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n-ARY 2-ABSORBING AND 2-ABSORBING PRIMARY
HYPERIDEALS IN KRASNER (m,n)-HYPERRINGS

M. Anbarloei

Abstract. Let R be a commutative Krasner (m,n)-hyperring with the scalar identity
1R. In this paper, we introduce and study the concept of n-ary 2-absorbing and 2-absorbing
primary hyperideals of R. These concepts are a generalisation of n-ary prime and primary
hyperideals.

1. Introduction

The theory of hyperstructures is a well established branch in classical algebraic the-
ory. Since 1934, when Marty [14] introduced for the first time the notion of a hy-
pergroup, the Hyperstructure Theory has had applications to several domains, for
instance graphs and hypergraphs, non-Euclidean geometry, lattices, binary relations,
cryptography, automata, artificial intelligence, codes, probabilities etc (see [5–7,18]).
Recently, Davvaz and Vougiouklis have introduced and studied a nice generalization
of a hypergroup which is called an n-hypergroup [8].

n-ary semigroups and n-ary groups are algebras with one n-ary operation which is
associative and invertible in a generalized sense. The investigations of n-ary algebras
go back to Krasner’s lecture [11] at the 53rd annual meeting of the American Associa-
tion of the Advancement of Science in 1904. But the first paper concerning the theory
of n-ary groups was written by Dörente in 1928 [9]. Afterward, the (m,n)-rings and
their quotient structure were introduced by Crombez and Timm in [3,4]. The concept
of an n-ary hypergroup was defined by Davvaz and Vougiouklis in [8], which is a gen-
eralization of the concept of a hypergroup in the sense of Marty and a generalization
of an n-ary group, too. The notation of (m,n)-hyperrings was defined by Mirvakili
and Davvaz [15] and they obtained (m,n)-rings from (m,n)-hyperrings by using fun-
damental relations. For more study on n-ary structures and n-ary hyperstructures
refer to [12,13,16].
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The concept of 2-absorbing ideals, in ordinary algebra, was introduced by A.
Badawi, in [2]. In 2017, Davvaz et al. introduced the concept of 2-absorbing fuzzy
ideals and 2-absorbing primary fuzzy ideals in commutative rings [17]. In [10], the
notion of (k, n)-absorbing hyperideals was studied in Krasner (m,n)-hyperirings by
Hila et al.

In this paper, we aim to introduce and study the notion of n-ary 2-absorbing and
n-ary 2-absorbing primary hyperideals in Krasner (m,n)-hyperrings. The concept is
a generalisation of n-ary prime and primary hyperideals which were studied by R.
Ameri in [1].

Among the results in this paper, it is shown (Theorem 3.6) that there are at most
two n-ary prime hyperideals of (R, f, g) that are minimal over an n-ary 2-absorbing
hyperideal I of R. It is shown (Theorem 3.8) that if I is an n-ary primary hyper-
ideal of a commutative Krasner (m,n)-hyperring (R, f, g) with the scalar identity 1R

such that
√
I

(m,n)
= P for some n-ary prime hyperideal P of R, then I is an n-ary

2-absorbing hyperideal of R if and only if g(P (2), 1
(n−2)
R ) ⊆ I. In Section 4, we in-

vestigate the stability of n-ary 2-absorbing hyperideals in some hyperring-theoretic
constructions. In Section 5, we introduce and study the concept of n-ary 2-absorbing
primary hyperideals.

2. Preliminaries

In this section we recall some definitions and results concerning n-ary hyperstructures
which we will use later.

A mapping f : Hn −→ P ∗(H) is called an n-ary hyperoperation, where P ∗(H) is
the set of all the non-empty subsets of H. An algebraic system (H, f), where f is an
n-ary hyperoperation defined on H, is called an n-ary hypergroupoid.

We shall use the following abbreviated notation: The sequence xi, xi+1, . . . , xj
will be denoted by xji . For j ≺ i, xji is the empty symbol. With this conven-

tion f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn) will be written as f(xi1, y
j
i+1, z

n
j+1). In the

case when yi+1 = . . . = yj = y the last expression will be written in the form
f(xi1, y

(j−i), znj+1).
For non-empty subsets A1, . . . , An of H we define f(An1 ) = f(A1, . . . , An) =⋃
{f(xn1 ) | xi ∈ Ai, i = 1, . . . , n}. An n-ary hyperoperation f is called associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ) holds for every 1 ≤ i ≺ j ≤ n
and all x1, x2, . . . , x2n−1 ∈ H. An n-ary hypergroupoid with the associative n-ary
hyperoperation is called an n-ary semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−1
1 , xi, a

n
i+1) has

a solution xi ∈ H for every ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n is called an n-ary

quasihypergroup. When (H, f) is an n-ary semihypergroup, (H, f) is called an n-ary
hypergroup.

An n-ary hypergroupoid (H, f) is commutative if for all σ ∈ Sn, the group of
all permutations of {1, 2, 3, . . . , n}, and for every an1 ∈ H we have f(a1, . . . , an) =
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f(aσ(1), . . . , aσ(n)). If an an1 ∈ H we denote a
σ(n)
σ(1) as the (aσ(1), . . . , aσ(n)). We assume

throughout this paper that all Krasner (m,n)-hyperrings are commutative.
If f is an n-ary hyperoperation and t = l(n − 1) + 1, then t-ary hyperoperation

f(l) is given by f(l)(x
l(n−1)+1
1 ) = f(f(. . . , f(f(xn1 ), x2n−1

n+1 ), . . .), x
l(n−1)+1
(l−1)(n−1)+1).

Definition 2.1 ([15]). Let (H, f) be an n-ary hypergroup and B be a non-empty
subset of H. B is called an n-ary subhypergroup of (H, f) if f(xn1 ) ⊆ B for xn1 ∈ B,
and the equation b ∈ f(bi−1

1 , xi, b
n
i+1) has a solution xi ∈ B for every bi−1

1 , bni+1, b ∈
B and 1 ≤ i ≤ n. An element e ∈ H is called a scalar neutral element if x =
f(e(i−1), x, e(n−i)), for every 1 ≤ i ≤ n and for every x ∈ H.

