МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 72, 1 (2020), 58–65 March 2020

research paper оригинални научни рад

I-SECOND SUBMODULES OF A MODULE

F. Farshadifar and H. Ansari-Toroghy

Abstract. Let R be a commutative ring with identity, I an ideal of R, and M be an R-module. In this paper, we will introduce the concept of I-second submodules of M as a generalization of second submodules of M and obtain some related results.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and $\mathbb Z$ will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [9]. A non-zero submodule N of M is said to be *second* if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [14].

A proper ideal P of R is weakly prime if for $a, b \in R$ with $0 \neq ab \in P$, either $a \in P$ or $b \in P$. Weakly prime ideals were studied in some detail in [3]. A proper submodule N of M is called weakly prime if for $r \in R$ and $m \in M$ with $0 \neq rm \in N$, either $m \in N$ or $r \in (N :_R M)$ [10].

Let *I* be an ideal of *R*. In [1], the author gave a generalization of weakly prime ideals and said that such ideals I-prime ideals. A proper ideal *P* of *R* is called *I*-prime ideal if for $a, b \in R$, $ab \in P \setminus IP$, implies $a \in P$ or $b \in P$ [1]. Akray and Hussein in [2] extended *I*-prime ideals to *I*-prime submodules. A proper submodule *P* of *M* is called an *I*-prime submodule of *M* if for $r \in R$, $m \in M$, $rm \in P \setminus IP$ implies that $m \in P$ or $r \in (P:_R M)$ [2].

The main purpose of this paper is to introduce and study the notion of I-second submodules of an R-module M as a dual notion of I-prime submodules, where I is an ideal of R and investigate some properties of this class of modules.

²⁰¹⁰ Mathematics Subject Classification: 13C13, 13C99

Keywords and phrases: Second submodule; weak second submodule; I-prime ideal; I-second submodule.

2. Main results

A proper submodule N of an R-module M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

We use the following basic fact without further comment.

REMARK 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

LEMMA 2.2. [4, 2.10] For a submodule S of an R-module M the following statements are equivalent:

(a) S is a second submodule of M;

(b) $S \neq 0$ and $rS \subseteq K$, where $r \in R$ and K is a submodule of M, implies that either rS = 0 or $S \subseteq K$;

(c) $S \neq 0$ and $rS \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, implies that either rS = 0 or $S \subseteq K$.

THEOREM 2.3. Let I be an ideal of R. For a non-zero submodule S of an R-module M the following statements are equivalent:

(a) For each $r \in R$, a submodule K of M, $r \in (K :_R S) \setminus (K :_R (S :_M I))$ implies that $S \subseteq K$ or $r \in Ann_R(S)$;

(b) For each $r \notin (rS :_R (S :_M I))$, we have rS = S or rS = 0;

(c) $(K:_R S) = Ann_R(S) \cup (K:_R (S:_M I))$, for any submodule K of M with $S \not\subseteq K$;

(d) $(K :_R S) = Ann_R(S)$ or $(K :_R S) = (K :_R (S :_M I))$, for any submodule K of M with $S \not\subseteq K$.

Proof. (a) \Rightarrow (b) Let $r \notin (rS :_R (S :_M I))$. Then as $rS \subseteq rS$, we have $S \subseteq rS$ or rS = 0 by part (a). Thus rS = S or rS = 0.

(b) \Rightarrow (a) Let $r \in R$ and K be a submodule of M such that $r \in (K :_R S) \setminus (K :_R (S :_M I))$. Then if $r \in (rS :_R (S :_M I))$, then $r \in (K :_R (S :_M I))$ which is a contradiction. Thus $r \notin (rS :_R (S :_M I))$. Now by part (b), rS = S or rS = 0. So $S \subseteq K$ or rS = 0, as needed.

(a) \Rightarrow (c) Let $r \in (K :_R S)$ and $S \not\subseteq K$. If $r \notin (K :_R (S :_M I))$, then $r \in Ann_R(S)$ by part (a). Hence, $(K :_R S) \subseteq Ann_R(S)$. If $r \in (K :_R (S :_M I))$, then $(K :_R S) \subseteq (K :_R (S :_M I))$. Therefore, $(K :_R S) \subseteq Ann_R(S) \cup (K :_R (S :_M I))$. The other inclusion always holds.

(c) \Rightarrow (d) This follows from the fact that if an ideal is a union of two ideals, then it is equal to one of them.

