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n-ARY 2-ABSORBING AND 2-ABSORBING PRIMARY
HYPERIDEALS IN KRASNER (m,n)-HYPERRINGS

M. Anbarloei

Abstract. Let R be a commutative Krasner (m,n)-hyperring with the scalar identity
1gr. In this paper, we introduce and study the concept of n-ary 2-absorbing and 2-absorbing
primary hyperideals of R. These concepts are a generalisation of n-ary prime and primary
hyperideals.

1. Introduction

The theory of hyperstructures is a well established branch in classical algebraic the-
ory. Since 1934, when Marty [14] introduced for the first time the notion of a hy-
pergroup, the Hyperstructure Theory has had applications to several domains, for
instance graphs and hypergraphs, non-Euclidean geometry, lattices, binary relations,
cryptography, automata, artificial intelligence, codes, probabilities etc (see [5-7,18]).
Recently, Davvaz and Vougiouklis have introduced and studied a nice generalization
of a hypergroup which is called an n-hypergroup [8].

n-ary semigroups and n-ary groups are algebras with one n-ary operation which is
associative and invertible in a generalized sense. The investigations of n-ary algebras
go back to Krasner’s lecture [11] at the 53rd annual meeting of the American Associa-
tion of the Advancement of Science in 1904. But the first paper concerning the theory
of n-ary groups was written by Dorente in 1928 [9]. Afterward, the (m,n)-rings and
their quotient structure were introduced by Crombez and Timm in [3,4]. The concept
of an n-ary hypergroup was defined by Davvaz and Vougiouklis in [8], which is a gen-
eralization of the concept of a hypergroup in the sense of Marty and a generalization
of an n-ary group, too. The notation of (m,n)-hyperrings was defined by Mirvakili
and Davvaz [15] and they obtained (m,n)-rings from (m,n)-hyperrings by using fun-
damental relations. For more study on n-ary structures and n-ary hyperstructures
refer to [12,13,16].
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The concept of 2-absorbing ideals, in ordinary algebra, was introduced by A.
Badawi, in [2]. In 2017, Davvaz et al. introduced the concept of 2-absorbing fuzzy
ideals and 2-absorbing primary fuzzy ideals in commutative rings [17]. In [10], the
notion of (k,n)-absorbing hyperideals was studied in Krasner (m,n)-hyperirings by
Hila et al.

In this paper, we aim to introduce and study the notion of n-ary 2-absorbing and
n-ary 2-absorbing primary hyperideals in Krasner (m,n)-hyperrings. The concept is
a generalisation of n-ary prime and primary hyperideals which were studied by R.
Ameri in [1].

Among the results in this paper, it is shown (Theorem 3.6) that there are at most
two m-ary prime hyperideals of (R, f,g) that are minimal over an n-ary 2-absorbing
hyperideal I of R. It is shown (Theorem 3.8) that if I is an n-ary primary hyper-
ideal of a commutative Krasner (m,n)-hyperring (R, f, g) with the scalar identity 1
such that /T (mom) _ P for some n-ary prime hyperideal P of R, then [ is an n-ary
2-absorbing hyperideal of R if and only if g(P®), 1%_2)) C I. In Section 4, we in-
vestigate the stability of n-ary 2-absorbing hyperideals in some hyperring-theoretic
constructions. In Section 5, we introduce and study the concept of n-ary 2-absorbing
primary hyperideals.

2. Preliminaries

In this section we recall some definitions and results concerning n-ary hyperstructures
which we will use later.

A mapping f: H® — P*(H) is called an n-ary hyperoperation, where P*(H) is
the set of all the non-empty subsets of H. An algebraic system (H, f), where f is an
n-ary hyperoperation defined on H, is called an n-ary hypergroupoid.

We shall use the following abbreviated notation: The sequence x;, Zit1,...,%;
will be denoted by x]. For j < 4, 2] is the empty symbol. With this conven-
tion f(x1,. ..\ T, Yir1, - Yj» Zjt1s - - -5 2n) Will be written as f(z5,y],,, 2% 1). In the
case when y;41 = ... = y; = y the last expression will be written in the form

f(lev y(j_i)7 Z;L+1).

For non-empty subsets Ai,..., A4, of H we define f(A}) = f(A1,...,A,) =
U{f(z}) | #; € Aj,i = 1,...,n}. An n-ary hyperoperation f is called associative if
f fapt 22 = flad™, f(a?;-lﬂ_l),xir_zl) holds for every 1 <i < j<n
and all x1,x2,...,22,-1 € H. An m-ary hypergroupoid with the associative n-ary
hyperoperation is called an n-ary semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b € f(alfl,xi,a?_ﬂ) has
a solution z; € H for every ai_l,aﬁl,b € Hand 1 < i < nis called an n-ary
quasthypergroup. When (H, f) is an n-ary semihypergroup, (H, f) is called an n-ary
hypergroup.

