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Abstract. If M = (M,∇) is an affine surface, let Q(M) := ker(H + 1
m−1

ρs) be the

space of solutions to the quasi-Einstein equation for the crucial eigenvalue. Let M̃ = (M, ∇̃)
be another affine structure on M which is strongly projectively flat. We show that Q(M) =
Q(M̃) if and only if ∇ = ∇̃ and that Q(M) is linearly equivalent to Q(M̃) if and only if M is
linearly equivalent to M̃. We use these observations to classify the flat Type A connections
up to linear equivalence, to classify the Type A connections where the Ricci tensor has rank
1 up to linear equivalence, and to study the moduli spaces of Type A connections where the
Ricci tensor is non-degenerate up to affine equivalence.

1. Introduction

The use of results in the theory of partial differential equations to study geometric
questions is a very classical one. One has, for example, the Hodge-de Rham theorem
that the de Rham cohomology groups of a compact smooth manifold can be identi-
fied with the space of harmonic differential forms; Poincare duality and the Kunneth
formula then follow as does the Bochner vanishing theorem and the fact that the de
Rham cohomology of a compact Lie group can be computed in terms of the cohomol-
ogy of its Lie algebra. Applying similar techniques to the spin operator then yields,
via the Lichnerowicz formula, the fact that a compact 4-dimensional spin manifold
with non-vanishing first Pontrjagin class does not admit a metric of positive scalar
curvature. One may use heat equation methods to prove the Riemann-Roch formula
for Riemann surfaces using the Dolbeault operator. There are many other examples.

Many, but not all, such applications require the manifold be compact and the
operator to be elliptic; in the case of manifolds with boundary one must impose
suitable boundary conditions. And most such applications require the additional
structure of a Riemannian metric. By contrast, in the present paper we will not
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46 Applications of PDEs to the study of affine surface geometry

impose any compactness conditions and we will work in the affine setting without
the structure of an auxiliary Riemannian metric; our analysis is purely local. In
this paper, we will study solutions to the quasi-Einstein equation in the context of
affine geometry. We will focus for the sake of simplicity on affine homogeneous affine
surface geometries of Type A (see Definition 1.1) and obtain results concerning the
geometry of associated moduli spaces using purely analytical techniques. Many of
these results are new. See, for example, Theorem 2.3 where we show that every
Type A affine surface geometry is strongly linearly projectively equivalent to a flat
Type A affine surface geometry. In addition, we also derive some previously known
results using analytical techniques that were previously established using techniques
of differential geometry. We hope that the methods introduced here prove useful in
other applications to affine geometry.

Let M be a smooth manifold of dimension m which is equipped with a torsion
free connection ∇ on the tangent bundle of M ; the pair M = (M,∇) is called an
affine manifold. In local coordinates, we adopt the Einstein convention and sum over
repeated indices to express ∇∂xi∂xj = Γij

k∂xk ; the Christoffel symbols Γ = (Γij
k)

completely determine the connection and we shall often use Γ or ∇ interchangeably.
Since the connection ∇ is torsion free, one has Γij

k = Γji
k. Given that we shall, for

the most part, be working only locally, we can assume M is an open subset of Rm
and let the affine structure be defined by the Christoffel symbols. If a, b, c, d, e, and
f are real constants, let

Γ(a, b, c, d, e, f) :=

{
Γ11

1 = a, Γ11
2 = b, Γ12

1 = Γ21
1 = c

Γ12
2 = Γ21

2 = d, Γ22
1 = e, Γ22

2 = f

}
.

Definition 1.1. M is said to be homogeneous if for every two points there exists an
affine transformation sending one to the other.
Type A: M is said to be a Type A affine surface geometry if the underlying mani-
fold is the translation group M = R2 and if Γ = Γ(a, b, c, d, e, f). The group action
(x1, x2) → (x1 + a1, x2 + a2) for (a1, a2) ∈ R2 preserves this geometry so it is ho-
mogeneous; the Type A connections are the left invariant connections on the Lie
group R2.

Type B: M is said to be a Type B affine surface geometry if the underlying manifold
is the ax+ b group M = R+ ×R and if Γ = (x1)−1Γ(a, b, c, d, e, f). The group action
(x1, x2) → (ax1, ax2 + bx1) for a > 0 preserves this geometry so it is homogeneous;
the Type B connections are the left invariant connections on the ax+ b group.

Type C: If S2 is the sphere with the usual round metric and if ∇ is the Levi-Civita
connection, then (S2,∇) is said to be a Type C affine surface geometry. Our notation
at this point is a bit non-standard as several of the Type B geometries also arise
as constant sectional curvature metrics and thus we have elected not to list these
separately as Type C.

IfM is a locally homogeneous affine surface, work of Opozda [14] shows thatM is
locally affine isomorphic to one of these 3 geometries; there is a similar classification
in the setting of surfaces with torsion which is due to Arias-Marco and Kowalski [1].
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We also refer to Opozda [15], and Guillot and Sánchez-Godinez [10] for a discussion
of more global questions and to Kowalski, Opozda, and Vlasek [11, 12] for related
work. There has been much recent work using this classification result; we refer, for
example, to Derdzinski [6], Dusek [7], and Vanzurova [17].

The three classes are not disjoint as there are geometries which are both Type A
and Type B. In this paper, we shall concentrate on Type A structures; in a subsequent
paper, we will give a similar analysis for the Type B structures.

Let M = (M,∇) be an affine manifold. If g ∈ C∞(M), we perturb ∇ setting
g∇XY := ∇XY +X(g)Y + Y (g)X to define gM = (M, g∇). ∇̃ and ∇ are said to be
strongly projectively equivalent if ∇̃ = g∇ for some g. In this situation, M = (M,∇)
and M̃ = (M, ∇̃) are said to be strongly projectively equivalent. This implies, among
other things, that the unparameterized geodesics of M̃ and M coincide. We say
that ∇ is strongly projectively flat if ∇ is strongly projectively equivalent to a flat
connection;M = (M,∇) is strongly projectively flat if ∇ is strongly projectively flat.

Theorem 1.2. Let M be a Type A affine surface geometry. Then ρ is symmetric,
∇ρ is totally symmetric, and M is strongly projectively flat.

Proof. Let Γ = Γ(a, b, c, d, e, f) define a Type A affine surface geometry. We show ρ
is symmetric and that ∇ρ is totally symmetric by computing:

ρ11=−bc+ad−d2+bf, ρ12=ρ21=cd−be, ρ22=−c2+ae−de+cf (1)

and ρ11;1=2abc−2a2d−2bcd+2ad2+2b2e−2abf,

ρ11;2=ρ12;1=ρ21;1=2bc2−2acd+2bde−2bcf,

ρ12;2=ρ21;2=ρ22;1=2bce−2ade+2d2e−2cdf,

ρ22;2=−2cde+2be2+2c2f−2aef+2def−2cf2.