An element 0 of an n-ary semihypergroup (H, g) is called a zero element if for
every xn2 ∈ H we have g(0, xn2 ) = g(x2, 0, x

n
3 ) = . . . = g(xn2 , 0) = 0. If 0 and 0′ are

two zero elements, then 0 = g(0′, 0(n−1)) = 0′ and so the zero element is unique.

Definition 2.2 ([12]). Let (H, f) be a n-ary hypergroup. (H, f) is called a canonical
n-ary hypergroup if
(i) there exists a unique e ∈ H, such that for every x ∈ H, f(x, e(n−1)) = x;

(ii) for all x ∈ H there exists a unique x−1 ∈ H, such that e ∈ f(x, x−1, e(n−2));

(iii) if x ∈ f(xn1 ), then for all i, we have xi ∈ f(x, x−1, . . . , x−1
i−1, x

−1
i+1, . . . , x

−1
n ).

We say that e is the scalar identity of (H, f) and x−1 is the inverse of x. Notice that
the inverse of e is e.

Definition 2.3 ([15]). A Krasner (m,n)-hyperring is an algebraic hyperstructure
(R, f, g) which satisfies the following axioms:
(i) (R, f) is a canonical m-ary hypergroup;

(ii) (R, g) is a n-ary semigroup;

(iii) the n-ary operation g is distributive with respect to the m-ary hyperopera-
tion f , i.e., for every ai−1

1 , ani+1, x
m
1 ∈ R, and 1 ≤ i ≤ n, g(ai−1

1 , f(xm1 ), ani+1) =

f(g(ai−1
1 , x1, a

n
i+1), . . . , g(ai−1

1 , xm, a
n
i+1));

(iv) 0 is a zero element (absorbing element) of the n-ary operation g, i.e., for every
xn2 ∈ R we have g(0, xn2 ) = g(x2, 0, x

n
3 ) = . . . = g(xn2 , 0) = 0.

A non-empty subset S of R is called a subhyperring of R if (S, f, g) is a Krasner
(m,n)-hyperring. Let I be a non-empty subset of R, we say that I is a hyperideal
of (R, f, g) if (I, f) is an m-ary subhypergroup of (R, f) and g(xi−1

1 , I, xni+1) ⊆ I, for
every xn1 ∈ R and 1 ≤ i ≤ n.

Definition 2.4 ([1]). A hyperideal P of a Krasner (m,n)-hyperring (R, f, g), such
that P 6= R, is called an n-ary prime hyperideal if for hyperideals U1, . . . , Un of R,
g(Un1 ) ⊆ P implies that U1 ⊆ P or U2 ⊆ P or . . . or Un ⊆ P .

Lemma 2.5 ([1, Lemma 4.5]). Let P 6= R be a hyperideal of a Krasner (m,n)-hyperring
(R, f, g). Then P is an n-ary prime hyperideal if for all xn1 ∈ R, g(xn1 ) ∈ P =⇒ x1 ∈
P or . . . or xn ∈ P .
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Definition 2.6 ([1]). Let I be a hyperideal in a (m,n)-hyperring (R, f, g) with scalar

identity. The radical (or nilradical) of I, denoted by
√
I

(m,n)
is the hyperideal

⋂
P ,

where the intersection is taken over all n-ary prime hyperideals P which contain I.

If the set of all n-ary hyperideals containing I is empty, then
√
I

(m,n)
is defined to

be R.

Ameri and Norouzi [1] showed that if x ∈
√
I

(m,n)
then there exists t ∈ N such

that g(x(t), 1
(n−t)
R ) ∈ I for t ≤ n, or g(l)(x

(t)) ∈ I for t = l(n− 1) + 1.

Definition 2.7 ([1]). A hyperideal Q 6= R in a Krasner (m,n)-hyperring (R, f, g)
with the scalar identity 1R is said to be n-ary primary if g(xn1 ) ∈ Q and xi /∈ Q

implies that g(xi−1
1 , 1R, x

n
i+1) ∈

√
Q

(m,n)
.

If Q is an n-ary primary hyperideal in a Krasner (m,n)-hyperring (R, f, g) with

the scalar identity 1R, then
√
Q

(m,n)
is n-ary prime. (see [1, Theorem 4.28])

Definition 2.8 ([1]). Let S be a hyperideal of a Krasner (m,n)-hyperring (R, f, g).
Then the set R/S = {f(xi−1

1 , S, xmi+1) | xi−1
1 , xmi+1 ∈ R} endowed with m-ary hyper-

operation f such that for all x1m
11 , . . . , x

mm
m1 ∈ R,

f(f(x
1(i−1)
11 , S, x1m

1(i+1)), . . . , f(x
m(i−1)
m1 , S, xmmm(i+1)))

=f(f(xm1
11 ), . . . , f(x

m(i−1)
1(i−1) ), S, f(x

m(i+1)
1(i+1) ), . . . , f(xmm1m ))

and with n-ary hyperoperation g such that for all x1m
11 , . . . , x

nm
n1 ∈ R,

g(f(x
1(i−1)
11 , S, x1m

1(i+1)), . . . , f(x
n(i−1)
n1 , S, xnmn(i+1)))

=f(g(xn1
11 ), . . . , g(x

n(i−1)
1(i−1) ), S, g(x

n(i+1)
1(i+1) ), . . . , f(xnm1m ))

construct a Krasner (m,n)-hyperring, and (R/S, f, g) is called the quotient Krasner
(m,n)-hyperring of R by S.

Definition 2.9 ([15]). Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings.
A mapping φ : R1 −→ R2 is called a homomorphism if for all xm1 ∈ R1 and yn1 ∈ R1 we
have φ(f1(x1, . . . , xm)) = f2(φ(x1), . . . , φ(xm)) φ(g1(y1, . . . , yn)) = g2(φ(y1), . . . , φ(yn)).

