) and hence
S C K orre Anng(S). So we can assume that r(S :3; I) C S. On the other hand, if
Anng(S)(S :p I) € K, then there exists t € Anng(S) such that t ¢ (K :g (S I)).
Then t +r € (K :g S)\ (K :g (S :pm I)). Thus S C K or t +r € Anng(S) and
hence S C K or r € Anng(5). So we can assume that Anng(S)(S :p I) € K. Since
Anng(S)(S :am I) € S, there exist t € Anng(S), a submodule T' of M such that
SCTand t(S:mI)ZT. Now we have r+t € (KNT :g )\ (KNT :g (S:m I)).
So S is an I-second submodule gives S C K NT or r +t¢ € Anng(S). Hence S C K
or r € Anng(9), as requested. U
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An R-module M is said to be a comultiplication module if for every submodule N
of M there exists an ideal I of R such that N = (0:57 I) [5].

THEOREM 2.8. Let I be an ideal of R, M an R-module, and S be a submodule of M.
Then we have the following.

(a) If S is an I-second submodule of M such that Anng((S :p I)) C IAnng(S),
then Anng(S) is an I-prime ideal of R.

(b) If M is a comultiplication R-module and Anng(S) is an I-prime ideal of R, then
S is an I-second submodule of M.

Proof. (a) Let ab € Anng(S)\ IAnng(S) for some a,b € R. Then aS C (0 :ps b). As
ab ¢ TAnng(S) and Anng((S 1)) C IAnng(S), we have ab ¢ Anng((S :p I)).
This implies that a ¢ ((0 :pr b) :g (S :ar I)). Thus a € Anng(S) or S C (0 :pr D).
Hence a € Anng(S) or b € Anng(S), as needed.

(b) Let r € (K :g S)\(K :g (S :p I)) for some r € R and submodule K of M. As
M is a comultiplication R-module, there exists an ideal J of R such that K = (0 :ps J).
Thus rJ C Anng(S). Since r ¢ (K :g (S :m I)), we have Jr(S :pr I) # 0. This
implies that Jr € Anng((S :p I). Since always ITAnng(S C Anng((S :ar 1)), we
have rJ € IAnng(S). Thus by assumption, r € Anng(S) or J C Anng(S) and so
SC(0:pJ)=K. O

The next corollary follows from Theorem 2.11, by setting I = 0.

COROLLARY 2.9. Let M an R-module and S be a submodule of M. Then we have
the following.

(a) If M is faithful and S is a weak second submodule of M, then Anng(S) is a
weakly prime ideal of R.

(b) If M is a comultiplication R-module and Anng(S) is a weakly prime ideal of R,
then S is a weak second submodule of M.

The following example shows that the condition “M is a comultiplication R-
module” in Corollary 2.9 (b) cannot be omitted.

ExampLE 2.10. Let R = Z, M = Z & Z, and S = 2Z & 0. Then M is not a
comultiplication R-module. Clearly, Anng(S) = 0 is a weakly prime ideal of R. But
S is not a weak second submodule of M.

PROPOSITION 2.11. Let I be an ideal of R and M be an R-module. Let N be an
I-second submodule of M. Then we have the following statements.

(a) If K is a submodule of M with K C N, then N/K is an I-second submodule of
M/K.

(b) Let N be a finitely generated submodule of M and S be a multiplicatively closed
subset of R with Annp(N)N S = 0. Then S™'N is an S~*I-second submodule of
S~IM.
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Proof. (a) This follows from the fact that r ¢ (r(S/K) :r (S/K :pr)x 1)) implies that
ré¢ (rS:g(S:mI)).

(b) As Anng(N) NS =0 and N is finitely generated, S™'N # 0 by using [8, P.
43, Exe. 1]. Now the claim follows from the fact that r/s ¢ ((r/s)S™'N :g-1p
(STIN :g-1p; STU) implies that r ¢ (rN :g (N 0 1)). U

THEOREM 2.12. Let M be a primary R-module. Then every proper weak second
submodule of M is a primary submodule of M.