An affine surface M is strongly projectively flat if and only if both ρ and ∇ρ are
totally symmetric (see, for example [8, 13] and also [16] for related results). Thus M
is strongly projectively flat. �

The affine quasi-Einstein equation will play a central role in our investigation. Let
H = H∇ be the Hessian of an affine manifold. H∇f = (∂xi∂xjf −Γij

k∂xkf)dxi⊗dxj
is a symmetric 2-tensor.

Let ρ = ρ∇ be the Ricci tensor of ∇ and ρs = ρ∇,s the associated symmetric
Ricci tensor. The affine quasi-Einstein operator (see, for example, [4]) is the linear
second order partial differential operator H∇f − µfρ∇,s : C∞(M) → C∞(S2(M)).
The eigenvalue µ = − 1

m−1 , where m = dimM , plays a distinguished role. We set

Q(M) := {f ∈ C∞(M) : H∇f + 1
m−1fρ∇,s = 0}. We refer to [4] for the proof of the

following results.

Theorem 1.3. Let M be a connected affine manifold of dimension m.
(i) Q(gM) = egQ(M).

(ii) If f ∈ Q(M) satisfies f(P )=0 and df(P )=0 for some point P in M , then f≡0.

(iii) dim{Q(M)} ≤ m + 1. If M is simply connected, then dim{Q(M)} = m + 1 if
and only if M is strongly projectively flat.
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The following result is the major new analytical result of this paper.

Theorem 1.4. Let Mi := (M,∇i) be two strongly projectively flat affine structures
on the same underlying simply connected manifold M for i = 1, 2. Let Ξ be a diffeo-
morphism of M .

(i) If Q(M1) = Q(M2), then ∇1 = ∇2.

(ii) If Ξ∗Q(M1) = Q(M2), then Ξ∗∇1 = ∇2.

Proof. Since M is simply connected, dim{Q(Mi)} = m + 1 by Theorem 1.3. We
first establish Assertion (i) under the stronger assertion that ∇1 is flat. Fix P∈M .
Let (x1, . . . , xm) be coordinates on an open neighborhood O of P so that all the
Christoffel symbols of ∇1 vanish. This implies that ρ∇1

= 0 and consequently
H∇1

f + 1
m−1ρ∇1,sf = ∂xi∂xjf . Let 1 be the function which is identically 1. We

have {1, x1, . . . , xm} ⊂ Q(O,∇1). Because 1 ∈ Q(O,∇1) = Q(O,∇2), we have
0 = H∇2

1 + ρ∇2,s = ρ∇2,s. Since x` ∈ Q(O,∇1) = Q(O,∇2) and ρ∇2,s = 0,

0 = H∇2
x` = (∂xi∂xjx

` + 2Γij
k∂xkx

`)dxi ⊗ dxj = 2Γij
`dxi ⊗ dxj

for any `. This implies 2Γ = 0 so ∇1 = ∇2 near P . As P was arbitrary, ∇1 = ∇2.

We now turn to the general case and assume only thatM1 is strongly projectively
flat. Choose g so ∇̃1 := −g∇1 is flat. Assume Q(M1) = Q(M2). Let ∇̃2 := −g∇2.
By Theorem 1.3, Q(M, ∇̃2) = e−gQ(M,∇2) = e−gQ(M,∇1) = Q(M, ∇̃1) . Since ∇̃1

is flat, ∇̃2 = ∇̃1 and ∇2 = g∇̃2 = g∇̃1 = ∇1. This proves Assertion (i). Assertion (ii)
follows from Assertion (i) since Ξ∗Q(M,∇) = Q(M,Ξ∗∇). �

In the rest of this paper, we present applications of Theorem 1.4 in the context of
Type A surface geometries; by Theorem 1.2 all these geometries are strongly projec-
tively flat. In Section 2, we classify the possible forms of Q(M) whereM is a Type A
affine surface geometry. In Section 3, we study various moduli spaces of Type A
surface geometries up to linear equivalence.

In a subsequent paper [9], we will use the results of Section 2 to determine, up to
linear equivalence, which Type A surface geometries are geodesically complete and to
re-derive results of D’Ascanio et al. [5] using different methods.

2. Relating M and Q for Type A affine surface geometries

Let Γ0 be defined by taking Γij
k = 0 for all i, j, and k. The following is a useful

technical observation which holds quite generally.

Theorem 2.1. LetM = (M,∇) be a strongly projectively flat simply connected affine
manifold of dimension m.

(i) Suppose that ∇ is flat. Let {1, φ1, . . . , φm} be a basis for Q(M). Let Φ :=
{φ1, . . . , φm}. Then det(dΦ) 6= 0 and Φ∗Γ0 = Γ.

(ii) If M is a surface, then Q(M) 6= eg(x
1,x2) Span{f1(x1), f2(x1), f3(x1)}.
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Proof. Suppose ∇ is flat. Then ρ∇,s = 0 and H∇1 = 0 so 1 ∈ Q(M,∇). Let
{1, φ1, . . . , φm} be a basis for Q(M). Let Φ := {φ1, . . . , φm}. Suppose there exists
a point P ∈ M so that det{dΦ(P )} = 0. Then there is a non-trivial dependence
relation a1dφ1(P ) + · · ·+ amdφm(P ) = 0. Let

φ := a01 + a1φ1 + · · ·+ amφm for a0 := −a1φ1(P )− · · · − amφm(P ) .

Since φ(P ) = 0 and dφ(P ) = 0, Theorem 1.3 shows that φ ≡ 0. This contradicts
the assumption that {1, φ1, . . . , φm} is a basis for Q(M,∇). Thus det(dΦ) is nowhere
vanishing so Φ defines a local diffeomorphism from M to Rm. Fix a simply connected
neighborhood O of a point P of M and let {x1 := φ1, . . . , xm := φm} be the associated
local coordinates on O. Then Q(O,∇) = Span{1, x1, . . . , xm}. By Theorem 1.4,
this implies that ∇ = Φ∗(∇0), where ∇0 denotes the flat connection on Rm. This
completes the proof of Assertion (1).

Suppose (M,∇) is a strongly projectively flat affine surface with

Q(M,∇) = eg(x
1,x2) Span{f1(x1), f2(x1), f3(x1)} .

We argue for a contradiction. Since (M,∇) is strongly projectively flat, we have
dim{Q(M,∇)} = 3 and the functions {fi} are linearly independent. Let ∇̃ := −g∇;

Q(M, ∇̃) = e−g(x
1,x2)eg(x

1,x2) Span{f1(x1), f2(x1), f3(x1)}
= Span{f1(x1), f2(x1), f3(x1)} .