(d) \Rightarrow (a) This is clear.

I-second submodules of a module

DEFINITION 2.4. Let I be an ideal of R. We say that a non-zero submodule S of an R-module M is an I-second submodule of M if satisfies the equivalent conditions of Theorem 2.3. This can be regarded as a dual notion of I-prime submodule. In case, I = 0 we say that S is a weak second submodule of M.

Let I be an ideal of R. Clearly every second submodule is an I-second submodule. But the converse is not true in general as we see in the following example.

EXAMPLE 2.5. (a) If I = 0, then every module is an *I*-second submodule of itself but every module is not a second module. For example, the \mathbb{Z} -module \mathbb{Z} is weak second which is not second.

(b) Consider the Z-module \mathbb{Z}_{12} . Take $I = 4\mathbb{Z}$ as an ideal of Z and $S = \overline{3}\mathbb{Z}_{12}$ as a submodule of \mathbb{Z}_{12} . Then S is an I-second submodule of \mathbb{Z}_{12} . But S is not a second submodule.

EXAMPLE 2.6. Let I be an ideal of R and S a non-zero submodule of an R-module M. If for each $r \in R$, a completely irreducible submodule L of M, $r \in (L:_R S) \setminus (L:_R (S:_M I))$ implies that $S \subseteq L$ or $r \in Ann_R(S)$ we cannot conclude that (similar to Lemma 2.2 (c) \Rightarrow (a)), S is an I-second submodule of M. For example, consider \mathbb{Z} as a \mathbb{Z} -module. Then $2\mathbb{Z}$ satisfies the mentioned condition above but it is not an I-second submodule of \mathbb{Z} for ideal $I = 4\mathbb{Z}$ of \mathbb{Z} .

Let I be an ideal of R and M be an R-module. If I = R, then every submodule is an I-second submodule. So in the rest of this paper we can assume that $I \neq R$.

THEOREM 2.7. Let M be an R-module. Then we have the following.

(a) Let I, J be ideals of R such that $I \subseteq J$. If S is an I-second submodule of M, then S is an J-second submodule of M. In particular, every weak second submodule is an I-second submodule for each ideal I of R.

(b) If S an I-second submodule of M which is not second, then $Ann_R(S)(S:_M I) \subseteq S$.

Proof. (a) The result follows from the fact that $I \subseteq J$ implies that $(rS:_R S) \setminus (rS:_R (S:_M J)) \subseteq (rS:_R S) \setminus (rS:_R (S:_M I))$, for each $r \in R$.

(b) Assume on the contrary that $Ann_R(S)(S:_M I) \not\subseteq S$. We show that S is second. Let $rS \subseteq K$ for some $r \in R$ and a submodule K of M. If $r \notin (K:_R(S:_M I))$, then S is a I-second submodule implies that $S \subseteq K$ or $r \in Ann_R(S)$ as needed. So assume that $r \in (K:_R(S:_M I))$. First, suppose that $r(S:_M I) \not\subseteq S$. Then there exists a submodule L of M such that $S \subseteq L$ but $r(S:_M I) \not\subseteq L$. Then $r \in (K \cap L:_R S) \setminus (K \cap L:_R(S:_M I))$. So $S \subseteq K \cap L$ or $r \in Ann_R(S)$ and hence $S \subseteq K$ or $r \in Ann_R(S)$. So we can assume that $r(S:_M I) \subseteq S$. On the other hand, if $Ann_R(S)(S:_M I) \not\subseteq K$, then there exists $t \in Ann_R(S)$ such that $t \notin (K:_R(S:_M I))$. Then $t + r \in (K:_R S) \setminus (K:_R(S:_M I))$. Thus $S \subseteq K$ or $t + r \in Ann_R(S)$ and hence $S \subseteq K$ or $r \in Ann_R(S)$. So we can assume that $Ann_R(S)(S:_M I) \subseteq K$. Since $Ann_R(S)(S:_M I) \not\subseteq S$, there exist $t \in Ann_R(S)$, a submodule T of M such that $S \subseteq T$ and $t(S:_M I) \not\subseteq T$. Now we have $r + t \in (K \cap T:_R S) \setminus (K \cap T:_R (S:_M I))$. So S is an I-second submodule gives $S \subseteq K \cap T$ or $r + t \in Ann_R(S)$. Hence $S \subseteq K$ or $r \in Ann_R(S)$, as requested.