3. n-ary 2-absorbing hyperideals in a Krasner (m,n)-hyperring

Definition 3.1. A nonzero proper hyperideal I of a Krasner (m,n)-hyperring (R, f, g)
with the scalar identity 1R is said to be n-ary 2-absorbing if for xn1 ∈ R, g(xn1 ) ∈ I
implies that g(xi, xj , 1

(n−2)
R ) ∈ I for some 1 ≤ i ≺ j ≤ n.

Example 3.2. Let (R,+, .) be a Krasner hyperring in which the operation ”.“ is
the ordinary multiplication and let R be a hyperintegral domain (for more details
refer to [19]). Then R endowed with the following m-ary hyperoperation f and n-ary
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operation g is a Krasner (m,n)-hyperring: f(xm1 ) =
∑m
i=1 xi and g(xn1 ) = x1 . . . xn. In

the Krasner (m,n)-hyperring, the hyperideal {0} is an n-ary 2-absorbing hyperideal.
By [1, Example 4.2], the Krasner (m,n)-hyperring R is an n-ary hyperintegral

domain. Thus if g(xn1 ) ∈ {0} for some xn1 ∈ R, then there exist i, 1 ≤ i ≤ n such

that xi = 0. Hence for all 1 ≤ j ≤ n such that i 6= j, we have g(0, xj , 1
(n−2)
R ) = 0.

Therefore {0} is an n-ary 2-absorbing hyperideal.

Theorem 3.3. Let P1 and P2 be two n-ary prime hyperideals of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1R. Then P1 ∩ P2 is an n-ary 2-absorbing
hyperideal of R.

Proof. Assume that xn1 ∈ R such that g(xn1 ) ∈ P1 ∩ P2. If xi ∈ P1 ∩ P2 for some

1 ≤ i ≤ n, then g(xi, xj , 1
(n−2)
R ) ∈ P1 ∩ P2 for every j, 1 ≤ j ≤ n such that i 6= j.

Thus we are done. Since P1 is an n-ary prime hyperideal of R and g(xn1 ) ∈ P1, we
conclude that x1 ∈ P1 or . . . or xn ∈ P1. Without losing the generality, we may
assume that xi ∈ P1 and xi /∈ P2 for some 1 ≤ i ≤ n. Since P2 is an n-ary prime
hyperideal of R, we have x1 ∈ P2 or . . . or xi−1 ∈ P2 or xi−1 ∈ P2 or . . . or xn ∈ P2.
Without losing the generality, we may assume that xj ∈ P2 such that i 6= j. Thus

g(xi, xj , 1
(n−2)
R ) ∈ P1∩P2. Hence P1∩P2 is an n-ary 2-absorbing hyperideal of R. �

Theorem 3.4. Suppose that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-

hyperring (R, f, g) with the scalar identity 1R. Then
√
I

(m,n)
is an n-ary 2-absorbing

hyperideal of (R, f, g) and g(x(2), 1
(n−2)
R ) ∈ I for every x ∈

√
I

(m,n)
.

Proof. Let I be an n-ary 2-absorbing hyperideal of (R, f, g) and x ∈
√
I

(m,n)
. Then

there exists t ∈ N such that g(x(t), 1
(n−t)
R ) ∈ I for t ≤ n, or g(l)(x

(t)) ∈ I for t =

l(n− 1) + 1. If g(x(t), 1
(n−t)
R ) ∈ I for t ≤ n, then

g(g(x(t), 1
(n−t)
R ), 1

(n−1)
R ) ∈ I

⇒ g(x(2), g(x(t−2), 1
(n−t+2)
R ), 1

(n−3)
R ) ∈ I (associativity)

⇒ g(x(2), 1
(n−2)
R ) ∈ I or g(x, g(x(t−2), 1

(n−t+2)
R ), 1

(n−2)
R ) ∈ I (I n-ary 2-absorbing)

⇒ g(x(2), 1
(n−2)
R ) ∈ I or g(x(2), g(x(t−3), 1

(n−t+3)
R ), 1

(n−3)
R ) ∈ I

⇒ g(x(2), 1
(n−2)
R ) ∈ I or g(x(2), 1

(n−2)
R ) ∈ I or g(x, g(x(t−3), 1

(n−t+3)
R ), 1

(n−2)
R ) ∈ I

...

⇒ g(x(2), 1
(n−2)
R ) ∈ I or g(x(2), 1

(n−2)
R ) ∈ I or . . . or g(x(2), 1

(n−2)
R ) ∈ I.

If g(l)(x
(t)) ∈ I for t = l(n−1)+1, then the claim follows by using a similar argument

to the previous part and [1, Lemma 4.26]. �

Lemma 3.5. Let I ⊆ P be a hyperideal of a Krasner (m,n)-hyperring (R, f, g) with
the scalar identity 1R, where P is an n-ary prime hyperideal. Then the following
conditions are equivalent:
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(i) P is a minimal n-ary prime hyperideal of I.

(ii) For each x ∈ P , there is a y ∈ R \ P and a nonnegative integer t such that

g(x(t), y, 1
(n−t−1)
R ) ∈ I.

Proof. (i)⇒(ii) Suppose that x ∈ P and
√
I

(m,n)
= P ∩ (

⋂
Qj∈Min(I)Qj). If x ∈

√
I

(m,n)
, then there exists t ∈ N such that g(x(t), 1

(n−t)
R ) ∈ I for t ≤ n, or g(l)(x

(t)) ∈ I
for t = l(n− 1) + 1. If we choose y = 1R, then the claim follows.

Now let x ∈ P \
√
I

(m,n)
. We may assume that x ∈ P ∩ (

⋂s
j=1Qi) but x /∈⋃

j≥s+1Qj . Let w ∈
⋂
j≥s+1Qj\P , then g(x,w, 1

(n−2)
R ) ∈ P∩(

⋂s
j=1Qj)∩(

⋂
j≥s+1Qj)

=
√
I

(m,n)
. Hence there exists t ∈ N such that g(g(x,w, 1

(n−2)
R )(t), 1

(n−t)
R ) ∈ I for t≤n,

or g(l)(g(x,w, 1
(n−2)
R )(t)) ∈ I for t = l(n − 1) + 1. If g(g(x,w, 1

(n−2)
R )(t), 1

(n−t)
R ) ∈ I

for t ≤ n, then g(x(t), g(w, 1
(n−1)
R )(t), 1

(n−2t)
R ) ∈ I and so

g(x(t), g(g(w, 1
(n−1)
R )(t), 1

(n−t)
R ), 1

(n−t−1)
R ) ∈ I.