Let f = c1f1 + c2f2 + c3f3. Since the fi do not depend on x2, we may choose
(c1, c2, c3) 6= (0, 0, 0) so that f(P ) = 0 and df(P ) = 0; thus f vanishes identically so
the functions {f1, f2, f3} are not linearly independent which is false. �

Theorem 2.2. Let M be a Type A affine surface geometry. Let Qc := Q⊗R C.
(i) There is a basis for Qc of functions of the form eα1x

1+α2x
2

p(x1, x2) where p
is a polynomial of degree at most 2 in (x1, x2), where (α1, α2) ∈ C2, and where

eα1x
1+α2x

2 ∈ Qc.
(ii) There exist linear functions Li, there exists a polynomial Q which is at most
quadratic, and there exists a basis B for Q(M) which has one of the following four
forms

B = {eL1 cos(L2), eL1 sin(L2), eL3}, B = {eL1 , eL2 , eL3},
B = {eL1 , L2e

L1 , eL3}, B = {eL1 , L2e
L1 , QeL1}.

Proof. Since M is a Type A affine surface geometry, the quasi-Einstein operator is
a constant coefficient operator. Consequently, if f ∈ Q(M), then ∂xif ∈ Q(M).
As M is strongly projectively flat, dim{Q(M)} = 3 by Theorem 1.3. Decompose
Qc = ⊕α1,α2

Qα1,α2
into the simultaneous generalized eigenspaces of ∂x1 and ∂x2

Qα1,α2
:= {f ∈ Qc : (∂x1 − α1)3f = 0 and (∂x2 − α2)3f = 0} .

Let f(x1, x2) = eα1x
1+α2x

2

f̃(x1, x2) ∈ Qα1,α2
. We have

0 = (∂x1 − α1)3f = eα1x
1+α2x

2

∂3
x1 f̃ and 0 = (∂x2 − α2)3f = eα1x

1+α2x
2

∂3
x2 f̃ .

Thus ∂3
x1 f̃ = 0 and ∂3

x2 f̃ = 0. Thus f̃ is a polynomial of degree at most 2 and applying
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∂x1 and ∂x2 appropriately, we see eα1x
1+α2x

2 ∈ Qc. Assertion (1) follows.

Suppose eα1x
1+α2x

2 ∈ Qc where αi ∈ C−R for some i. Let L1 = <(α1x
1 +α2x

2)
and let L2 = =(α1x

1 + α2x
2). Since the quasi-Einstein equation is real, we may take

the real and imaginary parts to see eL1 cos(L2) ∈ Q(M) and eL1 sin(L2) ∈ Q(M). If

peα1x
1+α2x

2 ∈ Qc for p a polynomial of degree at least 1, then

{<(peα1x
1+α2x

2

),=(peα1x
1+α2x

2

),<(eα1x
1+α2x

2

),=(peα1x
1+α2x

2

)}
are 4 linearly independent elements of Q(M) which is impossible. If there is an

element of the form p(x1, x2)eb1x
1+b2x

2 ∈ Q(M), then for dimensional reasons, p must
have degree 0 and the bi are real. Consequently, B = {eL1 cos(L2), eL1 sin(L2), eL3}.

We therefore assume all the αi are real and consequently by Assertion (1), Q(M)

is spanned by elements of the form p(x1, x2)eL(x1,x2) where L(x1, x2) = α1x
1 + α2x

2

is a real linear function. The remaining cases are then examined similarly. �

We use Theorem 2.2 to improve Assertion 2 of Theorem 1.2. We say that two
Type A connections ∇ and ∇̃ are strongly linearly projectively equivalent if there
exists a linear function L so that ∇̃ = L∇ or equivalently, by Theorems 1.3 and 1.4,
Q(∇̃) = eLQ(∇). If Γ∇ = Γ(a, b, c, d, e, f), then for L = a1x

1 + a2x
2,

ΓL∇ = Γ(a+ 2a1, b, c+ a2, d+ a1, e, f + 2a2) .

Consequently, the space of TypeA connections which are strongly linearly projectively
equivalent to ∇ is an affine plane in the parameter space R6.

Theorem 2.3. Every Type A affine surface geometry is strongly linearly projectively
equivalent to a flat Type A affine surface geometry.

Proof. Let Γ = Γ(a, b, c, d, e, f) define an affine surface geometryM. By Theorem 2.2,
Q(M) contains a exponential function eL where L is real and linear. Let ∇̃ = −L∇
define the affine surface geometry M̃. Since Q(M̃) = e−LQ(M), we have 1 ∈ Q(M̃).
This implies ρ∇̃,s = 0. By Theorem 1.2, ρ∇̃ is symmetric and thus ρ∇̃ = 0. Since we

are in dimension 2, this implies ∇̃ is flat. �

We say that two connections are linearly equivalent if there is an element of
GL(2,R) which intertwines them or, equivalently, they differ by a linear change of
coordinates. Note that linear equivalence preserves geodesic completeness. Linear
equivalence was studied in [3] in some detail. If the Ricci tensor has rank 2, then
linear equivalence and affine equivalence are equivalent notions for Type A surfaces;
this is not true if the Ricci tensor is degenerate. For example, not all flat Type A
connections are linearly equivalent as we shall see in Theorem 3.2. We say that two
spaces of functions S1 and S2 are linearly equivalent if there is a linear map T so that
T ∗S1 = S2.

We examine the possibilities of Theorem 2.2 seriatim in what follows. In Sec-
tion 2.1 we suppose Q is spanned by 3 distinct real exponentials, in Section 2.2, we
suppose Q contains a complex exponential, and in Section 2.3, we suppose Q contains
a non-trivial polynomial times an exponential.



P. Gilkey, X. Valle-Regueiro 51

2.1 Type A connections with 3 distinct exponentials

We examine the case when B = {eL1 , eL2 , eL3} is a basis for Q(M). We define the
following connections; the computation of Q, ρ, and det(ρ) is then immediate.

Definition 2.4. (i) Let a1 + a2 6= 1. Set

Γ2
r(a1, a2) :=

Γ(a2
1 + a2 − 1, a2

1 − a1, a1a2, a1a2, a
2
2 − a2, a1 + a2

2 − 1)

a1 + a2 − 1
.

Then Q = Span{ex1

, ex
2

, ea1x
1+a2x

2}, ρ =
1

a1 + a2 − 1

(
a2

1 − a1 a1a2

a1a2 a2
2 − a2

)
, and

det(ρ) = a1a2
1−a1−a2 . If a1a2 6= 0, then Rank{ρ} = 2.

(ii) For c6=−1, set Γ1
2(c):=Γ(−1, 0, c, 0, 0, 1+2c). ThenQ= Span{ecx2

, e(1+c)x2

, ecx
2−x1}

and ρ=(c+c2)dx2 ⊗ dx2. If c 6= 0, then Rank{ρ}=1.

(iii) Set Γ0
2 := Γ(−1, 0, 0, 0, 0, 1). Then Q = Span{1, ex2

, e−x
1} and ρ = 0.

Theorem 2.5. Let M = (O,Γ) be an affine surface where O ⊂ R2 is open. If there
exist distinct linear functions Li so {eL1 , eL2 , eL3} is a basis for Q(M), then Γ is
Type A and Γ is linearly equivalent to Γ2

r(a1, a2) for a1 + a2 6= 1 and a1a2 6= 0, to
Γ1

2(c) for c /∈ {−1, 0}, or to Γ0
2.

