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MICHAILICHENKO GROUP OF MATRICES OVER SKEW-FIELDS

Alar Leibak

Abstract. In this paper we generalize the Mikhailichenko group for matrices over
skew-fields.

1. Introduction

In [2] Bardakov and Simonov introduced the Mikhailichenko group of square matrices
over a field with respect to nonstandard product of matrices. This group was intro-
duced by Mikhailichenko in studying a classification problem in the theory of physical
structures (see [2] and the references therein).

Since quaternions are widely used in physics, it motivates to generalize the Mi-
khailichenko group for matrices over skew-field of quaternions. In this paper we
generalize the Mikhailichenko group for matrices over an arbitrary skew-field.

2. Dieudonne’ determinant

For the convenience of the reader we recall here the definition and main properties
of Dieudonne’ determinant.! Let IK be a skew-field. Denote by K* its multiplicative
group of nonzero elements and by K the factor group K*/[IK*, K*]. Write 7 for
the homomorphism K* — K. We extend the homomorphism 7 to homomorphism
of monoids K — K U {0} by setting 7(0) = 0. Denote by M,, ,(K) the set of all
m x n-matrices with elements in K. To shorten notation we write M, (IK) instead of

DEFINITION 2.1. Dieudonne’ determinant is the map detp: M, (K) — K% U {0}
satisfying the following properties:
(DD1) detp(AB) =detp(A) - detp(B) for all A, B € M, (K),
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156 Mikhailichenko group of matrices over skew-fields

(DD2) if A’ € M,(K) is obtained from A € M, (KK) by multiplying one row by
A € K from the left, then detp(A’) = w(A)detp(A),

(DD3) if A’ € M, (K) is obtained from A € M, (K) by replacing a row r; by sum of
two different rows 7; +r;, i # j, then detp(EA) = detp(A);

For a matrix A we denote its ith row by A; and ith column by A?. Next we recall
main properties of Dieudonne’ determinant.

THEOREM 2.2. Dieudonne’ determinant has the following properties:
(DD4) matriz A is invertible iff detp(A) # 0;

(DD5) if matriz A" is obtained from matriz A by replacing a row A; by A; + AA;
for some A € K and j # i, then detp(A’") = detp(A);

(DD6) if matriz A’ is obtained from matriz A by replacing a column A* by A*+ AI\
for some A € K and j # i, then detp(A’) = detp(A);

(DD7) if we exchange two rows in matriz A, then detp(A) is multiplied by w(—1);

(DD8) if we exchange two columns in matriz A, then det p(A) is multiplied by w(—1);

(DD9) detp (I’H 0) — x()):

(DD10) if A€ M,(K) and B € M,,(KK) then detp (61 g) =detp(A) - detp(B).

See [1] for the proof.

3. Mikhailichenko group over a skew-field

Let P be a field. In [2], Bardakov and Simonov studied nonstandard matrix operation

X®Y=XVY+XU+UY, X,Ye€M,(P), (1)
where
0...0
U=\ | eMP) and V=(I,—U)I, U
0...0
1...1

They proved that the set G, (P) = {Y € M,(P) | det(VY + U) # 0} is a group
under ® for each n > 2. They also proved that the group G,,(IR) is isomorphic to the
Mikhailichenko group (see [2]).

Let K be a skew-field. Write G,,(K) = {Y € M, (K) | detp(VY + U) # 0}. To
show that the set G,,(K) is a group with respect to the binary operation ® we need
the following lemma.



A. Leibak 157

LEMMA 3.1. For each Y € M, (K) we have
detp(VY +U) = detp(YV + U").

Proof. Direct calculations show that

n
Y11 — Yin Y12 —Yin --- Yi,n—1 — Yin 1+ nyin — Zizl Y1i
Y21 — Yon Y22 — Y2n .- Y2,n—1 — Yon L+ NYon — iy Y2u

YV +U" =
Ynl — Ynn Yn2 — Ynn -+ Ynn—1 — Ynn 1+ NYnn — Z?zl Yni
By (DD10) we have

detp(YV + U") = detp (é Yv(l Ut)

i.e. we add one row and one column to the matrix YV + U?. Next we add second,
third, ..., nth column to the last column. By (DD6), the value of determinant
remains unchanged. Therefore
1 0 0 0 0
0 y11 —¥Yin Y12 = Yin -+ Y1n-1—Yin 1
detp(YV + U?) = detp | 0 Y21 —¥Y2n Y22 = Y2 - Y2n—1 = Y2n 1

0 Yn1 — Ynn Yn2 — Ynn -+ Ynjn—1 — Ynn 1
In the matrix we replace i-th row by the sum i-th row plus first row multiplied by
Yi—1,n from the left (i =2,...,n+1). By (DD6), we have
1 0 0 e 0 0
Yin Y11 — Yin Y12 — Yin -+ Yin—1 — Yin 1
detp(YV + U?) = detp | Y2n Y21 = Y2n Y22 = Y20 - Y2,n-1 — Y2n 1

Ynn Ynl — Ynn Yn2 — Ynn -+ Ynn—1 — Ynn 1
Adding first column to columns 2,3,...,n we get
1 1 1 ... 1 0
Yin Y11 Y12 -+ Yin—1 1
detp(YV 4+ U') = detp | Y2n Y21 922 - Y201 1

Ynn Ynl Yn2 + -+ Ynm—1 1
by (DD6). Finally we exchange first and last column. Then, by (DD8), we have
o1 1 ... 1
Ly v12 - Yin
detp(YV + U) = m(=1)detp | 1 Y21 Y22 - Y2n

1 Ynl Yn2 -+ Ynn
By applying same technique to detp(VY + U) (but that the operations for row and
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columns are interchanged), it can be shown that

01 1 ... 1
) 0 1y Y12 -+ Yin
detp(VY +U) = detp <0 VY—I—U) =m(—1)detp Lyar ya2 - on | I

1 Yn1 Yn2 -+ Ynn
THEOREM 3.2. The set G,,(K) is a group under ®.

Proof. We divide the proof into four steps.
1. We start the proof by showing that G,,(K) is closed under ®.