An n-ary hypergroupoid (H, f) is commutative if for all o € S,, the group of
all permutations of {1,2,3,...,n}, and for every a} € H we have f(ai,...,a,) =
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f(ao(1ys---»0o(my). If an a} € H we denote aZE?)) as the (ay(1), - -+, Go(n)). We assume

throughout this paper that all Krasner (m,n)-hyperrings are commutative.
If f is an n-ary hyperoperation and ¢t = {(n — 1) + 1, then t-ary hyperoperation

. . I(n— n n— I(n—
fa is given by f(l)($1( DY = F(f( S ED), 2, ')7x(571)1()'rL+711)+1)’

DEFINITION 2.1 ([15]). Let (H, f) be an n-ary hypergroup and B be a non-empty
subset of H. B is called an n-ary subhypergroup of (H, f) if f(z}) C B for z} € B,
and the equation b € f(bi™", z;,b0" ;) has a solution z; € B for every bj ', b7, ,,b €
Band 1 < i < n. An element e € H is called a scalar neutral element if x =
(el . e(=D) for every 1 < i < n and for every z € H.

An element 0 of an n-ary semihypergroup (H,g) is called a zero element if for
every i € H we have g(0,25) = g(x2,0,2%) = ... = g(24,0) = 0. If 0 and 0’ are
two zero elements, then 0 = g(0’,0(*~1Y) = 0/ and so the zero element is unique.

DEFINITION 2.2 ([12]). Let (H, f) be a n-ary hypergroup. (H, f) is called a canonical
n-ary hypergroup if
(i) there exists a unique e € H, such that for every = € H, f(z,e(™ V) = a;

(ii) for all € H there exists a unique z~' € H, such that e € f(z, 21, e("=2);

(ili) if @ € f(27), then for all i, we have a; € f(z, 2%, ...,z 2}, ..,z h).

We say that e is the scalar identity of (H, f) and 27! is the inverse of . Notice that
the inverse of e is e.

DEFINITION 2.3 ([15]). A Krasner (m,n)-hyperring is an algebraic hyperstructure
(R, f,g) which satisfies the following axioms:
(i) (R, f) is a canonical m-ary hypergroup;

(ii) (R,g) is a n-ary semigroup;

(iii) the n-ary operation g is distributive with respect to the m-ary hyperopera-

tion f, ie., for every ai',al,,27 € R, and 1 < i < n, g(ai™", f(2]),al,) =
7 o

f(g(all 73;‘1,0,?_,’_1), s 7g(a21 lﬂxm7a;ﬂ+1));

(iv) 0 is a zero element (absorbing element) of the n-ary operation g, i.e., for every
xh € R we have ¢(0,2%) = g(x2,0,2%) = ... = g(z%,0) = 0.

A non-empty subset S of R is called a subhyperring of R if (S, f,g) is a Krasner
(m,n)-hyperring. Let I be a non-empty subset of R, we say that I is a hyperideal
of (R, f,g) if (I, f) is an m-ary subhypergroup of (R, f) and g(zii_l,f,l’?ﬂ) C I, for
every 27 € Rand 1 <14 <n.

DEFINITION 2.4 ([1]). A hyperideal P of a Krasner (m,n)-hyperring (R, f,g), such
that P # R, is called an n-ary prime hyperideal if for hyperideals Uy, ..., U, of R,
g(U") C P implies that Uy CPor Uy C Por...or U, C P.

LEMMA 2.5 ([1, Lemma 4.5]). Let P # R be a hyperideal of a Krasner (m,n)-hyperring
(R, f,g). Then P is an n-ary prime hyperideal if for all 2% € R, g(z}) € P =13 €
Por ... orx, €P.
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DEFINITION 2.6 ([1]). Let I be a hyperideal in a (m, n)-hyperring (R, f, g) with scalar

identity. The radical (or nilradical) of I, denoted by /T (m.m) is the hyperideal ") P,
where the intersection is taken over all n-ary prime hyperideals P which contain I.

If the set of all n-ary hyperideals containing I is empty, then /T (o) is defined to
be R.

Ameri and Norouzi [1] showed that if z € \ﬁ(m’n) then there exists ¢ € N such
that g(z®, 1%4)) €l fort<n,orgy(z®)elfort=1In-1)+1.

DEFINITION 2.7 ([1]). A hyperideal @ # R in a Krasner (m,n)-hyperring (R, f, g)
with the scalar identity 1g is said to be n-ary primary if g(27) € Q and z; ¢ Q

implies that g(z} ™", 1g,27,) € \/@(m»n)'

If @ is an n-ary primary hyperideal in a Krasner (m,n)-hyperring (R, f, g) with
the scalar identity 1z, then \/Q(m’n) is n-ary prime. (see [1, Theorem 4.28])

DEFINITION 2.8 ([1]). Let S be a hyperldeal of a Krasner (m,n)-hyperring (R, f, g).
Then the set R/S = {f(zi™! S, $1+1) \ xl , 27t € R} endowed with m-ary hyper-

operation f such that for all i ™ e R,
SOy ™ 8,218 ), o St ™ 8 et
ff(f(xu )ooe s PN S F @), Fa)
and with n-ary hyperoperation ¢ such that for all z{7*,... 2" € R,

g(f(xlgz Y 0 S, x1(1+1) s flzy, n(z Y ) S, Ty z+1)))

n(i—1 n(i+1
=flg(at]), ... 9@, S gla ,11;> @)
construct a Krasner (m,n)-hyperring, and (R/S, f, g) is called the quotient Krasner
(m,n)-hyperring of R by S.