We may assume g(g(w, 1
(n−1)
R )(t), 1

(n−t)
R ) = y. Thus g(x(t), y, 1

(n−t−1)
R ) ∈ I. If

g(l)(g(x,w, 1
(n−2)
R )(t)) ∈ I for t = l(n − 1) + 1, and the claim follows by using a

similar argument to the previous part and [1, Lemma 4.26].
(ii)⇒(i) Let P is not a minimal n-ary prime hyperideal of I. Then there exists a

minimal n-ary prime hyperideal Q of I such that I ⊆ Q $ P . We choose x ∈ P \Q.

Hence there exist y ∈ R \P and t ∈ N such that g(x(t), y, 1
(n−t−1)
R ) ∈ I ⊆ Q. Since Q

is an n-ary prime hyperideal, then x ∈ Q or y ∈ Q which is a contradiction. �

Theorem 3.6. Suppose that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1R. Then there are at most two n-ary prime
hyperideals of R that are minimal over I.

Proof. Suppose that S = {Pi | Pi is an n-ary prime hyperideal of R that is minimal
over I} and suppose that S has at least three elements. Let P1, P2 ∈ S be two
distinct n-ary prime hyperideals. Then there is an x1 ∈ P1 \ P2, and there is an

x2 ∈ P2 \ P1. First we show that g(x1, x2, 1
(n−2)
R ) ∈ I. By Lemma 3.5, there are

y2 /∈ P1 and y1 /∈ P2 such that g(xt11 , y2, 1
(n−t1−1)
R ) ∈ I and g(xt22 , y1, 1

(n−t2−1)
R ∈ I

for some t1, t2 > 1. Since x1, x2 /∈ P1∩P2 and I is an n-ary 2-absorbing hyperideal of

R, we have g(x1, y2, 1
(n−2)
R ) ∈ I and g(x2, y1, 1

(n−2)
R ) ∈ I. Since x1, x2 /∈ P1 ∩ P2 and

g(x1, y2, 1
(n−2)
R ), g(x2, y1, 1

(n−2)
R ) ∈ I ⊆ P1∩P2, we have y2 ∈ P2 \P1 and y1 ∈ P1 \P2,

and hence y1, y2 /∈ P1 ∩ P2. Since g(x1, y2, 1
(n−2)
R ) ∈ I and g(x2, y1, 1

(n−2)
R ) ∈ I, we

have

g(x1, x2, f(y1, y2, 0
(m−2)), 1n−3

R )=f(g(x1, x2, y2, 1
(n−3)
R ), g(x1, x2, y1, 1

(n−3)
R ), 0(m−2))⊆I

It is clear that f(y1, y2, 0
(m−2)) * P1 and f(y1, y2, 0

(m−2)) * P2.

Since g(x1, f(y1, y2, 0
(m−2)), 1

(n−2)
R )*P2 and g(x2, f(y1, y2, 0

(m−2)), 1
(n−2)
R )*P1, we

have g(x1, f(y1, y2, 0
(m−2)), 1

(n−2)
R )*I and g(x2, f(y1, y2, 0

(m−2)), 1
(n−2)
R )*I and hence

g(x1, x2, 1
(n−2)
R )∈I.
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Now assume there is a P3 ∈ S such that P3 6= P1 and P3 6= P2. Then we can
choose z1 ∈ P1 \(P2∪P3), z2 ∈ P2 \(P1∪P3), and z3 ∈ P3 \(P1∪P2). By the previous

argument g(z1, z2, 1
(n−2)
R ) ∈ I. Since I ⊆ P1 ∩ P2 ∩ P3 and g(z1, z2, 1

(n−2)
R ) ∈ I, we

conclude that either z1 ∈ P3 or z2 ∈ P3 which is a contradiction. Thus S has at most
two elements. �

Theorem 3.7. Suppose that I be an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1R. Then one of the following statements
must hold:

(i)
√
I

(m,n)
= P is an n-ary prime hyperideal of R such that g(P (2), 1

(n−2)
R ) ⊆ I.

(ii)
√
I

(m,n)
= P1 ∩ P2, g(P1, P2, 1

(n−2)
R ) ⊆ I and g((

√
I

(m,n)
)(2), 1

(n−2)
R ) ⊆ I where

P1, P2 are the only distinct n-ary prime hyperideals of R that are minimal over I.

Proof. By Theorem 3.6, we have hat either
√
I

(m,n)
=P is an n-ary prime hyperideal of

R or
√
I

(m,n)
= P 1∩P2 where P1, P2 are the only distinct n-ary prime hyperideals of R

that are minimal over I. First assume that
√
I

(m,n)
= P is an n-ary prime hyperideal

of R. Let x, y∈P . By Theorem 3.4, we conclude that g(x(2), 1
(n−2)
R ), g(y(2), 1

(n−2)
R )∈I.

Thus

g(x, f(x, 0(m−2), y), y, 1
(n−3)
R ) = f(g(x(2), y, 1

(n−3)
R ), g(x, y(2), 1

(n−3)
R ), 0(m−2)) ⊆ I

Since I is an n-ary 2-absorbing hyperideal, we have

g(x, f(x, 0(m−2), y), 1
(n−2)
R ) = f(g(x(2), 1

(n−2)
R ), g(x, y, 1

(n−2)
R ), 0(m−2)) ⊆ I

=⇒g(x, y, 1
(n−2)
R ) ∈ f(−g(x(2), 1

(n−2)
R ), 0(m−1)) = −f(g(x(2), 1

(n−2)
R ), 0(m−1)) ⊆ I

or g(f(x, 0(m−2), y), y, 1
(n−2)
R ) = f(g(x, y, 1

(n−2)
R ), g(y(2), 1

(n−2)
R ), o(m−2)) ⊆ I

=⇒g(x, y, 1
(n−2)
R ) ∈ f(−g(y(2), 1

(n−2)
R ), 0(m−1)) = −f(g(y(2), 1

(n−2)
R ), 0(m−1)) ⊆ I

or g(x, y, 1
(n−2)
R ) ∈ I.