Proof. By Theorem 1.4, Q=Q(M) determines M. Since dim{Q}=3, M is strongly
projectively flat. By Theorem 1.3, Span{dL1, dL2, dL3} is 2-dimensional. We as-
sume the notation is chosen so dL1 and dL2 are linearly independent. Make a lin-
ear change of coordinates to ensure that x1=L1 and x2=L2. Because dim{Q}=3,

Q= Span{ex1

, ex
2

, ea1x
1+a2x

2}. If a1+a2=1, then a1−1=−a2 andQ=ex
1

Span{1, ex2−x1

,

ea2(x2−x1)}. If we make a linear change of coordinates to replace x2 − x1 by x̃2, then
this contradicts Theorem 2.1. This shows that a1 + a2 6=1. If Rank{ρ}=2, then Γ is
linearly equivalent to Γ2

r(a1, a2). If Γ is flat, then we have a1=a2=0 and after replac-
ing x1 by −x1 we see that Γ is linearly equivalent to Γ0

2. If det(ρ)=0 but ρ 6=0, we
have a1a2=0 but (a1, a2)6=(0, 0) and hence (a1, a2) ∈ {(a, 0), (0, a)} for a6=0. Since
a1 + a2 6=1, a6=1 so we can make a suitable of change of coordinates to see that Γ is
linearly equivalent to Γ1

2(c) for some suitably chosen c. �

2.2 Complex exponentials

We examine the case when we have a basis for Q(M) of the form B = {eL1 cos(L2),
eL1 sin(L2), eL3}. We define the following connections; the computation of Q, ρ, and
det(ρ) is then immediate.

Definition 2.6. (i) For b1 6= 1, set Γ2
c(b1, b2) := Γ(1 + b1, 0, b2, 1,

1+b22
b1−1 , 0). Then

Q = Span{ex1

cos(x2), ex
1

sin(x2), eb1x
1+b2x

2}, ρ =

(
b1 b2

b2
b1+b22
b1−1

)
, and det(ρ) =

b21+b22
b1−1 .

If (b1, b2) 6= (0, 0), then Rank{ρ} = 2.
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(ii) Set Γ1
5(c) := Γ(1, 0, 0, 0, 1+c2, 2c). Then ρ=(1+c2)dx2⊗dx2,Q = Span{ecx2

cos(x2),

ecx
2

sin(x2), ex
1}, and Rank{ρ} = 1.

(iii) Set Γ0
5 := Γ(1, 0, 0, 1,−1, 0) = Γ2

c(0, 0). Then Q= Span{1, ex1

cos(x2), ex
1

sin(x2)},
and ρ = 0.

Theorem 2.7. Let M = (O,Γ) be an affine surface where O ⊂ R2 is open. If
{eL1 cos(L2), eL1 sin(L2), eL3} is a basis for Q(M) where {Li} are real linear func-
tions, then M is Type A, and Γ is linearly equivalent to Γ2

c(b1, b2) where b1 6= 1 and
(b1, b2) 6= (0, 0), to Γ1

5(c) or to Γ0
5.

Proof. Suppose {eL1 cos(L2), eL1 sin(L2), eL3} is a basis for Q(M). Since L2 is non-
trivial, we can make a linear change of coordinates to assume L2 = x2. If L1 is not a
multiple of L2, change coordinates to assume L1 = x1 and obtain Γ2

c(b1, b2) by setting

L3 = b1x
1 + b2x

2. If (b1, b2) = (0, 0), then Q = Span{ex1

cos(x2), ex
1

sin(x2),1}, M
is flat, and Γ = Γ0

5. On the other hand, if L1 = cx2, then we have that Q =

ecx
2

Span{cos(x2), sin(x2), eL3}. L3 is not independent of x1 by Theorem 2.1. Make
a linear change of coordinates to assume L3 = x1 and obtain Γ1

5(c). �

2.3 Polynomials

We assume finally that there is a basis for Q either of the form B = {eL1 , L2e
L1 , eL3}

or B = {eL1 , L2e
L1 , QeL1}. We define the following connections; the computation of

Q and ρ is then immediate.

Definition 2.8. (i) Set Γ2
p(a) := Γ(2, 0, 0, 1, a, 1). ThenQ = ex

1

Span{1, x1−ax2, ex
2},

and ρ = dx1 ⊗ dx1+adx2 ⊗ dx2. If a 6= 0, then Rank{ρ} = 2.

(ii) Set Γ2
q(±1) := Γ(2, 0, 0, 1,±1, 0). Then Q = ex

1

Span{1, x2, 2x1 ± (x2)2},
ρ = dx1 ⊗ dx1 ± dx2 ⊗ dx2, and Rank{ρ} = 2.

(iii) Set Γ1
4(c) := Γ(0, 0, 1, 0, c, 2). Then Q = ex

2

Span{1, x2, c(x2)2+2x1} and
ρ = dx2 ⊗ dx2.

(iv) Set Γ1
3(c) := Γ(0, 0, c, 0, 0, 1+2c). Then Q = Span{ecx2

, x1ecx
2

, e(1+c)x2},
ρ = (c+c2)dx2 ⊗ dx2. If c 6= 0 and c 6= −1, then Rank{ρ} = 1.

(v) Set Γ1
1 := Γ(−1, 0, 1, 0, 0, 2). ThenQ = Span{e−x1+x2

, ex
2

, x2ex
2} and ρ = dx2⊗ dx2.

(vi) Set Γ0
0 := Γ(0, 0, 0, 0, 0, 0). Then Q = Span{1, x1, x2} and ρ = 0.

(vii) Set Γ0
1 := Γ(1, 0, 0, 1, 0, 0). Then Q = Span{1, ex1

, x2ex
1} and ρ = 0.

(viii) Set Γ0
3 := Γ(0, 0, 0, 0, 0, 1). Then Q = Span{1, x1, ex

2} and ρ = 0.

(ix) Set Γ0
4 := Γ(0, 0, 0, 0, 1, 0). Then Q = Span{1, x2, (x2)2+2x1} and ρ = 0.

Theorem 2.9. Let M = (O,Γ) be an affine surface where O ⊂ R2 is open. Let Li
be linear functions and let Q be at most quadratic.
(i) If {eL1 , L2e

L1 , eL3} is a basis for Q(M), then M is Type A and Γ is linearly
equivalent either to Γ2

p(a) for a 6= 0 or to Γ1
1 or to Γ = Γ1

3(c) for c 6= 0 and c 6= 1 or
to Γ0

1 or to Γ0
3.
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(ii) If {eL1 , L2e
L1 , QeL1} is a basis for Q(M), then M is Type A and Γ is linearly

equivalent either to Γ2
q(±1) or to Γ1

4(c) or to Γ0
0 or to Γ0

4.

