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APPROXIMATE BAHADUR EFFICIENCY OF HENZE-MEINTANIS
EXPONENTIALITY TESTS WITH COMPARISON

Marija Cuparić

Abstract. In this paper, we present a class of tests proposed by Henze and Meintanis
which is derived from the empirical characteristic function, and determine the asymptotic
Bahadur efficiencies for two tests from the class. We compare those tests in Bahadur sense
with the likelihood ratio tests and some other recent tests.

1. Introduction

Exponential distribution, besides normal distribution, is one of the commonly used
distributions in practice. As a result, a multitude of goodness-of-fit tests have been de-
veloped for it. Therefore, the comparison of nonparametric tests on the basis of some
quantitative characteristic becomes important in determining the proper test which
is optimal for a given problem. The most widely used method for the comparison of
these tests is via the calculation of their empirical powers.

Henze and Meintanis in [6] proposed a class of consistent tests for exponentiality
based on a characterization involving the characteristic function. They proved that
suitable test statistics have a nondegenerate limit null distribution and calculated
empirical powers for two tests from the class. Those powers were compared with
the empirical powers of previous tests. Obtained results indicate that Henze and
Meintanis tests are serious competitors to the other tests.

Another method to compare tests is to calculate the relative efficiency between
them. Suppose that Θ is the set of all continuous distribution functions on the
real line. We assume that the parametric set Θ0 consists of a single distribution
function from null hypothesis and denote Θ1 = Θ\Θ0. Let {Tn} and {Vn} be two
sequences of statistics based on n observations and assigned for testing the same null
and alternative hypotheses, H0(θ ∈ Θ0) and H1(θ ∈ Θ1). Denote by NT (α, β, θ)
the sample size necessary for the sequence Tn in order to attain the power β under
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the level α and the alternative value of parameter θ. Similary is defined NV (α, β, θ).
The relative efficiency of the sequence {Tn} with respect to the sequence {Vn} is

specified as the quantity eT,V (α, β, θ) = NV (α,β,θ)
NT (α,β,θ) . However, explicit computation of

this quantity is often difficult, or even impossible, in practice. Because of that, we
make conclusions about the quality of tests based on the asymptotic relative efficiency
(ARE) which is the limiting value of eT,V (α, β, θ) as α → 0, as β → 1 or as θ → θ0,
while keeping the two other parameters fixed. Depending on whether we are observing
relative efficiencies for the low significant level, high powers or close alternatives, we
distinguish the Bahadur, Hodges-Lehmann, and Pitman ARE, respectively. These
three types are the best known types of ARE. Apart from these three methods, ARE
can be obtained when two out of three parameters converge to their limiting values.
For more details about this topic, we refer to [16].

The Bahadur efficiency has become very popular lately and it is often used as a
measure of test quality [3,9,12,13,15,17,19,20]. One of the reasons is that it does not
require the asymptotic normality of test statistics. In addition, Bahadur and Pitman
efficiency very often locally coincide (see [22]).

Suppose that Tn is a sequence of test statistics whose large values are significant,
i.e. the null hypothesis is rejected whenever Tn > s. Let the following convergence in
Pθ be valid for θ ∈ Θ1

lim
n→∞

1

n
logPθ{Tn > s} = −1

2
cT (θ), (1)

where cT (θ) is the function describing the rate of exponential decrease of the attained
level under the alternative called the Bahadur exact slope of the sequence {Tn}. Then

NT (α, β, θ) ≈ 2 log 1
α

cT (θ) , as α → 0. If it is not possible to find the limit value from (1),

usually the approximate Bahadur efficiency is used. In that case, the exact distri-
bution of {Tn} is replaced by its limiting distribution and the approximate Bahadur
slope can be obtained.

Let F be the limit in the distribution of a sequence of the distribution functions of
the test statistic Tn, and that there exists a constant aT ∈ (0,∞) so that, as s→∞,

log(1 − F (s)) = −aT s
2

2 (1 + o(1)). Suppose that there is a nonnegative function b(θ)

on Θ such that b(θ) > 0 for θ ∈ Θ1 and Tn√
n
→ bT (θ) in Pθ-probability for θ ∈ Θ1. In

such case, the approximate Bahadur slope can be evaluated as (see [5])

c∗(θ) = aT b
2
T (θ). (2)

The approximate Bahadur ARE of a sequence of statistics {Tn} with respect to an-

other sequence {Vn} is defined by e∗T,V (θ) =
c∗T (θ)
c∗V (θ) .