Hence g(P (n−2), 1
(n−2)
R ) ⊆ I.

Now assume that
√
I

(m,n)
= P1∩P2 where P1, P2 are the only distinct n-ary prime

hyperideals of R that are minimal over I. Let x, y ∈
√
I

(m,n)
. Then g(x, y, 1

(n−2)
R ) ∈ I

by the same argument given above, and so g((
√
I

(m,n)
)(2), 1

(n−2)
R ) ⊆ I. Let a1 ∈ P1\P2

and a2 ∈ P2 \ P1. Then g(a1, a2, 1
(n−2)
R ) ∈ I by the proof of Theorem 3.6. Let

c1 ∈
√
I

(m,n)
and c2 ∈ P2 \P1. Choose b1 ∈ P1 \P2. Then g(b1, c2, 1

(n−2)
R ) ∈ I by the

proof of Theorem 3.6 and f(c1, b1, 0
(m−2)) ∈ P1 \ P2. Hence

f(g(c1, c2, 1
(n−2)
R ), g(b1, c2, 1

(n−2)), 0
(m−2)
R ) = g(c2, f(c1, b1, 0

(m−2)
R ), 1

(n−2)
R ) ⊆ I

=⇒ g(c1, c2, 1
(n−2)
R ) ∈ f(−g(b1, c2, 1

(n−2)), 0
(m−1)
R ) = −f(g(b1, c2, 1

(n−2)), 0
(m−1)
R ) ⊆ I

By using a similar argument, we can show that if c1 ∈
√
I

(m,n)
and c2 ∈ P1 \P2, then

g(c1, c2, 1
(n−2)) ∈ I. Therefore g(P1, P2, 1

(n−2)
R ) ⊆ I. �
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Theorem 3.8. Suppose that I is an n-ary primary hyperideal of a Krasner (m,n)-

hyperring (R, f, g) with the scalar identity 1R such that
√
I

(m,n)
= P for some n-ary

prime hyperideal P of R. Then I is an n-ary 2-absorbing hyperideal of R if and only

if g(P (2), 1
(n−2)
R ) ⊆ I.

Proof. (⇒) Assume that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f, g). Then g(P (2), 1(n−2)) ⊆ I by Theorem 3.7 (i).

(⇐) Assume that g(P (2), 1(n−2)) ⊆ I and g(xn1 ) ∈ I for some xn1 ∈ R. If either
x1 ∈ I or g(xn2 , 1R) ∈ I for some xn2 ∈ R, then there is nothing to prove. Hence
suppose that x1 /∈ I and g(xn2 , 1R) /∈ I. Since I is an n-ary primary hyperideal of

R and
√
I

(m,n)
= P , we conclude that x1 ∈ P and g(xn2 , 1R) ∈ P . Thus x1 ∈ P

and there exists 2 ≤ i ≤ n such that xi ∈ P . Since g(P (2), 1
(n−2)
R ) ⊆ I, we have

g(x1, xi, 1
(n−2)
R ) ∈ I. Thus I is an n-ary primary hyperideal of R. �

Recall that an n-ary prime hyperideal of a Krasner (m,n)-hyperring (R, f, g) with
the scalar identity 1R is called a divided prime if P ⊂≺ x � for every x ∈ R \ P .

(Recall that ≺ x �= g(R, x, 1
(n−2)
R ) = {g(r, x, 1

(n−2)
R | r ∈ R}.)

Theorem 3.9. Let P be an n-ary nonzero divided prime hyperideal of a Krasner
(m,n)-hyperring (R, f, g) with the scalar identity 1R and I be an hyperideal of R such

that
√
I

(m,n)
= P . Then the following statements are equivalent:

(i) I is an n-ary 2-absorbing hyperideal of R;

(ii) I is an n-ary primary hyperideal of R such that g(P (2), 1
(n−2)
R ) ⊆ I.

Proof. (i)⇒(ii) Assume that I is an n-ary 2-absorbing hyperideal of R. Since
√
I

(m,n)

= P is an n-ary nonzero prime hyperideal of R, g(P (2), 1
(n−2)
R ) ⊆ I by Theorem 3.7 (i).

Now let g(xn1 ) ∈ I for some xn1 ∈ R and assume that g(xi−1
1 , 1R, x

n
i+1) /∈ P . Since

xi∈P and P is a divided hyperideal of R, we have xi=g(r, g(xi−1
1 , 1R, x

n
i+1), 1

(n−2)
R )

for some r ∈ R. Thus g(xn1 ) = g(xi−1
1 , g(r, g(xi−1

1 , 1R, x
n
i+1), 1

(n−2)
R ), xni+1) ∈ I. Since

I is an n-ary 2-absorbing hyperideal of R, we have

g(xj , g(r, g(xi−1
1 , 1R, x

n
i+1), 1

(n−2)
R ), 1

(n−2)
R )

= g(xj , r, g(g(xi−1
1 , 1R, x

n
i+1), 1

(n−1)
R ), 1

(n−3)
R ) = g(xj , r, g(xi−1

1 , 1R, x
n
i+1), 1

(n−3)
R ) ∈ I

for some 1 ≤ j ≤ i − 1 or i + 1 ≤ j ≤ n. Since g(xj , g(xi−1
1 , 1R, x

n
i+1), 1

(n−2)
R ) /∈ I,

we conclude that g(r, g(xi−1
1 , 1R, x

n
i+1), 1

(n−2)
R ) = xi ∈ I or g(xj , r, 1

(n−2)
R ) ∈ I. The

second possibility implies that

g(xj , r, g(xj−1
1 , xi−1

j+1, x
n
i+1), 1

(2)
R ), 1

(n−3)
R ) = g(r, g(xi−1

1 , 1R, x
n
i+1), 1

(n−2)
R ) = xi ∈ I

or g(xj , r, g(xi−1
1 , xj−1

i+1 , x
n
j+1), 1

(2)
R ), 1

(n−3)
R ) = g(r, g(xi−1

1 , 1R, x
n
i+1), 1

(n−2)
R ) = xi ∈ I.