DEFINITION 2.9 ([15]). Let (Ry, f1,¢1) and (Ra, f2, g2) be two Krasner (m, n)-hyperrings.
A mapping ¢ : Ry —> Ry is called a homomorphism if for all z]* € Ry and yf' € Ry we

have (fi(z1, -+ 2m)) = fa((1), .- dem)) d(g1(y1, - yn)) = g2(8(y1), - -, P (yn))-

3. n-ary 2-absorbing hyperideals in a Krasner (m,n)-hyperring

DEFINITION 3.1. A nonzero proper hyperideal I of a Krasner (m, n)-hyperring (R, f, g)
with the scalar identity 1g is said to be n-ary 2-absorbing if for 27 € R, g(z1) € T
implies that g(z;, x;, I%L_Q)) €l forsomel<i<j<n.

W

EXAMPLE 3.2. Let (R,+,.) be a Krasner hyperring in which the operation ”.¢ is
the ordinary multiplication and let R be a hyperintegral domain (for more details
refer to [19]). Then R endowed with the following m-ary hyperoperation f and n-ary
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operation g is a Krasner (m, n)-hyperring: f(z7") = > /", z; and g(2}) = 1 ...2,. In
the Krasner (m,n)-hyperring, the hyperideal {0} is an n-ary 2-absorbing hyperideal.

By [1, Example 4.2], the Krasner (m,n)-hyperring R is an n-ary hyperintegral
domain. Thus if g(2T) € {0} for some z} € R, then there exist 4, 1 < i < n such

that x; = 0. Hence for all 1 < j < n such that ¢ # j, we have g(O,xj71g_2)) = 0.
Therefore {0} is an n-ary 2-absorbing hyperideal.

THEOREM 3.3. Let Py and Py be two n-ary prime hyperideals of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1g. Then Py N Py is an n-ary 2-absorbing
hyperideal of R.

Proof. Assume that z] € R such that g(z}) € PN Py. If z; € P, N Py for some
1 <i < n, then g(xi,xj,lgkz)) € PN P, for every j, 1 < j < n such that i # 7.
Thus we are done. Since P is an n-ary prime hyperideal of R and g(z}) € Py, we
conclude that z; € P, or ...or x, € P;. Without losing the generality, we may
assume that z; € P; and x; ¢ P, for some 1 < i < n. Since P, is an n-ary prime
hyperideal of R, we have 1 € P, or ...or x;_1 € Poor x;_1 € P,or ...or x,, € Ps.
Without losing the generality, we may assume that x; € P> such that i # j. Thus

g(x;, zj, 1%"_2)) € PINP,. Hence P, NP, is an n-ary 2-absorbing hyperideal of R. U

THEOREM 3.4. Suppose that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1r. Then \ﬁ(m’n) is an n-ary 2-absorbing
hyperideal of (R, f,g) and g(x®, 1%72)) € I for every x € \ﬁ(mvn)

Proof. Let I be an n-ary 2-absorbing hyperideal of (R, f,g) and = € \ﬁ(m’n). Then
there exists t € N such that g(x(t),lg;?*t)) €I fort <mn,or gg(z®) €I for t =
I(n—1)+1. If g(z®, 1%1_75)) € I for t <n, then
go(aV 15 1) e 1

g(z® g2, 1§§_t+2)), 15;L_3)) €I (associativity)
@ 1(77 2)) eI org(x,g(zt? 1("_t+2)), 1%—2)) €I (I n-ary 2-absorbing)
2, 1x (n— 2)) €lorg(x @) g(x(t 3), ("_t+3))71g_3)) el
@), 1 ) eI org(z?, 1% ) eI org(x,g(zt=3), 15;17%3))7 1%72)) el

=

(x
= 9(
= 9(
= 9(

= g(z@, 15;72)) eI org(z?, 1%72)) elor ... orgx?, 1%72)) el

If g1y (z®) € I for t = I(n—1)+ 1, then the claim follows by using a similar argument
to the previous part and [1, Lemma 4.26]. U

LEMMA 3.5. Let I C P be a hyperideal of a Krasner (m,n)-hyperring (R, f,g) with
the scalar identity 1r, where P is an n-ary prime hyperideal. Then the following
conditions are equivalent:
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(i) P is a minimal n-ary prime hyperideal of I.
(ii) For each © € P, there is a y € R\ P and a nonnegative integer t such that
g0,y 15 ) e

Proof. (i)=-(ii) Suppose that x € P and ﬁ(m’n) =Pn (ﬂQjEMin(I) Q). Ifze

\ﬁ(m’n), then there exists ¢ € N such that g(z®, 1g_t)) € [fort <n,or g(l)(x(t)) el
for t =I(n — 1) + 1. If we choose y = 1g, then the claim follows.