Often the approximate Bahadur ARE is uncomputable for any alternative depend-
ing on θ, but it is possible to calculate the local approximate Bahadur ARE as θ ∈ Θ1

approaches the null hypothesis, i.e. lim
θ→θ0

e∗T,V (θ), θ0 ∈ Θ0.

The approximate and exact slopes are often locally (as θ → θ0 ∈ Θ0) equivalent,
and in that case the approximate ARE gives a notion of the local exact ARE (see [2]).

The aim of this article is to derive the local approximate Bahadur slope of tests
from [6], for various alternatives, and to compare them in Bahadur sense with other



M. Cuparić 171

more recent tests of the exponentiality. Henze and Meintanis in [6] proved that the
limit in the distribution of test statistics is an infinite linear combination of random
variables with chi-square distribution. That is the reason why it is appropriate to use
Bahadur method in this case.

The paper is organized as follows. In Section 2 we introduce test statistics and
present their properties. In Section 3 we obtain the approximate Bahadur slope of this
class of tests for different close alternatives and calculate the approximate Bahadur
ARE against the likelihood ratio tests for these tests. Finally, we compare these tests
with some other tests via approximate Bahadur efficiency.

2. Test statistics

Let ψ(t) = E(exp(itX)) = C(t) + iS(t) be the characteristic function of a non-
negative random variable X, with real part C(t) = E(cos(tX)) and imaginary part
S(t) = E(sin(tX)).

Theorem 2.1 ([10]). Among all continuous non-negative random variables which pos-
sess smooth densities with a finite limit as x→ 0+ and absolutely integral derivatives,
the exponential law with parameter λ is the only one for which S(t) = λtC(t), t ∈ R
holds.

Let X1, . . . , Xn be the sample from distribution F (x), and define the scaled data

Yj =
Xj
Xn

, with Xn = 1
n

∑n
i=1Xi denoting the sample mean. For testing the null

hypothesis H0 : F (x) = 1 − e−λt, λ > 0, against general alternatives based on the
characterization above, Henze and Meintanis in [6] proposed the test statistic

Wn =

∫ ∞
0

(sn(t)− tcn(t))2ω(t)dt, (3)

where sn = 1
n

∑n
j=1 sin(tYj) and cn = 1

n

∑n
j=1 cos(tYj) are empirical counterparts of

real and imaginary part of characteristic function ψ(t) of the unit exponential distribu-
tion. Here, ω(·) denotes a non-negative weight function satisfying

∫∞
0
t2ω(t)dt < ∞.

We examine the efficiency of Wn for weight functions ω1(t) = e−at and ω2(t) = e−at
2

,
where a is a positive tuning parameter.

The statistic Wn can be rewritten as

Wn =

∫ ∞
0

(sn(t)− tcn(t))2ω(t) dt =

∫ ∞
0

(
1

n

n∑
j=1

sin(tYj)− t
1

n

n∑
j=1

cos(tYj)

)2

ω(t) dt

=
1

n2

n∑
j,k=1

∫ ∞
0

(
eitYj − e−itYj

2i
− te

itYj + e−itYj

2

)

×

(
eitYk − e−itYk

2i
− te

itYk + e−itYk

2

)
ω(t) dt
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=
1

n2

n∑
j,k=1

∫ ∞
0

g(Xj , t; λ̂)g(Xk, t; λ̂)ω(t) dt =
1

n2

n∑
j,k=1

Φ(Xj , Xk; λ̂)

where λ̂ = 1
Xn

is a consistent estimator of λ based on X1, . . . , Xn. The role of the

sample mean is to scale the data and make the statistic scale invariant under the null
hypothesis. Therefore we can assume that the parameter of distribution under H0 is
one.

A statistic which is represented as

Vn =
1

nm

∑
1≤i1,...,im≤n

Φ(Xi1 , . . . , Xim),

where Φ is a symmetric kernel function, is called V−statistic of degree m. If kernel
satisfies E(Φ(X1, X2, . . . , Xm)|X1 = x) ≡ 0, for every x ∈ R, the statistic is called
degenerate.

One can show that statistic Wn is degenerate V -statistic of degree two with an
estimated parameter.

3. Approximate Bahadur efficiency

Let G = {G(x, θ), 0 < θ < C} be a family of alternative distribution functions such
that G(x, 0) is exponential distribution and the regularity conditions from [17, As-
sumptions WD] are satisfied. The family G is called the family of close alternatives.
The role of Tn, from the introduction, in this case, is played by the statistic

√
nWn.