Hence I is an n-ary primary hyperideal of R.

(ii)⇒(i) This follows directly from Theorem 3.8. �
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4. Extensions of n-ary 2-absorbing hyperideals

In this section, we investigate the stabilty of n-ary 2-absorbing hyperideals in some
hyperring-theoretic constructions. We start with an example.

Example 4.1. Consider the Krasner (m,n)-hyperring (R̄, f, g) constructed in [1, Ex-
ample 2.4]. The hyperideal of R̄ is of the form Ī such that G ⊂ Ī / R̄. If I is a prime
ideal of R such that G ⊂ I, then the n-ary 2-absorbing hyperideals of R̄ are of the
form Ī.

Let for x̄n1 ∈ R̄, g(x̄1, . . . , x̄1) ∈ Ī. Then we have x1, . . . , xn ∈ I. Since I is a
2-absorbing ideal, we conclude that xixj ∈ I for some 1 ≤≺ j ≤ n. Therefore we

have xixj(1R)(n−2) ∈ I and so g(xi, xj , 1
n−2)

R̄
) ∈ Ī. Hence Ī is an n-ary 2-absorbing

hyperideal of (R̄, f, g).

Theorem 4.2. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings and
φ : R1 −→ R2 be a homomorphism. Then the following statements hold:

(i) If I2 is an n-ary 2-absorbing hyperideal of R2, then φ
−1(I2) is an n-ary 2-absorbing

hyperideal of R1.

(ii) If φ is an epimorphism and I1 is an n-ary 2-absorbing hyperideal of R1 containing
Ker(φ), then φ(I1) is an n-ary 2-absorbing hyperideal of R2.

Proof. (i) Let g1(xn1 ) ∈ φ−1(I2) for some xn1 ∈ R1. Then φ(g1(xn1 )) = g2(φ(xn1 )) ∈ I2.
Since I2 is a 2-absorbing hyperideal of R2, there exist i, j, 1 ≤ i ≺ j ≤ n such that

g2(φ(xi), φ(xj), 1
(n−2)
R2

) ∈ I2. Thus φ−1(g2(φ(xi), φ(xj), 1
(n−2)
R2

)) = g1(xi, xj , 1
(n−2)
R1

) ∈
φ−1(I2). Hence φ−1(I2) is an n-ary 2-absorbing hyperideal of R1.

(ii) Let g2(yn1 ) ∈ φ(I1) for some yn1 ∈ R2. Since φ is an epimorphism, then there
exists xn1 ∈ R1 such that φ(xt) = yt for all t, 1 ≤ t ≤ n and φ(g1(xn1 )) = g2(φ(xn1 )) =
g2(yn1 ) ⊆ φ(I1). Since Ker φ ⊆ I1, we have g1(xn1 ) ∈ I1. Since I1 is a 2-absorbing

hyperideal of R1, then there exist i, j, 1 ≤ i ≺ j ≤ n such that g1(xi, xj , 1
(n−2)
R1

) ∈ I1.

This implies that φ(g1(xi, xj , 1
(n−2)
R1

)) = g2(φ(xi), φ(xj), 1
n−2)
R2

) = g2(yi, yj , 1
(n−2)
R2

) ∈
φ(I1). Thus φ(I1) is an n-ary 2-absorbing hyperideal of R2. �

Theorem 4.3. Let I be an n-ary 2-absorbing hyperideal of a Krasner (m,n)-hyperring
(R, f, g) with the scalar identity 1R. If J is a hyperideal of R such that J ⊆ I, then
I/J is an n-ary 2-absorbing hyperideal of R/J .

Proof. Suppose g(f(x
1(i−1)
11 , J, x1m

1(i+1)), . . . , f(x
n(i−1)
n1 , J, xnmn(i+1))) ∈ I/J for some

x1m
11 , . . . , x

mm
m1 ∈ R/J . Thus f(g(xn1

11 ), . . . , g(x
n(i−1)
1(i−1) ), J, g(x

n(i+1)
1(i+1) ), . . . , g(xnm1m )) ∈

I/J . Hence

f(g(xn1
11 ), . . . , g(x

n(i−1)
1(i−1) ), 0, g(x

n(i+1)
1(i+1) ), . . . , g(xnm1m )) ⊆ I

=⇒ g(f(x
1(i−1)
11 , 0, x1m

1(i+1)), . . . , f(x
n(i−1)
n1 , 0, xnmn(i+1)) ⊆ I.
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Since I is an n-ary 2-absorbing hyperideal, then there exist 1 ≤ s ≺ t ≤ n such that

g(f(x
s(i−1)
s1 , 0, xsms(i+1)), f(x

t(i−1)
t1 , 0, xtmt(i+1)), 1

(n−2)
R ) ⊆ I. Therefore

f(g(f(x
s(i−1)
s1 , 0, xsms(i+1)), f(x

t(i−1)
t1 , 0, xtmt(i+1)), 1

(n−2)
R ), J, 0(m−2)) ∈ I/J

=⇒ g(f(x
s(i−1)
s1 , J, xsms(i+1)), f(x

t(i−1)
t1 , J, xtmt(i+1)), 1

(n−2)
R/J ) ∈ I/J.

Thus I/J is an n-ary 2-absorbing hyperideal of R/J . �

Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings such that 1R1

and 1R2
be scalar identities of R1, R2, respectively. Then the (m,n)-hyperring (R1 ×

R2, f1 × f2, g1 × g2) is defined by m-ary hyperoperation f1 × f2 and n-ary hyperop-
eration g1 × g2, as follows:

f1 × f2((a1, b1), . . . , (am, bm)) = {(a, b) | a ∈ f1(am1 ), b ∈ f2(bm1 )}
g1 × g2((x1, y1), . . . , (xn, yn)) = (g1(xn1 ), g2(yn1 )),

for all am1 , x
n
1 ∈ R1 and bm1 , y

n
1 ∈ R2.