60

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0 :_M I)$ [5].

THEOREM 2.8. Let I be an ideal of R, M an R-module, and S be a submodule of M. Then we have the following.

(a) If S is an I-second submodule of M such that $Ann_R((S:_M I)) \subseteq IAnn_R(S)$, then $Ann_R(S)$ is an I-prime ideal of R.

(b) If M is a comultiplication R-module and $Ann_R(S)$ is an I-prime ideal of R, then S is an I-second submodule of M.

Proof. (a) Let $ab \in Ann_R(S) \setminus IAnn_R(S)$ for some $a, b \in R$. Then $aS \subseteq (0:_M b)$. As $ab \notin IAnn_R(S)$ and $Ann_R((S:_M I)) \subseteq IAnn_R(S)$, we have $ab \notin Ann_R((S:_M I))$. This implies that $a \notin ((0:_M b):_R (S:_M I))$. Thus $a \in Ann_R(S)$ or $S \subseteq (0:_M b)$. Hence $a \in Ann_R(S)$ or $b \in Ann_R(S)$, as needed.

(b) Let $r \in (K:_R S) \setminus (K:_R (S:_M I))$ for some $r \in R$ and submodule K of M. As M is a comultiplication R-module, there exists an ideal J of R such that $K = (0:_M J)$. Thus $rJ \subseteq Ann_R(S)$. Since $r \notin (K:_R (S:_M I))$, we have $Jr(S:_M I) \neq 0$. This implies that $Jr \not\subseteq Ann_R((S:_M I))$. Since always $IAnn_R(S \subseteq Ann_R((S:_M I)))$, we have $rJ \not\subseteq IAnn_R(S)$. Thus by assumption, $r \in Ann_R(S)$ or $J \subseteq Ann_R(S)$ and so $S \subseteq (0:_M J) = K$.

The next corollary follows from Theorem 2.11, by setting I = 0.

COROLLARY 2.9. Let M an R-module and S be a submodule of M. Then we have the following.

(a) If M is faithful and S is a weak second submodule of M, then $Ann_R(S)$ is a weakly prime ideal of R.

(b) If M is a comultiplication R-module and $Ann_R(S)$ is a weakly prime ideal of R, then S is a weak second submodule of M.

The following example shows that the condition "M is a comultiplication R-module" in Corollary 2.9 (b) cannot be omitted.

EXAMPLE 2.10. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$, and $S = 2\mathbb{Z} \oplus 0$. Then M is not a comultiplication R-module. Clearly, $Ann_R(S) = 0$ is a weakly prime ideal of R. But S is not a weak second submodule of M.

PROPOSITION 2.11. Let I be an ideal of R and M be an R-module. Let N be an I-second submodule of M. Then we have the following statements.

(a) If K is a submodule of M with $K \subset N$, then N/K is an I-second submodule of M/K.

(b) Let N be a finitely generated submodule of M and S be a multiplicatively closed subset of R with $Ann_R(N) \cap S = \emptyset$. Then $S^{-1}N$ is an $S^{-1}I$ -second submodule of $S^{-1}M$.

I-second submodules of a module

Proof. (a) This follows from the fact that $r \notin (r(S/K) :_R (S/K :_{M/K} I))$ implies that $r \notin (rS :_R (S :_M I))$.

(b) As $Ann_R(N) \cap S = \emptyset$ and N is finitely generated, $S^{-1}N \neq 0$ by using [8, P. 43, Exe. 1]. Now the claim follows from the fact that $r/s \notin ((r/s)S^{-1}N :_{S^{-1}R} (S^{-1}N :_{S^{-1}M} S^{-1}I)$ implies that $r \notin (rN :_R (N :_M I))$.

THEOREM 2.12. Let M be a primary R-module. Then every proper weak second submodule of M is a primary submodule of M.

Proof. Let N be a proper weak second submodule of M and $rx \in N$ for some $r \in R$ and $x \in M$. If $r \notin (rN :_R M)$, then rN = 0 or rN = N since N is weak second. In the first case, $r^2x \in rN = 0$. Now as M is primary, x = 0 or $r \in \sqrt{Ann_R(M)}$. This implies that $x \in N$ or $r \in \sqrt{Ann_R(M/N)}$, as needed. If rN = N, then rx = rn for some $n \in N$. This implies that $x = n \in N$ or $r \in \sqrt{Ann_R(M)} \subseteq \sqrt{Ann_R(M/N)}$ since M is primary. Now suppose that $r \in (rN :_R M)$. Then $rx \in rM \subseteq rN$. Therefore, similarly to the pervious case we are done.