Proof. Let N be a proper weak second submodule of M and rx € N for some r € R
andz € M. If r ¢ (rN :g M), then N =0 or rN = N since N is weak second. In
the first case, r?z € rN = 0. Now as M is primary, z = 0 or r € \/Anng(M). This
implies that x € N or r € \/Anng(M/N), as needed. If rN = N, then rz = rn for
some n € N. This implies that z = n € N or r € \/Anng(M) C \/Annr(M/N)
since M is primary. Now suppose that r € (rN :g M). Then ra € rM C rN.
Therefore, similarly to the pervious case we are done. U

PROPOS/ITION 2.13. Let I be an ideal Qf R, M and M be R-modules, /and let f :
M — M be an R-mongmorphism. If N is an I-second submodule of M such that
N C Im(f), then f~Y(N) is an I-second submodule of M.

Proof. As N # 0 and N C Im(f), we have f~'(N) # 0. Let r ¢ (rf~Y(N) :r
(f~X(N) :as I)); then one can see that r ¢ (rN :z (N :yy 1)) by using assumptions.
Thus rN =0 or ¥N = N. This implies that rf~'(N) = 0 or rf~'(N) = f~'(N) as
requested. O

Let R; be a commutative ring with identity and M; be an R;-module, for ¢ = 1, 2.
Let R = Ry X Ry. Then M = M, x Ms is an R-module and each submodule of M is
of the form N = N; x Ny for some submodules Ny of M; and Ny of Ms.

LEMMA 2.14. Let R = Ry X Ry be a decomposable ring, I = I; x Iy an ideal of
R, and M = M; x My be an R-module, where My is an Ry-module and My is an
Ro-module. If (0 :p, Is) # 0 and Sy is a non-zero Ry-submodule of My, then the
following statements are equivalent:

(a) Si1 is a second Ri-submodule of My;

(b) S1 %0 is a second R-submodule of M = My x Ma;
(c) S1 x 0 is an I-second R-submodule of M = My x Ms.

Proof. (a) = (b) follows from [7, 2.23] and (b) = (c) is clear.

(¢) = (a) Let r € Ry. Then (0 :py, I2) # 0 implies that (r1,1)(S1 X0 :ian <, 1) €
(r1,1)(S1 x 0). Thus by part (c), (r1,1)(S1 x 0) = (S1 x 0) or (r1,1)(S1 x0) =0 x 0.
Hence 751 = S; or 1.8 = 0, as needed. g

THEOREM 2.15. Let R = R; X Ry be a decomposable ring and M = My, x My be an
R-module, where My is an Ri-module and My is an Rg-module. Let I be an ideal
of R such that (0 :p, ) # 0 and (0 :pp, I2) # 0. If S = Sy X Sy is an I-second
R-submodule of M = My x Ms, then either (S :p I) =S or S is a second submodule
of M.
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Proof. Let (S :pr I) # S. Then either (Sy :ar, 1) # S1 or (S2 :iar, I2) # S2. Suppose
that (SQ ‘Mo Ig) 75 Sg. Then (SQ ‘Ry (SQ “Moy IQ)) 75 R. Hence 1 ¢ (SQ ‘Ry (Sg ‘Mo
I5)). If S; = 0, then the result follows from Lemma 2.14. So suppose that S; # 0.
As (0,1) ¢ ((0,1)(S1 x S2) :g (S1 x S2 :ar I)), we have (0,1)(S7 x S2) = S1 x S
r (0,1)(S1 x S2) = 0 x Sy since S = S7 x Sy is an I-second R-submodule of M.
Therefore, So = 0. Hence by Lemma 2.14, S = S; x 0 is a second R-submodule
of M. O

EXAMPLE 2.16. Let Ry = Ro =M, =My =5, = Zﬁ. Then by Theorem 2157 S1x0
is not a weak second submodule of M x Ms.

THEOREM 2.17. Let I be an ideal of R, My, Ms be R-modules, and let N be a sub-
module of My. Then N @0 is an I-second submodule of My ® My if and only if N is
an I-second submodule of My and for r € (rN :g (N :pp, 1)), TN #0, and rN # N,
we have r € Anng((0 :pp, I)).

Proof. (=) Let r ¢ (rN :g (N :p, I)). Then r ¢ (r(N @ 0) :g (N @0 :p I)). Since
N @0 is an I-second submodule, either (N ®0) = N @0 or (N ®0) =0® 0. Thus
either TN = N or rN =0, so N is I-second. Now, let r € (rN :g (N :pr, I)), N # 0,
and rN # N. Assume on the contrary that r ¢ Anng((0 :p7, I)). Then there exists
29 € My such that Izo = 0 and rao # 0. This implies that 7(0,22) € (N © 0 :p
I\ r(N @0). Sosince N @0 is an I-second submodule, either (N ®0) = N @0
or (N @®0) =0&®0. Thus either rN = N or rN = 0, which is a contradiction.
Therefore, r € Anng((0 :pr, 1)).