Theorem 4.4. Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings such
that 1R1

and 1R2
be scalar identities of R1, R2, respectively. Then the following state-

ments hold:
(i) I1 is an n-ary 2-absorbing hyperideal of R1 if and only if I1 × R2 is an n-ary
2-absorbing hyperideal of R1 ×R2.

(ii) I2 is an n-ary 2-absorbing hyperideal of R2 if and only if R1 × I2 is an n-ary
2-absorbing hyperideal of R1 ×R2.

Proof. (i) (⇒) Assume that I1 is an n-ary 2-absorbing hyperideal of R1. Let g1 ×
g2((x1, y1), . . . , (xn, yn)) ∈ I1 × R2, with xn1 ∈ R1 and yn1 ∈ R2. Then we have
g1(xn1 ) ∈ I1. Since I1 is an n-ary 2-absorbing hyperideal of R1, we conclude that

there exist i, j, 1 ≤ i ≺ j ≤ n such that g(xi, xj , 1
(n−2)
R1

) ∈ I1. This implies that

g1 × g2((xi, yi), (xj , yj), (1R1 , 1R2)(n−2)) ∈ I1 × R2. Thus I1 × R2 is an n-ary 2-
absorbing hyperideal of R1 ×R2.

(⇐) Suppose that I1 × R2 is an n-ary 2-absorbing hyperideal of R1 × R2. Let
g(xn1 ) ∈ I1 with xn1 ∈ R1. Then g1 × g2((x1, 1R2

), . . . (xn, 1R2
)) ∈ I1 × R2. Since

I1 × R2 is an n-ary 2-absorbing hyperideal of R1 × R2, we conclude that there exist
i, j, 1 ≤ i ≺ j ≤ n such that g1 × g2((xi, 1R2

), (xj , 1R2
), (1R1

, 1R2
)(n−2)) ∈ I1 × R2,

which means that g1(xi, xj , 1
(n−2)
R1

) ∈ I1. Thus I1 is an n-ary 2-absorbing hyperideal
of R1.

(ii) The proof is similar to (i). �

Let I be a normal hyperideal of Krasner (m,n)-hyperring (R, f, g). Then the set
of all equivalence classes [R : I∗] = {I∗[x] | x ∈ R} is a Krasner (m,n)-hyperring with
the m-ary hyperoperation f/I and the n-ary operation g/I, defined as follows:

f/I(I∗[x1], . . . , I∗[xm]) = {I∗[z] | z ∈ f(I∗[x1], . . . , I∗[xm])}, ∀xm1 ∈ R
g/I(I∗[x1], . . . , I∗[xn]) = I∗[g(xn1 )], ∀xn1 ∈ R

(for more details refer to [15]).
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Theorem 4.5. Let I be a normal hyperideal and J be an n-ary 2-absorbing hyperideal,
respectively, of a Krasner (m,n)-hyperring (R, f, g) with the scalar identity 1R such
that I ⊆ J . Then [J : I∗] is an n-ary 2-absorbing hyperideal of [R : I∗].

Proof. Suppose that g/f(I∗[x1], . . . , I∗[xn]) ∈ [J : I∗] for some xn1 ∈ R. Thus g/
f(I∗[x1], . . . , I∗[xn]) = I∗[g(xn1 )] ∈ [J : I∗]. This means I∗[g(xn1 )] ⊆ J . Therefore

I∗[g(xn1 )] = f(I, g(xn1 ), 0(m−2)) = f(I, g(xn1 ), g(0(n))(m−2))

= g(f(I, x1, 0
(m−2)), . . . , f(I, xn, 0

(m−2))) ⊆ J
Since J is an n-ary 2-absorbing hyperideal of R, then we conclude that

g(f(I, xi, 0
(m−2)), f(I, xj , 0

(m−2)), 1
(n−2)
R ) ⊆ J for some 1 ≤ i ≺ j ≤ n.

Hence

g(f(I, xi, 0
(m−2)), f(I, xj , 0

(m−2)), f(I, 1R, 0
(m−2))(n−2))

= f(I, g(xi, xj , 1
(n−2)
R ), g(0(n))(m−2)) = f(I, g(xi, xj , 1

(n−2)
R ), 0(m−2))

= I∗[g(xi, xj , 1
(n−2)
R )] = g/I(I∗[xi], I

∗[xj ], I
∗[1R](n−2)) ∈ [J : I].

Thus [J : I∗] is an n-ary 2-absorbing hyperideal of [R : I∗]. �

5. n-ary 2-absorbing primary hyperideals in a Krasner (m,n)-hyperring

Definition 5.1. A nonzero proper hyperideal I of a Krasner (m,n)-hyperring (R, f, g)
with the scalar identity 1R is said to be n-ary 2-absorbing primary if for xn1 ∈
R, g(xn1 ) ∈ I implies that g(x1, x2, 1

(n−2)
R ) ∈ I or g(xt, xi, 1

(n−2)
R ) ∈

√
I

(m,n)
or

g(xi, xj , 1
(n−2)
R ) ∈

√
I

(m,n)
for t ∈ {1, 2} and some i, j, 3 ≤ i ≺ j ≤ n.

Example 5.2. Let R be a Krasner (m,n)-hyperring (R, f, g) with the scalar identity
1R. Then every n-ary primary hyperideal of R is an n-ary 2-absorbing primary
hyperideal.

Let Q be an n-ary primary hyperideal of R and g(xn1 ) ∈ Q. Then either xi ∈ Q or

g(xi−1
1 , 1R, x

n
i+1) ∈

√
Q

(m,n)
. We may assume that x1 ∈ Q or g(1R, x

n
2 ) ∈

√
Q

(m,n)
.