Proof. By Theorem 2.1, Q determinesM. We prove Assertion (i) as follows. Suppose
Q(M) = Span{eL1 , eL1L2, e

L3}. If L1 6= 0, we can make a change of variables to
assume L1 = x1. If L1 and L3 are linearly independent, we can change coordinates
to assume as well L3 = x1 + x2 and consequently Q = ex

1

Span{1, a1x
1 + a2x

2, ex
2} .

It then follows by Theorem 1.4 that a1 6= 0 and thus we may assume a1 = 1 to
obtain Q = ex

1

Span{1, x1 + a2x
2, ex

2} and obtain Γ2
p(a2). If a2 = 0, we obtain

Q = Span{ex1

, x1ex
1

, ex
1+x2}. We make a linear change of coordinates to assume

Q = Span{ex2

, x2ex
2

, ex
2−x1} and obtain Γ1

1. Assume next L3 = aL1 for a 6= 1 so

Q(M) = Span{ex1

, eax
1

, (a1x
1+a2x

2)ex
1}. By Theorem 2.1, a2 6= 0 so after a suitable

linear change of coordinates we obtain Q(M) = Span{ex1

, eax
1

, x2ex
1}. We make

another linear change of coordinates to assume Q(M) = Span{ecx2

, x1ecx
2

, e(1+c)x2}
and we obtain Γ = Γ1

3(c). We have Rank{ρ} = 1 for c 6= 0,−1. If a = 0, then

Q(M) = Span{ex1

,1, x2ex
1} and we get Γ0

1. Finally, if L1 = 0 we make a change of

variables to assume Q(M) = Span{1, x1, ex
2} and we obtain Γ = Γ0

3. This completes
the proof of Assertion (i).

We now establish Assertion (ii). Let Q(M) = eL1 Span{1, L2, Q}. Set Γ̃ = −L1Γ
to obtain Q(M̃) = Span{1, L2, Q}. If Q is linear, then Q(M̃) = Span{1, L2, L3}.
Since L2 and L3 are linearly independent, Q(M̃) = Span{1, x1, x2} so Γ̃ = Γ0

0. If
L1 = 0, then Γ = Γ0

0. If L1 6= 0, we may choose coordinates to assume L1 = x2.

We then have Γ = x2

Γ0 = Γ(0, 0, 1, 0, 0, 2) and Γ = Γ1
4(0). On the other hand,

if Q is quadratic, then Q(M̃) = Span{1, L2, Q}. Change coordinates to assume
L2 = x2. Because ∂x1Q ∈ Q(M̃) is a multiple of x2, (x1)2 does not appear in Q.
Since ∂x2Q is a multiple of x2, x1x2 does not appear in Q. Thus we may assume
Q = (x2)2 + a1x

1 + a2x
2. Subtracting a multiple of x2 permits to assume a2 = 0 so

Q(M̃) = Span{1, x2, (x2)2 + a1x
1}. Theorem 2.1 ensures a1 6= 0, so we rescale x1 to

get Q(M̃) = Span{1, x2, (x2)2 + 2x1} and Γ̃ = Γ0
4. If L1 = 0, then Γ = Γ0

4. Finally,

we assume L1 6= 0 and Q(M) = eb1x
1+b2x

2

Span{1, x2, (x2)2 + 2x1}. Suppose b1 = 0.

Set x̃2 := b2x
2 so Q(M) = ex̃

2

Span{1, x̃2, (2x1 + b−2
2 (x̃2)2)} . Setting c = b−2

2 6= 0
yields Γ = Γ1

4(c); we obtained Γ1
4(0) previously. Suppose b1 6= 0. Let b1 = ±c2 and

x̃2 = cx2 setting x̃1 = b1x
1 + b2x

2. We have

Q(M) =ex̃
1

Span{1, x2, (x2)2 + 2b−1
1 (x̃1 − b2x2)}

=ex̃
1

Span{1, x2, b1(x2)2 + 2x̃1} = ex̃
1

Span{1, x̃2,±(x̃2)2 + 2x̃1} .
Thus Γ = Γ(2, 0, 0, 1,±1, 0) = Γ2

q(±1). �

3. Spaces of Type A connections

In this section, we apply the results of Section 2 to study moduli spaces of Type A
connections up to linear equivalence. In Section 3.1 we study flat connections, in
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Section 3.2 we study connections where the Ricci tensor has rank 1, and in Section 3.3
we study connections where the Ricci tensor has rank 2.

3.1 Flat Type A connections

We collect the connections of Definitions 2.4, 2.6, and 2.8 which are flat (i.e. ρ = 0)
for the sake of convenience.

Definition 3.1. (i) Γ0
0 := Γ(0, 0, 0, 0, 0, 0) and Q = Span{1, x1, x2}.

(ii) Γ0
1 := Γ(1, 0, 0, 1, 0, 0) and Q = Span{1, ex1

, x2ex
1}.

(iii) Γ0
2 := Γ(−1, 0, 0, 0, 0, 1) and Q = Span{1, e−x1

, ex
2}.

(iv) Γ0
3 := Γ(0, 0, 0, 0, 0, 1) and Q = Span{1, x1, ex

2}.
(v) Γ0

4 := Γ(0, 0, 0, 0, 1, 0) and Q = Span{1, x2, (x2)2 + 2x1}.

(vi) Γ0
5 := Γ(1, 0, 0, 1,−1, 0) and Q = Span{1, ex1

cos(x2), ex
1

sin(x2)}.

Theorem 3.2. If Γ is a flat Type A connection, then Γ is linearly equivalent to Γ0
i

for some 0 ≤ i ≤ 5. Furthermore, Γ0
i is not linearly equivalent to Γ0

j for i 6= j.

Proof. By Theorems 1.4, 2.2, 2.5, 2.7, and 2.9, every Type A connection is linearly
equivalent to one of the connections given in Definitions 2.4, 2.6, or 2.8. We have listed
the 6 connections of these definitions where ρ = 0 and thus if Γ is a Type A connection
which is flat, then Γ is linearly equivalent to one of the Γ0

i . By inspection, Q(Γ0
i ) is

not linearly equivalent to Q(Γ0
j ) for i 6= j and thus Γ0

i is not linearly equivalent to Γ0
j

for i 6= j. �

We now combine the concepts of strong projective equivalence and linear equiva-
lence. In Theorem 2.3, we showed that every Type A affine surface geometry M is
strongly linearly projectively equivalent to a flat Type A affine surface geometry M̃.
The following result now follows by inspection from the definitions given and from
Theorem 1.4; it describes the extent to which M̃ is not unique and reflects the fact
that strong linear projective equivalence does not in general imply linear equivalence.

Theorem 3.3. Let Γ be a flat Type A connection which is strongly linearly projectively
equivalent to Γ0

i . Then exactly one of the following possibilities holds:
(i) Γ = Γ0

i .