PROPOSITION 2.13. Let I be an ideal of R, M and \acute{M} be R-modules, and let $f : M \to \acute{M}$ be an R-monomorphism. If \acute{N} is an I-second submodule of \acute{M} such that $\acute{N} \subseteq Im(f)$, then $f^{-1}(\acute{N})$ is an I-second submodule of M.

Proof. As $\hat{N} \neq 0$ and $\hat{N} \subseteq Im(f)$, we have $f^{-1}(\hat{N}) \neq 0$. Let $r \notin (rf^{-1}(\hat{N}) :_R (f^{-1}(\hat{N}) :_M I))$; then one can see that $r \notin (r\hat{N} :_R (\hat{N} :_{\hat{M}} I))$ by using assumptions. Thus $r\hat{N} = 0$ or $r\hat{N} = \hat{N}$. This implies that $rf^{-1}(\hat{N}) = 0$ or $rf^{-1}(\hat{N}) = f^{-1}(\hat{N})$ as requested.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is of the form $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

LEMMA 2.14. Let $R = R_1 \times R_2$ be a decomposable ring, $I = I_1 \times I_2$ an ideal of R, and $M = M_1 \times M_2$ be an R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. If $(0:_{M_2} I_2) \neq 0$ and S_1 is a non-zero R_1 -submodule of M_1 , then the following statements are equivalent:

(a) S_1 is a second R_1 -submodule of M_1 ;

(b) $S_1 \times 0$ is a second R-submodule of $M = M_1 \times M_2$;

(c) $S_1 \times 0$ is an I-second R-submodule of $M = M_1 \times M_2$.

Proof. (a) \Rightarrow (b) follows from [7, 2.23] and (b) \Rightarrow (c) is clear.

(c) \Rightarrow (a) Let $r \in R_1$. Then $(0:_{M_2} I_2) \neq 0$ implies that $(r_1, 1)(S_1 \times 0:_{M_1 \times M_2} I) \not\subseteq (r_1, 1)(S_1 \times 0)$. Thus by part (c), $(r_1, 1)(S_1 \times 0) = (S_1 \times 0)$ or $(r_1, 1)(S_1 \times 0) = 0 \times 0$. Hence $r_1S_1 = S_1$ or $r_1S_1 = 0$, as needed.

THEOREM 2.15. Let $R = R_1 \times R_2$ be a decomposable ring and $M = M_1 \times M_2$ be an R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Let I be an ideal of R such that $(0:_{M_1} I_1) \neq 0$ and $(0:_{M_2} I_2) \neq 0$. If $S = S_1 \times S_2$ is an I-second R-submodule of $M = M_1 \times M_2$, then either $(S:_M I) = S$ or S is a second submodule of M.

62

Proof. Let $(S :_M I) \neq S$. Then either $(S_1 :_{M_1} I_1) \neq S_1$ or $(S_2 :_{M_2} I_2) \neq S_2$. Suppose that $(S_2 :_{M_2} I_2) \neq S_2$. Then $(S_2 :_{R_2} (S_2 :_{M_2} I_2)) \neq R$. Hence $1 \notin (S_2 :_{R_2} (S_2 :_{M_2} I_2))$. If $S_1 = 0$, then the result follows from Lemma 2.14. So suppose that $S_1 \neq 0$. As $(0,1) \notin ((0,1)(S_1 \times S_2) :_R (S_1 \times S_2 :_M I))$, we have $(0,1)(S_1 \times S_2) = S_1 \times S_2$ or $(0,1)(S_1 \times S_2) = 0 \times S_2$ since $S = S_1 \times S_2$ is an *I*-second *R*-submodule of *M*. \Box

EXAMPLE 2.16. Let $R_1 = R_2 = M_1 = M_2 = S_1 = \mathbb{Z}_6$. Then by Theorem 2.15, $S_1 \times 0$ is not a weak second submodule of $M_1 \times M_2$.

THEOREM 2.17. Let I be an ideal of R, M_1 , M_2 be R-modules, and let N be a submodule of M_1 . Then $N \oplus 0$ is an I-second submodule of $M_1 \oplus M_2$ if and only if N is an I-second submodule of M_1 and for $r \in (rN :_R (N :_{M_1} I))$, $rN \neq 0$, and $rN \neq N$, we have $r \in Ann_R((0 :_{M_2} I))$.