Now let z € P\ \ﬁ(m’n). We may assume that x € PN (n;:1 Q;) but = ¢
-2 s
Ujs s @5 Letw € ;544 @\ P, then g(z, w, 15; )) € PN(Nj21 @)N(Nj>s41 @)
:ﬁ(m’n). Hence there exists t € N such that g(g(z, w, 1%1—2))(:&)7 15;_”) € I for t<n,
or g(l)(g(x,w,lg_m)(t)) elfort=1In—-1)+1. If g(9(z,w, 1%"_2))(”, 1gl_t)) el
for t < n, then g(z(®, g(w, 1(” Do, 1(" ) € I and so
9@, g(glw, 1571 AF ) e 1L

We may assume g¢(g(w, lgg_l))(t)7 lg_t)) = y. Thus g(z®,y, lg_t_l)) e I. If
guy(g(z, w, 1(” 2))(’f)) € I fort = Il(n— 1)+ 1, and the claim follows by using a
similar argument to the previous part and [1, Lemma 4.26].

(ii)=>(i) Let P is not a minimal n-ary prime hyperideal of I. Then there exists a
minimal n-ary prime hyperideal @ of I such that I C Q & C P. We choose = € P\ Q.
Hence there exist y € R\ P and t € N such that g(z®, y, l(n = 1)) €I C Q. Since Q
is an m-ary prime hyperideal, then x € @) or y € ) which is a contradiction.

THEOREM 3.6. Suppose that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f,g) with the scalar identity 1r. Then there are at most two n-ary prime
hyperideals of R that are minimal over I.

Proof. Suppose that S = {P; | P; is an n-ary prime hyperideal of R that is minimal
over I} and suppose that S has at least three elements. Let P, P, € S be two
distinct n-ary prime hyperideals. Then there is an z; € P; \ P, and there is an

x9 € Py \ P;. First we show that 9(99171'2,15;_2)) € I. By Lemma 3.5, there are

y2 ¢ P; and y; ¢ P, such that g(wﬁl,yg, 1%7“71)) € I and g(xéQ,y1,1g7t271) el
for some t1,t2 > 1. Since 21,22 ¢ Py N P, and [ is an n-ary 2-absorbing hyperideal of
R, we have g(z1,y2, 15.;_2)) € I and g(x9,y1, 1%“2)) € I. Since x1,29 ¢ Py N Py and
91,92, 1% D), g(@2,51,15% %) € I C PN Py, we have y € Py\ Py and y1 € Py\ Py,
and hence y1,y2 ¢ Py N Py. Since g(x1,yo, 15;72)) e I and g(x2, 1, 1%72)) eI, we
have
g(wla Z2, f(yla Y2, O<m_2))7 17%73):.](‘(9(3717 xT2,Y2, 15;7173))7 g(xla x2,Y1, 15;173))’ 0(7n_2))gl
It is clear that f(y1,y2,00""2) & Py and f(y1,y,00m=2) € P;.

Since g(xla f(yh Y2, 0(m72)), 15;_2))52132 and g($2, f(yla Y2, O(m72))7 15:_2)),@1)1, we
have g(z1, f(y1,y2,00"=2), 157221 and g(wa, f(y1, 92, 00"=?), 1% ~?)Z I and hence

g(x1, 32, 1%”_2))61.
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Now assume there is a P3 € S such that P; #% P; and P3 # P,. Then we can
choose z1 € P1\ (P,UP;), 20 € P2\ (PLUPs), and 23 € P3\ (P UP,). By the previous
argument 9(21,22,1%1_2)) € 1. Since I C Py N Py N Ps and g(z1, 22, 151?_2)) eI, we
conclude that either z; € P5 or 2o € P3 which is a contradiction. Thus S has at most
two elements. O

THEOREM 3.7. Suppose that I be an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f, g) with the scalar identity 1. Then one of the following statements
must hold

(i) \f ™ _ P is an n- ary prime hyperideal of R such that g(P(®), 1(n 2)) CI.

(i) VI™" = P Py, g(Pr, P17 € T and g(VI™"™)®,1572) C 1 where
Py, Py are the only distinct n-ary prime hyperideals of R that are minimal over I.

Proof. By Theorem 3.6, we have hat either /T (m’n):P is an n-ary prime hyperideal of
Ror \ﬁ(m’n)z P1N P, where Py, Py are the only distinct n-ary prime hyperideals of R

that are minimal over I. First assume that v/1 (mn) = P is an n-ary prime hyperideal
of R. Let z,y€P. By Theorem 3.4, we conclude that g(z(?, 1(n 2)) gy, 1%72))61.
Thus

9@, f, 0072, y),y 157 Y) = Flg(@®,y,15 ), g,y 157,000 D) C 1
Since [ is an n-ary 2-absorbing hyperideal, we have
gl f(@,00" 7 4), 1777 = f(g(@®, 157, g(x,y,157),00" D) C 1
2y, 15 7)€ F=g@®,107), 00070 = —f(g(a®, 177 00 o F

—g(
or g(f (2,002 ), 5, 1572) = f(gla,y, 152, gy, 15 2>) (m=2)y C |
—g(2,9,197) € f(—g <y<2> 14720y, glm= 1>> f<g<y<2>,1%‘”>,o<m—“> cI
or g(m,yﬂ% ))EI.