Since
√
Q

(m,n)
= P is an n-ary prime hyperideal of R by Theorem 4.28 in [1], then

we get x1 ∈ Q or x2 ∈ P or . . . or xn ∈ P . Since Q and P are hyperideals of R, we get

g(x1, x2, 1
(n−2)
R ) ∈ Q or g(xt, xi, 1

(n−2)
R ) ∈ P =

√
Q

(m,n)
or g(xi, xj , 1

(n−2)
R ) ∈ P =

√
Q

(m,n)
for t ∈ {1, 2} and some 3 ≤ i ≺ j ≤ n.

Theorem 5.3. If I is an n-ary 2-absorbing ideal of a Krasner (m,n)-hyperring

(R, f, g) with the scalar identity 1R, then
√
I

(m,n)
is an n-ary 2-absorbing hyperideal

of R.

Proof. Let g(xn1 ) ∈
√
I

(m,n)
for some xn1 ∈ R such that neither g(xt, xi, 1

(n−2)
R ) ∈

√
I

(m,n)
nor g(xi, xj , 1

(n−2)
R ) ∈

√
I

(m,n)
for t ∈ {1, 2} and all i, j, 3 ≤ i ≺ j ≤ n. Then
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there exists t ∈ N such that g(g(xn1 )(t), 1
(n−t)
R ) ∈ I for t ≤ n, or g(l)(g(xn1 )(t)) ∈ I

for t � n, t = l(n − 1) + 1. If g(g(xn1 )(t), 1
(n−t)
R ) ∈ I for t ≤ n, then we have

g(g(x
(t)
1 , 1

(n−t
R ), . . . , g(x

(t)
n , 1

(n−t)
R )∈I. Since I is an n-ary 2-absorbing primary of R, we

obtain that g(g(x
(t)
1 , 1

(n−t)
R ), g(x

(t)
2 , 1

(n−t)
R ), 1

(n−2)
R )=g(g(x1, x2, 1

(n−2)
R )(t), 1

(n−t)
R ) ∈ I.

This means that g(x1, x2, 1
(n−2)
R ) ∈

√
I

(m,n)
. Similarly for the other case. There-

fore
√
I

(m,n)
is an n-ary 2-absorbing hyperideal of R. �

Theorem 5.4. If I is an n-ary 2-absorbing primary of a Krasner (m,n)-hyperring

(R, f, g) with the scalar identity 1R, then either
√
I

(m,n)
= P such that P is an n-ary

prime hyperideal of R or
√
I

(m,n)
= P1 ∩ P2 such that P1, P2 are the only distinct

n-ary prime hyperideals of R that are minimal over I.

Proof. This follows from Theorems 5.3 and 3.7. �

Theorem 5.5. Let I1 and I2 be n-ary P1-primary and P2-primary hyperideals of
(R, f, g) respectively such that P1 and P2 are two n-ary prime hyperideals of (R, f, g).
Then I = I1 ∩ I2 is an n-ary 2-absorbing primary hyperideals.

Proof. It is clear that
√
I

(m,n)
=
√
I1

(m,n)∩
√
I2

(m,n)
=P1∩P2. Assume that g(xn1 ) ∈ I

for some xn1 ∈ R such that neither g(xt, xi, 1
(n−2)
R ) ∈

√
I

(m,n)
nor g(xi, xj , 1

(n−2)
R ) ∈

√
I

(m,n)
for t ∈ {1, 2} and all i, j, 3 ≤ i ≺ j ≤ n. Then we have xn1 /∈

√
I

(m,n)
= P1 ∩

P2. Since
√
I

(m,n)
is an n-ary 2-absorbing hyperideal ofR, we obtain g(x1, x2, 1

(n−2)
R ) ∈

√
I

(m,n)
= P1 ∩ P2. It implies that g(x1, x2, 1

(n−2)
R ) ∈ P1. Since P1 is an n-ary prime

hyperideal of R, then x1 ∈ P1 or x2 ∈ P1. We may suppose that x1 ∈ P1. Also,

g(x1, x2, 1
(n−2)
R ) ∈ P2 which implies that x2 ∈ P2 but x1 /∈ P2. Since x2 ∈ P2,

x2 /∈
√
I

(m,n)
, then we have x2 /∈ P1. If x1 ∈ I1 and x2 ∈ I2, then we are done. Hence

we suppose that x1 /∈ I1. Then we have g(1R, x2, x3, . . . , xn) ∈ P1, because I1 is an
n-ary primary hyperideal of R. Since x2 ∈ P2 and g(1R, x2, x3, . . . , xn) ∈ P1, we get

g(1R, x2, x3, . . . , xn) ∈ P1 ∩ P2 =
√
I

(m,n)
. This ia a contradiction. Thus x1 ∈ I1. By

using a similar argument, we have x2 ∈ I2. Thus g(x1, x2, 1
(n−2)) ∈ I = I1 ∩ I2. �

Theorem 5.6. Let I be a hyperideal of R such that
√
I

(m,n)
is an n-ary prime hy-

perideal of (R, f, g). Then I is an n-ary 2-absorbing primary hyperideal of R.

Proof. Let g(xn1 ) ∈ I for some xn1 ∈ R such that g(x1, x2, 1
(n−2)) /∈ I. Thus we have

g(g(xn1 ), g(1
(2)
R , xn3 )(2), 1

(n−3)
R )∈I⊆

√
I

(m,n)
, which implies g(g(x1, 1R, x

n
3 ), g(1R, x

n
2 ), xn3 )

∈
√
I

(m,n)
. Since

√
I

(m,n)
is an n-ary prime hyperideal ofR, then we obtain g(x1, 1R, x

n
3 )

∈
√
I

(m,n)
or g(1R, x

n
2 ) ∈

√
I

(m,n)
or x3 ∈

√
I

(m,n)
or . . . or xn ∈

√
I

(m,n)
. It means

that g(xt, xi, 1
(n−2)
R ) ∈

√
I

(m,n)
or g(xi, xj , 1

(n−2)
R ) ∈

√
I

(m,n)
for t ∈ {1, 2} and some

3 ≤ i ≺ j ≤ n, because
√
I

(m,n)
is a hyperideal of R. �
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