Proof. (⇒) Let $r \notin (rN :_R (N :_{M_1} I))$. Then $r \notin (r(N \oplus 0) :_R (N \oplus 0 :_M I))$. Since $N \oplus 0$ is an *I*-second submodule, either $r(N \oplus 0) = N \oplus 0$ or $r(N \oplus 0) = 0 \oplus 0$. Thus either rN = N or rN = 0, so N is *I*-second. Now, let $r \in (rN :_R (N :_{M_1} I))$, $rN \neq 0$, and $rN \neq N$. Assume on the contrary that $r \notin Ann_R((0 :_{M_2} I))$. Then there exists $x_2 \in M_2$ such that $Ix_2 = 0$ and $rx_2 \neq 0$. This implies that $r(0, x_2) \in r(N \oplus 0 :_M I) \setminus r(N \oplus 0)$. So since $N \oplus 0$ is an *I*-second submodule, either $r(N \oplus 0) = N \oplus 0$ or $r(N \oplus 0) = 0 \oplus 0$. Thus either rN = N or rN = 0, which is a contradiction. Therefore, $r \in Ann_R((0 :_{M_2} I))$.

(⇐) Let $r \notin (r(N \oplus 0) :_R (N \oplus 0 :_M I))$. Then if rN = N or rN = 0, the result is clear. So suppose that $rN \neq N$ and $rN \neq 0$. We show that $r \notin (rN :_R (N :_{M_1} I))$ and this contradiction proves the result because N is an *I*-second submodule of M_1 . Assume on the contrary that $r \in (rN :_R (N :_{M_1} I))$. Then by assumption, $r \in$ $Ann_R((0 :_{M_2} I))$. This implies that if $(x_1, x_2) \in N \oplus (0 :_M I)$, then $r(x_1, x_2) \in r(N \oplus 0)$. Therefore, $r \in (r(N \oplus 0) :_R (N \oplus 0 :_M I))$, which is a desired contradiction.

A non-zero *R*-module *M* is said to be *secondary* if for each $a \in R$ the endomorphism of *M* given by multiplication by *a* is either surjective or nilpotent [13].

COROLLARY 2.18. Let I and P be ideals of R, M_1 , M_2 be R-modules, and let N be a submodule of M_1 . Let S_i $(1 \le i \le n)$ be P-secondary submodules of M_1 with $\sum_{i=1}^n S_i = (N :_{M_1} I)$. If N is an I-second submodule of M_1 and $P \subseteq Ann_R((0 :_{M_2} I))$, then $N \oplus 0$ is an I-second submodule of $M_1 \oplus M_2$.

Proof. Let $r \in (rN :_R (N :_{M_1} I))$, $rN \neq 0$, and $rN \neq N$. Then we will prove that $r \in Ann_R((0 :_{M_2} I))$ and hence the result is obtained by Theorem 2.17. Assume on the contrary that $r \notin Ann_R((0 :_{M_2} I))$. Hence $r \notin P$. On the other hand, $r(\sum_{i=1}^n S_i) = r(N :_{M_1} I) \subseteq rN$. But $\sum_{i=1}^n S_i$ is a *P*-secondary submodule by [13, 2.1], so either $r(\sum_{i=1}^n S_i) = \sum_{i=1}^n S_i$ or $r \in P$. This implies that rN = N or $r \in P$, which is a contradiction. Thus $r \in Ann_R((0 :_{M_2} I))$.

THEOREM 2.19. Let I be an ideal of R and M be an R-module. Then we have the following.

I-second submodules of a module

(a) If $\bigcap_{n=1}^{\infty} I^n M = 0$ and every proper submodule of M is I-prime, then every non-zero submodule of M is I-second.

(b) If $\sum_{n=1}^{\infty} (0:_M I^n) = M$ and every non-zero submodule of M is I-second, then every proper submodule of M is I-prime.