(ii) i = 1, Q(Γ) = Span{e−x1

,1, x2}, and T (x1, x2) = (x2,−x1) intertwines Γ and Γ0
3.

(iii) i = 2, Q(Γ) = Span{ex1

,1, ex
2+x1}, and T (x1, x2) = (−x1, x1 + x2) intertwines

Γ and Γ0
2.

(iv) i = 2, Q(Γ) = Span{e−x2

, e−x
1−x2

,1}, and T (x1, x2) = (x2,−x1 − x2) inter-
twines Γ and Γ0

2.

(v) i = 3, Q(Γ) = Span{e−x2

, x1e−x
2

,1}, and T (x1, x2) = (−x2, x1) intertwines Γ
and Γ0

1.
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3.2 Type A connections where Rank{ρ} = 1

We collect the connections of Definitions 2.4, 2.6, and 2.8 where Rank{ρ} = 1 for the
sake of convenience.

Definition 3.4. (i) Γ1
1 := Γ(−1, 0, 1, 0, 0, 2), ρ = dx2⊗dx2, and Q = Span{e−x1+x2

,

ex
2

, x2ex
2}.

(ii) Γ1
2(c) := Γ(−1, 0, c, 0, 0, 1 + 2c) for c /∈ {0,−1}, ρ = (c + c2)dx2 ⊗ dx2, and

Q = Span{ecx2

, e(1+c)x2

, e−x
1+cx2}.

(iii) Γ1
3(c) := Γ(0, 0, c, 0, 0, 1 + 2c) for c /∈ {0,−1}, ρ = (c + c2)dx2 ⊗ dx2, and Q =

Span{ecx2

, x1ecx
2

, e(1+c)x2}.

(iv) Γ1
4(c) = Γ(0, 0, 1, 0, c, 2), ρ = dx2 ⊗ dx2, and Q = Span{ex2

, x2ex
2

, (2x1 +

c(x2)2)ex
2} for all c.

(v) Γ1
5(c) = Γ(1, 0, 0, 0, 1 + c2, 2c), ρ = (1 + c2)dx2⊗ dx2, and Q = Span{ecx2

cos(x2),

ecx
2

sin(x2), ex
1}.

The following result is now immediate from the discussion we have given. We refer
to [3] for a different proof which uses the Lie algebra of Killing vector fields rather
than Q; we have chosen a notation which is in parallel with that used in [3] for the
convenience of the reader.

Theorem 3.5. Let Γ be a Type A connection with Rank{ρ} = 1.
(i) Γ is linearly equivalent to one of the Γ1

i (?) given above.

(ii) Γ1
i (?) is not linearly equivalent to Γ1

j (?) for i 6= j.

(iii) Γ1
2(c) is linearly equivalent to Γ1

2(c̃) if and only if c = c̃ or c = −1− c̃.
(iv) Γ1

3(c) is not linearly equivalent to Γ1
3(c̃) for c 6= c̃.

(v) Γ1
4(c) is linearly equivalent to Γ1

4(c̃) if and only if c = c̃ or c 6= 0 and c̃ 6= 0.

(vi) Γ1
5(c) is not linearly equivalent to Γ1

5(c̃) for c 6= c̃.

All flat connections are locally affine isomorphic. LetM be a Type A affine surface
geometry with Rank{ρ} = 1. Choose X ∈ TPM so ρ(X,X) 6= 0 and set

αX(M) := ∇ρ(X,X;X)2 · ρ(X,X)−3 and εX(M) := Sign{ρ(X,X)} = ±1 .

We refer to [3] for the proof of the following result:

Theorem 3.6. Let M be a Type A affine structure with Rank{ρM} = 1. Then
α(M) := αX(M) and ε(M) := εX(M) are independent of the choice of X. If M̃
is another Type A affine structure with Rank{ρM̃} = 1, then M̃ is locally affine

isomorphic to M if and only if α(M̃) = α(M) and ε(M̃) = ε(M).

The moduli space is (−∞, 0]∪̇[0,∞) where 0 appears in 2 different moduli spaces
distinguished by ε. We apply Equation (1) to see:

α(Γ1
1) = 16, ε(Γ1

1) = 1,
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α(Γ1
2(c)) =

4(1 + 2c)2

c2 + c
∈ (−∞, 0] ∪ (16,∞), ε(Γ1

2(c)) = sign(c2 + c),

α(Γ1
3(c)) =

4(1 + 2c)2

c2 + c
∈ (−∞, 0] ∪ (16,∞), ε(Γ1

3(c)) = sign(c2 + c), (2)

α(Γ1
4(c)) = 16, ε(Γ1

4(c)) = 1,

α(Γ1
5(c)) =

16c2

1 + c2
∈ [0, 16), ε(Γ1

5(c)) = 1.

The following is an immediate consequence of Definition 3.4, Theorem 3.6, and Equa-
tion (2).

Theorem 3.7. The following are all possible affine equivalences for the connections
of Definition 3.4.
(i) Γ1

1 and Γ1
4(c) are affine equivalent to Γ1

4(c̃) for any c and c̃.

(ii) Γ1
i (c) and Γ1

j (c̃), i, j ∈ {2, 3} are affine equivalent for c = c̃ or c = −1− c̃.

(iii) Γ1
5(c) is affine equivalent to Γ1

5(c̃) if and only if c = ±c̃.

3.3 Type A connections where Rank{ρ} = 2

In the context of Type A surface geometries with non-degenerate Ricci tensor, linear
equivalence and affine equivalence are the same concept. This vastly simplifies the
analysis.

Theorem 3.8. Let M and M̃ be Type A surface geometries such that ρ and ρ̃ are
non-degenerate. Then M is linearly equivalent to M̃ if and only if M is affinely
equivalent to M̃.

Remark 3.9. Theorem 3.8 fails if the Ricci tensor is permitted to be degenerate. For
example, Theorem 3.2 gives Type A connections which are flat (and hence affinely
equivalent) but not linearly equivalent. It also follows that the structures Γ1

2(c) and
Γ1

3(c) are affinely equivalent but not linearly equivalent.

Proof. Although this follows from work of [3], we give a slightly different derivation
to keep our present treatment as self-contained as possible. It is immediate that
linear equivalence implies affine equivalence. Conversely, suppose ∇1 and ∇2 are two
Type A connections on R2. Let T be a (local) diffeomorphism of R2 intertwining the
two connections. We must show T is linear; the translations play no role.

If M is a Type A affine surface geometry, let K(M) be the Lie algebra of affine
Killing vector fields. If X = a1∂x1 + a2∂x2 ∈ K(M), let LX be the associated Lie
derivative. We have by naturality that LX(ρM) = 0. Make a linear change of
coordinates to ensure ρ = ε1dx

1 ⊗ dx1 + ε2dx
2 ⊗ dx2 where ε2

i = 1. We compute:

0 = LX(ρM)(Y, Y ) = XρM(Y, Y )− 2ρM(LXY, Y ) = XρM(Y, Y )− 2ρM([X,Y ], Y ) .