The logarithmic tail behaviour of the limiting distribution of Wn, under the null
hypothesis, is derived in the following lemma.

Lemma 3.1. For the statistic Wn and the given alternative density g(x; θ) from G
the Bahadur approximate slope satisfies the relation c∗W (θ) = bW (θ)

δ1
, where bW (θ) is

the limit in Pθ−probability of Wn, and δ1 is the largest eigenvalue of the operator
A defined as Aq(x) =

∫ +∞
0

Φ(x, y; 1)q(y)dF (y), where Φ∗(x, y;λ) =
∫∞

0
(g(x, t;λ) +

µ′(t;λ)(x− λ))(g(x, t;λ) + µ′(t;λ)(y − λ))ω(t)dt and µ′(t;λ) = ∂Eλ(g(X,t;γ))
∂λ |γ=λ.

Proof. Using the result of Zolotarev [23], we have that the logarithmic tail behavior

of limiting distribution function of W̃n =
√
nWn is log(1 − F

W̃
(s)) = − s2

2δ1
+ o(s2),

s → ∞. The limit in probability of W̃n/
√
n is b

W̃
(θ) =

√
bW (θ). By inserting the

expressions into (2), we obtain the statement of the lemma. �

The limit in the probability of the sequence Wn under the close alternative from
G is given in the following lemma.

Lemma 3.2. For a given close alternative density g(x; θ) whose distribution belongs
to G, we have that the limit in the probability of statistic Wn is

bW (θ) =

( ∞∫
0

∞∫
0

Φ(x, y; 1)h(x)h(y)dx dy + 2µ′(0)

∞∫
0

∞∫
0

Φ′(x, y; 1)g(x; 0)h(y)dx dy
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+
(µ′(0))2

2

∞∫
0

∞∫
0

Φ′′(x, y; 1)g(x; 0)g(y; 0)dx dy

)
· θ2 + o(θ2), θ → 0,

where h(x) = ∂
∂θg(x; 0).

Proof. Since the sample mean converges almost surely to its expected value, by using
the Law of large numbers for V -statistics with estimated parameters (see [7]), we can
conclude that the limit in the probability of statistic Wn is equal to the one of the
W ∗n = 1

n2

∑n
k,j=1 Φ(Xk, Xj ;µ(θ)). Without the loss of generality we may assume that

µ(0) = 1 because the statistic is scale free under the null hypothesis. Then

bW (θ) = Eθ(Φ(X1, X2;µ(θ))) =

∞∫
0

∞∫
0

Φ(x, y;µ(θ))g(x; θ)g(y; θ)dx dy.

Due to the characterization and degeneracy of the statistic, after some calculation, we
get that b′W (0) = 0. Since this term vanishes, it is necessary to determine the second
derivative of the function. We obtain that

b′′W (θ) =

∞∫
0

∞∫
0

∂2

∂θ2
Φ(x, y;µ(θ))

(
∂µ(θ)

∂θ

)2

g(x; θ)g(y; θ)dx dy

+ 2

∞∫
0

∞∫
0

∂

∂θ
Φ(x, y;µ(θ))

∂µ(θ)

∂θ

∂(g(x; θ)g(y; θ))

∂θ
dx dy

+

∞∫
0

∞∫
0

∂

∂θ
Φ(x, y;µ(θ))

∂2µ(θ)

∂θ2
g(x; θ)g(y; θ)dx dy

+

∞∫
0

∞∫
0

Φ(x, y;µ(θ))
∂2(g(x; θ)g(y; θ))

∂θ2
dx dy.

When we restrict to θ = 0, we have

b′′W (0) =2

∞∫
0

∞∫
0

Φ(x, y; 1)h(x)h(y)dx dy + 4µ′(0)

∞∫
0

∞∫
0

Φ′(x, y; 1)g(x; 0)h(y)dx dy

+ (µ′(0))2

∞∫
0

∞∫
0

Φ′′(x, y; 1)g(x; 0)g(y; 0)dx dy,

where the property of kernel symmetry was used. By expanding bW (θ) into Maclaurin
series bW (θ) = bW (0) + b′W (0)θ + 1

2b
′′
W (0)θ2 + o(θ2), we complete the proof. �

Remark 3.3. The previous lemma shows that for statistic Wn estimated parameter
influences expectation, so the result is not the same as the result of Nikitin and
Peaucelle in [17] for V−statistic without an estimated parameter. This happens
because the limiting mean function µ(θ) of the statistic has a nonzero differential at
zero.
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The only value left to be determined before calculating the efficiency is the largest
eigenvalue δ1 of the operator A defined in Lemma 3.1. Since we cannot obtain it
analytically, we use the method introduced in [3] to obtain the approximate value
of δ1.