Proof. (a) Let *S* be a non-zero submodule of *M*, *r* ∈ (*K* :_{*R*} *S*) \ (*K* :_{*R*} (*S* :_{*M*} *I*)) for some *r* ∈ *R* and a submodule *K* of *M* and *rS* ≠ 0. If *rS* $\not\subseteq$ *IK*, then as *K* is *I*-prime, we have *rM* ⊆ *K* or *S* ⊆ *K*. If *rM* ⊆ *K*, then *r*(*S* :_{*M*} *I*) ⊆ *K* which is a contradiction. So *S* ⊆ *K* and we are done. Now suppose that *rS* ⊆ *IK*. As *rS* ≠ 0 and $\bigcap_{n=1}^{\infty} I^n K = 0$, there exists a positive integer *t* such that *rS* $\not\subseteq$ *I^tK*. Therefore, there is a positive integer *h* such that *rS* ⊆ *I^{h-1}K* but *rS* $\not\subseteq$ *I^hK*, where 2 ≤ *h* ≤ *t*. Thus since *I^{h-1}K* is *I*-prime, *S* ⊆ *I^{h-1}K* or *rM* ⊆ *I^{h-1}K*. If *rM* ⊆ *I^{h-1}K*, then *r*(*S* :_{*M*} *I*) ⊆ *K* which is a contradiction. So *S* ⊆ *I^{h-1}* ⊆ *K* as needed.

(b) Let P be a proper submodule of M, $rK \subseteq P \setminus IP$ for some $r \in R$ and a submodule K of M and $rM \not\subseteq P$. If $r(K :_M I) \not\subseteq P$, then as K is I-second, we have rK = 0 or $K \subseteq P$. If rK = 0, then $rK \subseteq IP$ which is a contradiction. So $K \subseteq P$ and we are done. Now suppose that $r(K :_M I) \subseteq P$. As $rM \not\subseteq P$ and $\sum_{n=1}^{\infty} (K :_M I^n) = M$, there exists a positive integer t such that $r(K :_M I^t) \not\subseteq P$. Therefore, there is a positive integer h such that $r(K :_M I^{h-1}) \subseteq P$ but $r(K :_M I^h) \not\subseteq P$, where $2 \leq h \leq t$. Thus since $(K :_M I^{h-1})$ is I-second, $(K :_M I^{h-1}) \subseteq P$ or $r(K :_M I^{h-1}) = 0$. If $r(K :_M I^{h-1}) = 0$, then $0 = rK \subseteq IP$ which is a contradiction. So $K \subseteq (K :_M I^{h-1}) \subseteq P$ as needed.

By setting I = 0 in the previous theorem we get the following.

COROLLARY 2.20. Let I be an ideal of R and M be an R-module. Then every proper submodule of M is weakly prime if and only if every non-zero submodule of M is weak second.

COROLLARY 2.21. Let (R, m) be a local ring and M be an R-module. Then we have the following.

(a) If M is a Noetherian R-module and every proper submodule of M is I-prime, then every non-zero submodule of M is I-second.

(b) If M is an Artinian R-module and every non-zero submodule of M is I-second, then every proper submodule of M is I-prime.

Proof. Part (a) follows from [12, 4.6] and Theorem 2.19, while (b) follows from [6, 3.2] and Theorem 2.19. \Box

References

- [1] I. Akray, *I-prime ideals*, Journal of Algebra and Related Topics, 4(2) (2016), 41-47.
- [2] I. Akray, H. S. Hussein, *I-prime submodules*, to be appear.
- [3] D.D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831–840.
- [4] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., 9(2) (2012), 329–338.

- [5] H. Ansari-Toroghy, F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189–1201.
- [6] H. Ansari-Toroghy, F. Farshadifar, On dual versions of Krull's intersection Theorem, Int. Math. Forum, 2(54) (2007), 2655–2659.
- H. Ansari-Toroghy, F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche, 72(11) (2017), 123–135.
- [8] M. Atiyah, I. MacDonald, Introduction to commutative Algebra, Reading: Addison-Wesley., 1969 Jan.
- [9] J. Dauns, Prime submodules, J. Reine Angew. Math. 298 (1978), 156–181.
- [10] S. Ebrahimi Atani, F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38(3) (2007), 247–252.
- [11] L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.
- [12] T.W. Hungerford, Algebra, Graduate Texts in Mathematics. Springer-Verlag, New York, 1974.
- [13] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math. XI (1973), 23–43.
- [14] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273–278.

(received 29.08.2018; in revised form 27.12.2018; available online 26.07.2019)

Department of Mathematics, Farhangian University, Tehran, Iran

E-mail: f.farshadifar@cfu.ac.ir

Department of pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

E-mail: ansari@guilan.ac.ir