If we take Y = ∂x1 , we obtain 0 = −2ρM([X, ∂x1 ], ∂x1) = ±2∂x1a1. Consequently
∂x1a1 = 0 and similarly ∂x2a2 = 0. Thus X = a1(x2)∂x1 + a2(x1)∂x2 . If we take
Y = ∂x1 + ∂x2 and argue similarly, we obtain ∂x2a1 ± ∂x1a2 = 0. Thus X = (b1 +
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cx2)∂x1 ± (b2 + cx1)∂x2 . We suppose c 6= 0 and argue for a contradiction. Because
∂x1 and ∂x2 are Killing vector fields, we may suppose without loss of generality that
X = x2∂x1 +εx1∂x2 is a Killing vector field where ε = ±1. The affine Killing equations
LX∇ = 0 become [X,∇Y Z] − ∇Y [X,Z] − ∇[X,Y ]Z = 0 for all Y,Z ∈ C∞(TM).
Letting Y and Z be coordinate vector fields yields

−Γ11
2 + 2Γ12

1ε = 0, −Γ11
1ε+ 2Γ12

2ε = 0,

Γ11
1 − Γ12

2 + Γ22
1ε = 0, Γ11

2 − Γ12
1ε+ Γ22

2ε = 0,

2Γ12
1 − Γ22

2 = 0, 2Γ12
2 − Γ22

1ε = 0.

We solve these equations to see Γ = 0 which is impossible since ρ was assumed non-
degenerate. We conclude therefore K(M) = Span{∂x1 , ∂x2}. Suppose T is an affine
diffeomorphism. Since the translations are Type A affine diffeomorphisms, we may
assume without loss of generality that T (0) = 0. We have T∗K(M) = K(M). Since
T∗(∂xi) = aji∂xj , we have T is linear. �

Definition 3.10. Let ρv,ij := Γik
`Γj`

k, let ψ := Trρ{ρv} = ρijρv,ij , and let
Ψ := det(ρv)/det(ρ).

It is clear that ψ and Ψ are invariant under linear equivalence. Consequently by
Theorem 3.8, ψ and Ψ are affine invariants in the context of Type A geometries where
ρ is non-singular. We refer to [2] for the proof of the following result.

Theorem 3.11. Let Γ and Γ̃ be two Type A connections such that ρΓ and ρΓ̃ are

non-degenerate and have the same signature. Then Γ and Γ̃ are affine equivalent if
and only if (ψ,Ψ)(Γ) = (ψ,Ψ)(Γ̃).

We show the image of (ψ,Ψ) below in Figure 1; the region on the far right is the
moduli space for positive definite Ricci tensor, the central region is the moduli space
for indefinite Ricci tensor, and the region on the left the moduli space for negative
definite Ricci tensor. The left boundary curve between negative definite and indefinite
Ricci tensors is σ` (given in red) and the right boundary curve between indefinite and
positive definite Ricci tensors is σr (given in blue) where

σ`(t) := (−4t2 − t−2 + 2, 4t4 − 4t2 + 2), σr(t) := (4t2 + t−2 + 2, 4t4 + 4t2 + 2) .

Figure 1: Moduli spaces of Type A surfaces with det(ρ) 6= 0.

Note that although (ψ,Ψ) is 1-1 on each of the 3 cases separately, the images intersect
along the curves σ` and σr. We list below the connections of Section 2 where the Ricci
tensor has rank 2 together with the values of ψ and Ψ.
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Definition 3.12. (i) For a1 + a2 6= 1 and a1a2 6= 0, set

Γ2
r(a1, a2) :=

Γ(a2
1 + a2 − 1, a2

1 − a1, a1a2, a1a2, a
2
2 − a2, a1 + a2

2 − 1)

a1 + a2 − 1
.

Then Q = Span{ex1

, ex
2

, ea1x
1+a2x

2}, ρ = 1
a1+a2−1

(
a2

1 − a1 a1a2

a1a2 a2
2 − a2

)
,

ψ =
a1−a21+a2+4a1a2+a21a2−a

2
2+a1a

2
2

a1a2
, and Ψ =

1+a1−a21−a
3
1+a2+4a1a2+a21a2−a

2
2+a1a

2
2−a

3
2

a1a2
.

(ii) For b1 6= 1 and (b1, b2) 6= (0, 0), set Γ2
c(b1, b2) := Γ(1 + b1, 0, b2, 1,

1+b22
b1−1 , 0).

Then Q = ex
1{cos(x2), sin(x2), e(b1−1)x1+b2x

2}, ρ =

(
b1 b2

b2
b1+b22
b1−1

)
, det(ρ) =

b21+b22
b1−1 ,

ψ =
2b21+b31+6b22+4b1+b1b

2
2

b21+b22
, and Ψ =

2(2+b21+3b22+2b1+2b1b
2
2)

b21+b22
.

(iii) For a 6= 0, set Γ2
p(a) := Γ(2, 0, 0, 1, a, 1). Then Q = ex

1

Span{1, x1 − ax2, ex
2},

ρ = dx1 ⊗ dx1 + adx2 ⊗ dx2, and (ψ,Ψ) = (7, 10) + 1
a (1, 4).

(iv) Set Γ2
q(±1) := Γ(2, 0, 0, 1,±1, 0). Then Q = ex

1

Span{1, x2, 2x1 ± (x2)2},
ρ = dx1 ⊗ dx1 ± dx2 ⊗ dx2, and (ψ,Ψ) = (7, 10).

Case 1: Linear equivalence whereQ(M) = Span{eL1 , eL2 , eL3}. Suppose that {Li, Lj}
are linearly independent for i 6= j. Let σ be a permutation of the integers {1, 2, 3}.
Introduce new coordinates y1

σ := Lσ(1)(x
1, x2) and y2

σ := Lσ(2)(x
1, x2). Expand

Lσ(3)(x
1, x2) = a1,σy

1
σ + a2,σy

2
σ to express Q(M) = Span{ey1σ , ey2σ , ea1,σy1σ+a2,σy

2
σ} .

This structure is defined by the pair (a1,σ, a2,σ); there are, generically, 6 such pairs
that give rise to the same affine structure up to linear equivalence. We say (a1, a2) ∼
(ã1, ã2) if Γ2

r(a1, a2) is linearly equivalent to Γ2
r(ã1, ã2), i.e. there exists T in GL(R2)

so T ∗ Span{ex1

, ex
2

, ea1x
1+a2x

2} = Span{ex̃1

, ex̃
2

, eã1x̃
1+ã2x̃

2}. Suppose that L1 = x1,
L2 = x2, and L3 = a1x

1 + a2x
2. Let σijk be the permutation 1 → i, 2 → j, 3 → k.

We have

σ123 : y1 = L1, y2 = L2,L3 = a1y
1 + a2y

2, (a1, a2) ∼ (a1, a2).