(<)Letr ¢ (r(N@®0):g (N®O0:p I)). Then if rN = N or rN = 0, the result
is clear. So suppose that 7N # N and rN # 0. We show that r» & (rN :g (N :py, 1))
and this contradiction proves the result because N is an I-second submodule of M;.
Assume on the contrary that » € (rN :g (N :p I)). Then by assumption, r €
Anng((0:pz, I)). This implies that if (z1,22) € N@® (0 :pr I), then r(zq,22) € r(N @
0). Therefore, r € (r(N @ 0) :gr (N @0 :ps I)), which is a desired contradiction. [

A non-zero R-module M is said to be secondary if for each a € R the endomor-
phism of M given by multiplication by a is either surjective or nilpotent [13].

COROLLARY 2.18. Let I and P be ideals of R, My, Ms be R-modules, and let N
be a submodule of M. Let S; (1 < i < n) be P-secondary submodules of My with
Z?Zl Si = (N :py I). If N is an I-second submodule of My and P C Anng((0 :p,
1)), then N @0 is an I-second submodule of My & M.

Proof. Let r € (rN :g (N :a, I)), TN # 0, and rN # N. Then we will prove that
r € Anng((0 :ar, I)) and hence the result is obtained by Theorem 2.17. Assume
on the contrary that r ¢ Anng((0 :p, I)). Hence r ¢ P. On the other hand,
(3, Si) =r(N iy I) CrN. But Y| S;is a P-secondary submodule by [13, 2.1],
so either r(>°1" , S;) = Y., S; or r € P. This implies that YN = N or r € P, which
is a contradiction. Thus r € Anng((0 :ar, I)). O

THEOREM 2.19. Let I be an ideal of R and M be an R-module. Then we have the
following.
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(a) If oy I"M = 0 and every proper submodule of M is I-prime, then every non-
zero submodule of M is I-second.

(b) If Y02 (0 :ar I™) = M and every non-zero submodule of M is I-second, then
every proper submodule of M is I-prime.

Proof. (a) Let S be a non-zero submodule of M, r € (K :g S)\ (K :r (S :m I))
for some r € R and a submodule K of M and rS # 0. If r§ € IK, then as K is
I-prime, we have rM C K or S C K. If rM C K, then r(S :pr I) C K which is a
contradiction. So S C K and we are done. Now suppose that S C IK. AsrS #0
and (,—, I"K = 0, there exists a positive integer ¢ such that rS ¢ I*K. Therefore,
there is a positive integer h such that »S C I" 'K but »S ¢ I"K, where 2 < h < t.
Thus since I" 1K is I-prime, S C I" 'K or rM C I"™ K. If rM C I" 'K, then
r(S :ar I) € K which is a contradiction. So S C 1" 1 C K as needed.

(b) Let P be a proper submodule of M, rK C P\ IP for some r € R and a
submodule K of M and rM ¢ P. If r(K :pp I) € P, then as K is I-second, we
have rK = 0 or K C P. If rK = 0, then K C IP which is a contradiction. So
K C P and we are done. Now suppose that (K :py I) € P. As rM ¢ P and
Soo2 (K :p I™) = M, there exists a positive integer ¢ such that r(K 3 I') € P.
Therefore, there is a positive integer h such that r(K :py I"™1) C P but 7(K
I") ¢ P, where 2 < h < t. Thus since (K :3; I"™1) is I-second, (K :p; I"™1) C P or
r(K iy I"71) = 0. If 7(K :pr I"1) = 0, then 0 = 7K C IP which is a contradiction.
So K C (K :p I"™1) C P as needed. O

By setting I = 0 in the previous theorem we get the following.

COROLLARY 2.20. Let I be an ideal of R and M be an R-module. Then every proper
submodule of M is weakly prime if and only if every non-zero submodule of M is weak
second.

COROLLARY 2.21. Let (R,m) be a local ring and M be an R-module. Then we have
the following.

(a) If M is a Noetherian R-module and every proper submodule of M is I-prime,
then every non-zero submodule of M is I-second.

(b) If M is an Artinian R-module and every non-zero submodule of M is I-second,
then every proper submodule of M is I-prime.

Proof. Part (a) follows from [12, 4.6] and Theorem 2.19, while (b) follows from [6, 3.2]
and Theorem 2.19. O
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