Now, the local approximate Bahadur ARE may be calculated using Lemmas 3.1
and 3.2.

The exact Bahadur slopes always satisfy the Bahadur-Raghavachari inequality
c(θ) ≤ 2K(θ), whereK(θ) is the Kullback-Leibler information number which measures
the statistical distance between the alternative and the null hypothesis. In contrast
to the exact Bahadur slopes, there is no upper bound for approximate slopes. In
most cases, these slopes are compared with approximate Bahadur slopes of likelihood
ratio tests (see [11]). Under very general conditions the likelihood ratio test (LRT)
has an approximate Bahadur slope equivalent to the double Kullback-Leibler distance
between the alternative and the null hypothesis. Hence, we may consider the local
approximate Bahadur ARE against the LRT. The common alternatives we are going
to consider are:

(i) a Weibull distribution with density g(x, θ) = e−x
1+θ

(1 + θ)xθ, θ > 0, x ≥ 0;

(ii) a Gamma distribution with density g(x, θ) = xθe−x

Γ(θ+1) , θ > 0, x ≥ 0;

(iii) a Linear failure rate distribution with density g(x, θ) = e−x−θ
x2

2 (1 + θx), θ > 0,
x ≥ 0;

(iv) a mixture of exponential distributions with negative weights (EMNW(β)) with

density (see [8]) g(x, θ) = (1 + θ)e−x − θβe−βx, θ ∈
(

0, 1
β−1

]
, x ≥ 0.

Notice that all alternatives belong to G.

For comparison purposes we also calculate the local Bahadur ARE with respect
to LTR of test Wn and of some newer, characterization based tests for the previously
mentioned alternatives. We will consider the following tests:

(i) K
(1)
n,k and I

(1)
n,k, proposed in [9] (originally denoted by D

(k)
n and I

(k)
n , respectively);

(ii) K
(2)
n and I

(2)
n , proposed in [12] (originally denoted by Kn and In, respectively);

(iii) K
(3)
n and I

(3)
n , proposed in [15] (originally denoted by Kn and In, respectively);

(iv) IPn,a and IDn,a, proposed in [13] (originally denoted by JPn,a and JDn,a, respectively).

These tests are based on characterizations presented in [1, 18, 14, 21, 4], respectively.
Some of the tests have limited normal distribution, while others converge in distri-
bution to a supremum of a certain centered Gaussian process whose distribution is
unknown. This is the prime reason to use Bahadur method in the present context.
For the first six tests local Bahadur ARE against LRT were obtained, unlike the last
two, where local approximate Bahadur ARE against LRT were obtained. The exact
and approximate efficiencies coincide locally for all statistics we are considering in
this work.
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3.1 Statistic with weight function ω1(t) = e−at

From the formula (3), with weight function ω1(t) = e−at, we obtain V−statistic with
estimated parameter and kernel

Φ(x, y; λ̂) =
a

2(a2 + λ̂2(x− y)2)
− a

2(a2 + λ̂2(x+ y)2)
+ aλ̂4 a2 − 3λ̂2(x− y)2

(a2 + λ̂2(x− y)2)3

+ aλ̂4 a2 − 3λ̂2(x+ y)2

(a2 + λ̂2(x+ y)2)3
− 2aλ̂(x+ y)

(a2 + λ̂2(x+ y)2)2
,

where λ̂ = 1
xn

. This kernel is symmetric, its first projection is zero, and the limiting
mean function of statistic has a nonzero differential at zero. We can use Lemma 3.2.
Special case of Wn with this kernel is denoted with Tn,a.

In Table 1, we present the largest eigenvalues for the special values of tuning
parameter a which were used by Henze and Meintanis in [6], obtained by using ap-
proximation method from [3].

a 0.5 0.75 1 1.5 2.5
δ1 2.37 0.96 0.50 0.20 0.06

Table 1: Approximate eigenvalues

3.2 Statistic with weight function ω1(t) = e−at
2

From the formula (3), with weight function ω1(t) = e−at
2

, we obtain V−statistic with
estimated parameter and kernel

Ξ(x, y; λ̂) =

√
π

4
√
a

((
1

2a
− λ̂x+ y

a
− λ̂2 (x− y)2

4a2
− 1

)
e−λ̂

2 (x+y)2

4a

+

(
1 +

1

2a
− λ̂2 (x− y)2

4a2

)
e−λ̂

2 (x−y)2
4a

)
,

where λ̂ = 1
xn

. The same conditions as for statistic Tn,a are true and we can use the
same lemma. Special case of Wn with this kernel is denoted with Dn,a.