Hence g(P™=2,1072) C I,

Now assume that v/T (m.m) = PN P, where Py, P, are the only distinct n-ary prime
hyperideals of R that are minimal over I. Let x,y € \ﬁ(m’ Then g(z, y, 1(” 2)) el
by the same argument given above, and so g((\ﬁ(m’n))@), 1% 2)) C1I. Leta; € P\P;
and ag € Py \ P;. Then g(al,ag,lg_m) € I by the proof of Theorem 3.6. Let

c € \ﬁ(m’n) and ¢y € Py \ P;. Choose by € P; \ P». Then g(by, ca, 15;72)) € I by the
proof of Theorem 3.6 and f(cy, by, O(m_Q)) € P\ P,. Hence

f(g(Ch C2, 1%%72))79(1717 C2, 1(%—2))’ 0%”*2)) = 9(023 f(cla b17 O%m72))7 1%172)) g 1
—> gler, 2,15 7)€ F(=g(br,e2, 172,007 7Y) = = (g(by, 2,172, 05" ) € T

By using a similar argument, we can show that if ¢; € VI (m.m) and ¢y € Py \ Po, then
g(c1,¢0,1=2) € I. Therefore g(Py, Py, 1g_2)) CcI. O
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THEOREM 3.8. Suppose that I is an n-ary primary hyperideal of a Krasner (m,n)-
hyperring (R, f,g) with the scalar identity 1 such that \/j(m’n) = P for some n-ary
prime hyperideal P of R. Then I is an n-ary 2-absorbing hyperideal of R if and only
if g(P( 1(" 2)) ClI.

Proof. (=) Assume that I is an n-ary 2-absorbing hyperideal of a Krasner (m,n)-
hyperring (R, f,g). Then g(P®),1(»=2)) C I by Theorem 3.7 (i).

(<) Assume that g(P® 1("=2) C I and g(z}) € I for some z} € R. If either
x1 € I or g(z%,1g) € I for some =% € R, then there is nothing to prove. Hence
suppose that x; ¢ I and g(z%,1r) ¢ I. Since I is an n-ary primary hyperideal of
R and \ﬁ(mm = P, we conclude that z; € P and g(z%,1g) € P. Thus z; € P
and there exists 2 < ¢ < n such that z; € P. Since g(P(Q),lg_m) C I, we have
g(x1, x4, 13{7_2)) € I. Thus [ is an n-ary primary hyperideal of R. 0

Recall that an n-ary prime hyperideal of a Krasner (m, n)-hyperring (R, f, g) with
the scalar identity 1g is called a divided prime if P C< x > for every z € R\ P.
(Recall that < 2 == g(R, 2,17y = {g(r,2,1%"? | r € R}.)

THEOREM 3.9. Let P be an n-ary nonzero divided prime hyperideal of a Krasner
(m,n)-hyperring (R, f, g) with the scalar identity 1g and I be an hyperideal of R such

that \fI(m’n) = P. Then the following statements are equivalent:
(i) I is an n-ary 2-absorbing hyperideal of R;

(ii) I is an n-ary primary hyperideal of R such that g(P 1(n 2)) clI.

Proof. (1)=(ii) Assume that I is an n-ary 2-absorbing hyperideal of R. Since \f(m’n)
= P is an n-ary nonzero prime hyperideal of R, g(P(? 1(n 2)) C I by Theorem 3.7 (i).
Now let g(z7) € I for some z} € R and assume that g(:lcl 13, x} ) ¢ P. Since
z;€P and P is a divided hyperideal of R, we have z;=g(r, g(z}"", 1z, 2l 4), 1(n 2))

for some r € R. Thus g(z}) = g(zi™!, g(r, g(2i71, 1R, 7 1), lg 2)), xj 1) € 1. Since

I is an n-ary 2-absorbing hyperideal of R, we have
g(xjvg(r’g(l'li_l 1R7I?+1) 1(n—2))’1$—2))
= g(aj.rg(o(ay  Ar ) 1), 15 TY) = glay rg(ei ™ raaly), 15 Y) €1
for some 1 < j<i—1lori+1<j<n. Since g(z;,g(x] Slig i), 1("_2)) ¢ 1,
we conclude that g(r, g(z}™ ', 1,27, ,), 1%72)) =ux; € I or g(zj,r, 1(n 2)) € I. The
second possibility implies that

alesrglef el ), 7). 15 Y) = g(ng(xi,l Lr,af) 18 ) =mi e 1

or glajrgai el wf) 7)1 ) = glrg @i nal) 15T = a1
Hence I is an n-ary primary hyperideal of R.
(ii)=(i) This follows directly from Theorem 3.8. U
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4. Extensions of n-ary 2-absorbing hyperideals

In this section, we investigate the stabilty of n-ary 2-absorbing hyperideals in some
hyperring-theoretic constructions. We start with an example.