σ213 : y1 = L2, y2 = L1,L3 = a2y
1 + a1y

2, (a1, a2) ∼ (a2, a1).

σ132 : y1 = L1, y2 = L3,L2 = −a1

a2
y1 +

1

a2
y2, (a1, a2) ∼ (−a1

a2
,

1

a2
).

σ321 : y1 = L3, y2 = L2,L1 =
1

a1
y1 − a2

a1
y2, (a1, a2) ∼ (

1

a1
,−a2

a1
).

σ231 : y1 = L2, y2 = L3,L1 = −a2

a1
y1 +

1

a1
y2, (a1, a2) ∼ (−a2

a1
,

1

a1
).

σ312 : y1 = L3, y2 = L1,L2 =
1

a2
y1 − a1

a2
y2, (a1, a2) ∼ (

1

a2
,−a1

a2
).

We observe that since ψ and Ψ are linear invariants, they are constant under the
action of the group of permutations s3. Although generically s3 acts without fixed
points, there are degenerate cases where the action is not fixed point free.

If det(ρ) > 0 and Tr(ρ) < 0, then ρ is negative definite; if det(ρ) > 0 and
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Tr(ρ) > 0, then ρ is positive definite; if det(ρ) < 0, then ρ is indefinite. The six
lines {x = 0, x = −1, y = 0, y = −1, x + y = 1, x = y} are given in black below;
they further divide the regions where ρ is negative definite (light blue), ρ is positive
definite (yellow), and ρ is indefinite (green); the three regions in different colors can
be further divided into 6 regions under the action of s3.

Figure 2: The six lines.

Case 1a: The Ricci tensor is negative definite. A fundamental region for the moduli
space where ρ is negative definite is the triangle given by the inequalities −1 ≤ y ≤
x < 0; the other 5 fundamental regions are obtained from this one by applying s3;
the regions intersect along the lines x = y, x = −1, and y = −1. The point (−1,−1)
is the singular point which is preserved by s3 which is the maximal symmetry group;
this corresponds to the cusp. We obtain the full moduli space as every Γ where
ρΓ < 0 is represented by 3 distinct exponentials which are, up to linear equivalence,
{ex1

, ex
2

, ea1x
1+a2x

2} for a1a2 6= 0, and 1 6= a1 + a2. This is not true in positive
definite and indefinite setting as we only obtain a part of the moduli space in these
cases. We give the fundamental domain for ρ < 0 below in Figure 3, the images
under s3, and the image in the moduli space. The boundary curve σ` in the moduli
space is the image of the boundary of the open triangle. The curve (ψ(t, t),Ψ(t, t)) for
−1 ≤ t < 0 is given in red and the curve (ψ(t,−1),Ψ(t,−1)) for −1 ≤ t < 0 is given in
blue. These curves are preserved by a Z2 subgroup of s3. The final boundary segment
(0, t) of the triangle for 0 ≤ t ≤ −1 marked in black has no geometric significance.

Figure 3: The fundamental domains for ρ < 0.

Case 1b: The Ricci tensor is indefinite. A fundamental region is given by the in-
equalities 0 < y < x and x+ y > 1. There are portions of the moduli space where the
Ricci tensor is indefinite not present in this fundamental region. The region extends
indefinitely to the right and to the top; there is no boundary. Below in Figure 4,
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we give a fundamental domain and the various images under the symmetric group
s3. The ideal curve (t, 0−) for t ∈ (0, 1) marked in blue maps to the exceptional
ray (7, 10) − t(1, 4), for t > 0; this is not in the image of the moduli space as the
exceptional ray arises from the structures where Q contains a polynomial as we shall
see presently. The curve (2t,−1) for t ∈ (0, 1) marked in red maps to the part of the
boundary curve σr which is below the line Ψ = 10.

Figure 4: The fundamental domains for ρ indefinite.

Case 1c: The Ricci tensor is positive definite. A fundamental region is the triangle
with vertices at {(0, 0), (1, 0), ( 1

2 ,
1
2 )}; the boundary segment (t, t) for 0 < t < 1

2
belongs to the fundamental region, but the boundary segments (t, 0) for 0 ≤ t ≤ 1
and (t, 1− t) for 1

2 ≤ t ≤ 1 do not lie in the fundamental region. There are portions
of the moduli space where the Ricci tensor is positive definite not present in this
fundamental region. The image of the triangle in the moduli space is a bit difficult
to picture. The moduli space ρ > 0 lies to the right of the curve σr. There is
an exceptional ray (7, 10) + t(1, 4) for t ≥ 0 which lies to the right of the curve σr
and which is tangent to this curve at (7, 10). The affine structures with three real
exponentials and ρ > 0 lies to the right of σr and to the left of exceptional ray; these
bounding curves are marked in gray in the moduli space.

In the final two pictures, σr is in red; it is the image of the line (t, t) for 0 < t ≤ 1
2 .

The exceptional ray is marked in blue; it is the boundary (t, 0) for 0 < t < 1 and does
not belong to this part of the moduli space; it is obtained by the structures where Q
contains a polynomial as will be discussed later. The final bounding segment of the
triangle is marked in gray; it is the segment ((1 + t)/2, (1− t)/2) for 0 ≤ t ≤ 1; it lies
on the line a1 + a2 = 1 and has no geometric significance. We refer to Figure 5.
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Figure 5: Positive Ricci tensor.

Case 2: Linear equivalence if Q(M) = Span{eL1 cos(L2), eL1 sin(L2), eL3}. We set
Γ = Γ2

c(b1, b2) where b1 6= 1 and (b1, b2) 6= (0, 0). We have b1 > 1 corresponds to
ρ positive definite and b1 < 1 corresponds to ρ indefinite; (b1, b2) and (b̃1, b̃2) are
linearly equivalent if and only if b1 = b̃1 and b2 = ±b̃2. The two fundamental domains
and the images in the moduli spaces are shown in Figure 6.

Figure 6: Complex exponentials.

Case 3: Q involves non-trivial polynomials. We have Γ = Γ2
p(a) for a 6= 0 or Γ =

Γ2
q(±1). If a > 0, then ρ is positive definite and (ψ,Ψ)(Γ2

p) = (7, 10)+ 1
a (1, 4). And ρ is

positive for Γ = Γ2
q(+1) and we have (ψ,Ψ)(Γ2

q(+1)) = (7, 10). These two structures
give rise to the closed ray (7, 10)+t(1, 4) for t ≥ 0 marked in red in Figure 7. Similarly,
if a < 0, then ρ is negative definite; this structure together with Γ2

q(−1) give rise to
the closed ray (7, 10)− t(1, 4) for t ≥ 0 in the moduli space marked in blue in Figure 7
below. These two rays divide the portion of the moduli space where Q involves 3 real
exponentials (Case 1) from the portion of the moduli space where Q contains complex
exponentials (Case 2). We refer to Figure 7.

Figure 7: The exceptional line Q involves polynomials.
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