In Table 2, we present the largest eigenvalues for the special values of tuning
parameter a which were used in Table 1 and obtained in the same way.

a 0.5 0.75 1 1.5 2.5
δ1 0.50 0.31 0.22 0.13 0.07

Table 2: Approximate eigenvalues



176 Henze-Meintanis exponentiality tests with comparison

4. Discussion

Figures 1–4 show the dependence of the local approximate Bahadur ARE with respect
to LRT of statistic Tn,a and Dn,a on the parameter a ∈ (0, 5). We can notice that
local efficiencies are reasonable and significantly influenced by the value of the tuning
parameter in both cases. For both statistics and almost all alternatives, the efficiencies
increase up to a certain point and then decrease. This is not the case only for statistic
Dn,a and Gamma alternative, where the function is decreasing. The figures also
illustrate that statistic Tn,a is more efficient than Dn,a in all cases, except for small
values of a.

Figure 1: Local approximate Bahadur efficiencies w.r.t. LRT for a Weibull alternative

Figure 2: Local approximate Bahadur efficiencies w.r.t. LRT for a gamma alternative

Regarding the comparison with other tests from the figures, we notice that for all
alternatives and some values of a, tests Tn,a and Dn,a have smaller local asymptotic
efficiency than their competitors labeled with In, but larger than competitors labeled
with Kn. Tests labeled with Kn are consistent, unlike the tests labeled with In.
Hence, we may conclude that tests Tn,a and Dn,a have the largest local asymptotic
efficiency of all consistent tests, for some values of a.
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Figure 3: Local approximate Bahadur efficiencies w.r.t. LRT for a LFR alternative

Figure 4: Local approximate Bahadur efficiencies w.r.t. LRT for an EMNW(3) alternative

Additionally, values of local approximate Bahadur ARE with respect to LRT for
all tests which are used previously and for some values of a are presented in Table 3.

5. Conclusion

In theory, the ordering of tests by power is linked more closely to Hodges–Lehmann
efficiency, and should not necessarily coincide with the ordering by local Bahadur
efficiency. That is the reason why, apart from test power, relative Bahadur efficiency
should be used as a measure of test quality. In this paper, we calculated the local
approximate Bahadur ARE of two tests proposed in [6], for some choice of common
alternatives. Among the two tests, we can see that the maximum values of efficiency
for the same alternative are of similar value. However, there is no uniformly better
test between these two tests for all alternatives and all values of a. Comparison with
newer tests has shown that these tests should be taken into consideration when testing
exponentiallity.
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Alt. Weibull Gamma LFR EMNV(3)

K
(1)
n,2 0.092 0.093 0.052 0.149

K
(1)
n,3 0.152 0.138 0.106 0.230

I
(1)
n,2 0.621 0.723 0.104 0.694

I
(1)
n,3 0.664 0.708 0.159 0.799

K
(2)
n 0.258 0.212 0.213 0.364

I
(2)
n 0.746 0.701 0.308 0.916

K
(3)
n 0.277 0.267 0.155 0.396

I
(3)
n 0.750 0.796 0.208 0.844

IPn,0.5 0.812 0.843 0.262 0.888
IPn,0.75 0.833 0.830 0.312 0.931
IPn,1 0.846 0.820 0.349 0.954
IPn,1.5 0.860 0.804 0.405 0.976
IPn,2.5 0.873 0.783 0.476 0.989
IDn,0.5 0.674 0.826 0.117 0.608
IDn,0.75 0.733 0.849 0.160 0.716
IDn,1 0.771 0.857 0.198 0.786
IDn,1.5 0.816 0.859 0.258 0.870
IDn,2.5 0.858 0.846 0.344 0.945
Tn,0.5 0.542 0.602 0.169 0.624
Tn,0.75 0.598 0.598 0.253 0.735
Tn,1 0.601 0.554 0.312 0.748
Tn,1.5 0.526 0.440 0.368 0.651
Tn,2.5 0.350 0.258 0.348 0.404
Dn,0.5 0.490 0.388 0.378 0.626
Dn,0.75 0.419 0.312 0.387 0.555
Dn,1 0.361 0.257 0.376 0.486
Dn,1.5 0.275 0.185 0.337 0.293
Dn,2.5 0.175 0.111 0.260 0.173

Table 3: Local approximate Bahadur efficiencies w.r.t. LRT
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