EXAMPLE 4.1. Consider the Krasner (m, n)-hyperring (R, f, g) constructed in [1, Ex-
ample 2.4]. The hyperideal of R is of the form I such that G C I < R. If I is a prime
ideal of R such that G C I, then the n-ary 2-absorbing hyperideals of R are of the
form I.

Let for 2} € R, g(Z1,...,Z1) € I. Then we have zy,...,7, € I. Since I is a
2-absorbing ideal, we conclude that z;z; € I for some 1 << j < n. Therefore we

_2))

have mixj(lR)(”*z) € I and so g(z;, z;, 1% € I. Hence I is an n-ary 2-absorbing

hyperideal of (R, f, g).

THEOREM 4.2. Let (Ry, f1,91) and (Ra, f2, g2) be two Krasner (m,n)-hyperrings and
¢ : Ry — Ry be a homomorphism. Then the following statements hold:

(i) If I is an n-ary 2-absorbing hyperideal of Ry, then ¢~1(I3) is an n-ary 2-absorbing
hyperideal of R .

(ii) If ¢ is an epimorphism and I is an n-ary 2-absorbing hyperideal of Ry containing
Ker(¢), then ¢(I1) is an n-ary 2-absorbing hyperideal of Rs.

Proof. (i) Let g1(z7) € ¢~ 1(I2) for some 27 € Ry. Then ¢(g1(x})) = go(d(2})) € L.

Since I is a 2-absorbing hyperideal of Rs, there exist 4,7, 1 < i < j < n such that
(n—2)

g2(P(x4), o(x5), 1%272)) € Ip. Thus ¢~ (g2(o(x:), p(;), 1%1272))) = g1(zi, 5,1, ) €
#~1(I5). Hence ¢~1(I5) is an n-ary 2-absorbing hyperideal of R;.

(ii) Let g2(y}) € ¢(I1) for some y}" € Ry. Since ¢ is an epimorphism, then there
exists ] € Ry such that ¢(z;) =y, for all ¢, 1 <t <n and ¢(g1(z})) = g2(o(2})) =
92(y7) C ¢(I1). Since Ker ¢ C I, we have gy (27) € I. Since I; is a 2-absorbing
hyperideal of Ry, then there exist ,j, 1 <14 < j < n such that g (z;, z;, 1%172)) e I.
This implies that ¢(g1 (xs,2;, 17, *) = g2(0(a:). 6(2,), 17,”) = 02w, w5, 157,”) €
¢(I1). Thus ¢(I1) is an n-ary 2-absorbing hyperideal of Rs. 0

THEOREM 4.3. Let I be an n-ary 2-absorbing hyperideal of a Krasner (m,n)-hyperring
(R, f,g) with the scalar identity 1g. If J is a hyperideal of R such that J C I, then
1/J is an n-ary 2-absorbing hyperideal of R/ J.

Proof. Suppose g(f(xigi_l), J,x%?}+1)), . f(ngi_l), Japitigy)) € 1/J for some

m mm n n(i—1 n(i+1 nm
x%l 7"'7xm1 € R/‘] ThUS f(g(xlll)a"'ag(xl((z'_l)))7Jyg(xl((ij__l)))w"7g(x1m)) €
I/J. Hence

n n(i—1 n(i+1 nm
Flo(atd), - g )), 0, g( Tt ), - g(atimn) €

1
1(i—1 n(i—1
:g(f(‘rlg )a0>x%?;+1))""7f(wng )a07$22?+1)) cr
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Since [ is an n-ary 2-absorbing hyperideal, then there exist 1 < s <t < n such that
1 1 -2
g(f( S(l ) 07 s(z+1)) f( (Z ) 07 t(z+1)) 1(" )) C I. Therefore

f(g(f(wig’ Y O’ms(erl)) f(xtgl Y ;0 xt(erl)) 1(n 2)) J, 0(m_2)) er/J

s i—1
= g(F@ Y L), P Tl )1 ) e 1)
Thus I/J is an n-ary 2-absorbing hyperideal of R/J. O

Let (R1, f1,91) and (Ra, f2,g2) be two Krasner (m,n)-hyperrings such that 1g,
and 1g, be scalar identities of Ry, Rg, respectively. Then the (m,n)-hyperring (R; x
Ro, f1 X fa,91 X g2) is defined by m-ary hyperoperation f; x fo and n-ary hyperop-
eration g, X go, as follows:

frx fa((ar, br), - o (am, b)) = {(a,0) | a € fi(a"),b € f2(b1")}
91 X g2((x1,91), - -5 (Tn, yn)) = (92(27), 92(y7)),
for all af*, 2} € Ry and b7",y7 € Rs.

THEOREM 4.4. Let (Ry, f1,91) and (Ra, f2, g2) be two Krasner (m,n)-hyperrings such
that 1g, and 1, be scalar identities of Ry, Ra, respectively. Then the following state-
ments hold:

(i) I is an n-ary 2-absorbing hyperideal of Ry if and only if Iy x Re is an n-ary
2-absorbing hyperideal of R1 X Rs.

(i) I is an n-ary 2-absorbing hyperideal of Ry if and only if Ry x Iy is an n-ary
2-absorbing hyperideal of R1 X Rs.

Proof. (i) (=) Assume that I; is an n-ary 2-absorbing hyperideal of Ry. Let g1 x
92((x1,91), -y (Tn,yn)) € I1 X Ry, with 27 € Ry and y} € Ry. Then we have
g1(z}) € I. Since I is an n-ary 2-absorbing hyperideal of R;, we conclude that
there exist 7,7, 1 < i < j < n such that g(xi,xj,lgll_m) € I;. This implies that
g1 X gg((xi,yi),(a:j,yj),(1R1,132)("_2)) € I X Ry. Thus I; x Ry is an n-ary 2-
absorbing hyperideal of R; X R,.

(<) Suppose that I; x Ry is an n-ary 2-absorbing hyperideal of Ry x Ry. Let
g(ZC’il) € I, with .’E? € Ry. Then g1 X gg((.’L'171R2),...(.’L‘n71R2)) € I x Ry. Since
I; X Ry is an n-ary 2-absorbing hyperideal of R; X Rs, we conclude that there exist
i,j, 1 <i < j < nsuch that g1 x g2((%i, 1Rr,), (¥j, 1R,), (Lrys Lr,)™™2) € I1 x Ry,
which means that g (z;, z;, 1%:2)) € I;. Thus I; is an n-ary 2-absorbing hyperideal
of Rl .

(ii) The proof is similar to (i). U

Let I be a normal hyperideal of Krasner (m,n)-hyperring (R, f,g). Then the set
of all equivalence classes [R : [*] = {I*[z] | € R} is a Krasner (m, n)-hyperring with
the m-ary hyperoperation f/I and the n-ary operation g/I, defined as follows:

fIIIM[za], .. I xm]) = {I7[2]) | 2 € f(IM 1], T [zm])}, V2T' € R
g/I(I%[xa], . I lan]) = IM[g(a7)],  Val € R
(for more details refer to [15]).
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THEOREM 4.5. Let I be a normal hyperideal and J be an n-ary 2-absorbing hyperideal,
respectively, of a Krasner (m,n)-hyperring (R, f,g) with the scalar identity 1 such
that I C J. Then [J : I*] is an n-ary 2-absorbing hyperideal of [R : I*].

Proof. Suppose that g/f(I*[x1],...,I*[zy,]) € [J : I*] for some 27 € R. Thus g/
fI*[xa]y ... I [zn]) = I [g(2})] € [J : I*]. This means I*[g(«7})] C J. Therefore
Flg(@h)] = f(1,g(x1),00" ) = f(I, g(a7),g(0™)"=2))
= g(f(I, 21,0072, .. f(I,2,,00"72)) C J
Since J is an n-ary 2-absorbing hyperideal of R, then we conclude that
g(f(],xi,O(m*Q)),f(I,mj,O(mfz)), 1%1—2)) CJforsomel <i<j<n.

Hence
g(f (1,25, 00 2), f(1,5,00"72)), (I, 15,00m72))=2))
= [ glai g 17 ), g(00)) ) = (L, g, 15 2),00m2)
=I"[g(x;, xj, lg_%)] — g/I(I*[xi],I*[l,jLI*[lR](n—m) eJ: 1.

Thus [J : I*] is an n-ary 2-absorbing hyperideal of [R : I*]. 0

5. n-ary 2-absorbing primary hyperideals in a Krasner (m,n)-hyperring

DEFINITION 5.1. A nonzero proper hyperideal I of a Krasner (m, n)-hyperring (R, f, g)
with the scalar identity 1gr is said to be n-ary 2-absorbing primary if for z7 €

R, g(z7) € I implies that g(ml,xg,lgkz)) € I or g(mt,wi,lgfz)) € \ﬁ(m’n) or
g(x;, x5, 15;1—2)) € \ﬁ(m’n) for t € {1,2} and some i,5, 3 <i<j <n.

EXAMPLE 5.2. Let R be a Krasner (m,n)-hyperring (R, f, g) with the scalar identity
1r. Then every n-ary primary hyperideal of R is an n-ary 2-absorbing primary

hyperideal.
Let @ be an n-ary primary hyperideal of R and g(z7) € Q. Then either z; € Q or

g(:ci*l,lR,xgq_l) € \/Q(m’"). We may assume that z1 € Q or g(1g,z%) € \/Q(m’").

Since \/Q(m’n) = P is an n-ary prime hyperideal of R by Theorem 4.28 in [1], then
we get x1 € Qorxzg € Por...or z, € P. Since (Q and P are hyperideals of R, we get

g(x17x271§%n_2)) € Q or ‘g(xhxi)]-g%n_m) eEP= \/Q(m’n) or g(xivxj,lgl_Z)) eEr=
\/Q(m’n) for t € {1,2} and some 3 <i < j < mn.

THEOREM 5.3. If I is an n-ary 2-absorbing ideal of a Krasner (m,n)-hyperring
(R, f,qg) with the scalar identity 1R, then \ﬁ(m’n) is an n-ary 2-absorbing hyperideal
of R.
Proof. Let n \f(m’n) n i L1072

. g(xt) € VI for some 27 € R such that neither g(x¢,z;, 15 ) €
\ﬁ(m’n) nor g(x;, x;, 15,;1_2)) € \ﬁ(m’n) fort € {1,2} and all i,5,3 <i < j <n. Then
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there exists ¢ € N such that g(g(m?)(t),lght)) €1 fort <mn,or gg(glap)®) eI

fort = mn,t =1In-1)+1. If g(g(x’f)(t),lgkt)) € I for t < n, then we have
g(g(xgt)7 1537%), e ,g(a:,(f), lgft))el. Since [ is an n-ary 2-absorbing primary of R, we
obtain that g(g(as(lt), 15;?_75)), g(wét), lgl_t)), 1g_2)):g(g(x1, Za, lg_m)(”, lgl_t)) el

This means that g(z1, zo, 1%“2)) € \ﬁ(m’n). Similarly for the other case. There-
fore /T (mom) is an n-ary 2-absorbing hyperideal of R. 0

THEOREM 5.4. If I is an n-ary 2-absorbing primary of a Krasner (m,n)-hyperring
(R, f,g) with the scalar identity 1r, then either \ﬁ(m’n)

prime hyperideal of R or \ﬁ(mm = P N Py such that Py, P> are the only distinct
n-ary prime hyperideals of R that are minimal over I.

= P such that P is an n-ary

Proof. This follows from Theorems 5.3 and 3.7. 0

THEOREM 5.5. Let I and I be n-ary Py-primary and Ps-primary hyperideals of
(R, f,g) respectively such that Py and Py are two n-ary prime hyperideals of (R, f, g).
Then I = 11 N I is an n-ary 2-absorbing primary hyperideals.

Proof. Tt is clear that ﬁ(m’n):\ﬁl(mm) n \ﬁg(mm):Pl N P,. Assume that g(a) € T
for some z} € R such that neither g(x¢, z;, 1%?—2)) € \ﬁ(m’n) nor g(z;, z;, 1;?_2)) €
\ﬁ(m'n) for t € {1,2} and all 4,7, 3 <i < j <n. Then we have z7 ¢ \ﬁ(myn) =P N
P;. Since \ﬁ(m’n) is an n-ary 2-absorbing hyperideal of R, we obtain g(z1, 2, 1%1_2)) €

ﬁ(m’n) = P; N P,. Tt implies that g(z1, z, 1§g_2)) € P;. Since P is an n-ary prime
hyperideal of R, then z; € P; or zo € P;. We may suppose that x; € P;. Also,
g($1’$271%72)) € P, which implies that zo € P, but x; ¢ P,. Since 23 € Pa,

xo ¢ \ﬁ(m’n), then we have zo ¢ P;. If 1 € I; and z9 € I, then we are done. Hence
we suppose that x; ¢ I;. Then we have g(1g, 22, 23,...,2,) € Pj, because I is an
n-ary primary hyperideal of R. Since 2o € Py and g(1g, z2,23,...,z,) € Pi, we get

G(1g, @2, 23, . 7n) € PLOPy = VI, This ia a contradiction. Thus z1 € I1. By
using a similar argument, we have x5 € Ir. Thus g(z1,20,1""?) eI =L NL. O

THEOREM 5.6. Let I be a hyperideal of R such that ﬁ(m’n) is an n-ary prime hy-
perideal of (R, f,g). Then I is an n-ary 2-absorbing primary hyperideal of R.

Proof. Let g(x}) € I for some x} € R such that g(z1,z2,1"~2) ¢ I. Thus we have
g(g(z7), g(lg), x3) ), 1%73))€I§\ﬁ(m’n), which implies ¢g(g(z1,1r, 2%), g(1r, %), %)
E\/f(m’n). Since \ﬁ(m’n) is an n-ary prime hyperideal of R, then we obtain g(z1, 1, z%)
E\ﬁ(mm) or g(1g,a%) € ﬁ(m’n) or 3 € \ﬁ(m’n) or ...or T, € \ﬁ(m’n). It means
that g(z, z;, 1%_2)) € \/f(m’n) or g(z;, x;j, 1%1_2)) € \ﬁ(m’n) for t € {1,2} and some
3 <i < j <mn, because ﬁ(m’n) is a hyperideal of R. O
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