VIX®Y)+U=VXVY +XU+UY)+U=VXVY +VXU+VU'Y +U
0
=VXVY +VXU+UVY +U?= (VX +U)(VY +U)
0
If X,Y € G,,(K) then by the multiplicativity of Dieudonne’ determinant we have

detp(V(X ® YV)+U)=detp (VX+U)(VY+U)) = detp(VX+U) - detp(VY +U) # 0,
ie. X®Y € Gp(K).

2. Identity element. Next we demonstrate that the matrix

(I,., 0
2= (")

is the identity element with respect to ®. Direct computation yields

~1 0...0

VE+U = Iy 5 (I”I 0> +li i =1
-1 0 0 0...0
1 ... —1n-1 1...1

Hence detp(VE +U) =7(1) #0ie. E € Gp(K).
Since V, E and I,, are symmetric, we also have I, = EV + Ut. From this and
from EU = 0 = U'E we get
E®X=EVX+FEU+U'X=(EV+U")X =1,X = X,
X®E=XVE+XU+U'E=X(VE+U)=XI, =X,

as desired.

3. Associativity. Expanding (X ®Y)® Z and X ® (Y ® Z) and using the equalities
UV =0 = VU! we obtain the associativity identity.

4. Inverse elements. Let X € G,,(K) and we are looking for an element X, such
that X®@ X, = XVX,+XU+U'X, = E,ie. (XV+U"X, = E—XU. If we can show
that XV +U! is an invertible matrix then we have X, = (XV +U")~"Y(E— XU). We
use Dieudonne’ determinant to show that XV +U? is regular i.e. detp(XV +U?) # 0.
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Since X € G,,(K), then by Lemma 3.1 we have detp(XV +U") = detp (VX +U) # 0,
i.e. XV + U? is invertible. Analogously, we are looking for the matrix X; such that
X ®X = X;VX+X,U+U'X = E. From this we get X;(VX+U) =E-U!X. Since
detp(VX+U) # 0 we have that VX +U is invertible and X; = (VX+U)"Y(E-U'X).
To prove the equality X; = X,. we compute

Xi=Xi®eE=XoXeX, ) =X X)® X, =FE® X, = X,. O

4. Embedding the group G, (K) into GL, 1 (K)

Obviously, the mapping ¢(X) = VX 4 U is a homomorphism of the group G,,(K)
into the general linear group GL,, (K).
Bardakov and Simonov showed that, if P is a field, then the Mikhailichenko group
G, (P) can be embedded into the general linear group GLy,41(P) (see [2]). We show
next that if K is a skew-field, then G,,(K) is isomorphic to a subgroup of GL,11(K).
As in [2], we consider the mapping ¢: G,,(K) — GL,+1(K)

0

B(X) = vasU ] @
1

T T |
THEOREM 4.1. The group G,(K) can be embedded into GLy41(K) for any n > 2.
Proof. We divide the proof into two lemmas.

LEMMA 4.2. The mapping ¢ is a homomorphism of groups.

Proof (of Lemma 4.2). Suppose X,Y € G,(K). Then, by Theorem 3.2, (VX +
U)(VY+U)=V(X®Y)+U. From immediate computations we have

0 0
VX +U : VY +U
0 0
Tn1 Tnn ‘ 1 Yn1 Ynn ‘ 1
0 0
_ (VX +U) VY +U) N VIX®Y)+U L,
0 0
Znl o Znn ‘ 1 Znl T Znn 1
where (zp1,- -+, 2nn) = (@n1y oy Znn) (VY +U) + (Ynis - - - Ynn)- Since
-1 Y11 Y12 --- Yin 0...0
Y21 Y22 .- Y2n : :
-1 A : 0...0

-1 ... —-1n—-1 Ynl Yn2 -+ YUnn 1...1
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Y11 — Yn1 e Yin — Ynn
Y21 — Yn1 .. Y2n — Ynn

Yn—1,1 — Yni1 | e Yn—1,n — Ynn 1
1+ (n - 1)yn1 - ZZ;l Ykl --- 1+ (TL - 1)ynn - ZZ;I Ykn

we obtain
n—1 n—1
Znj = Y Tnk(Yks — Ynj) + Tnn (1 + (= Dyn; — ykj) + Ynj
k=1 k=1
n—1 n—1
= @k Whs = Yng) + Y TanYnj — Ykj) + Ton + Ynj
k=1 k=1
n—1
= Z(znk - xnn)(ykj - ynj) + Tpn + Ynj
k=1
foreach 1 < j < n. Put W =X &Y. Then we have (see also [2])
n—1
wig = Y (@it = Tin) (ks — Ynj) + Tin + Ynj-
k=1
From this we get w,,; = z,; for each j. Hence ¢(X)p(Y) = (X ®Y) and the lemma
is proved. O

LEMMA 4.3. The homomorphism ¢ is injective.

Proof (of Lemma 4.3). Suppose ¢(X) = ¢(Y) for some X,Y € G,,(P). Then z,; =
Yn; for each j by (2). Moreover, from x;; — Tn; = yij — Yn; We get x;; = y;; for any
1<i<n-—1andfor any 1 < j < n. Hence X =Y as desired. ]

By previous, the theorem is proved. O

Denote by Hp4+1(K) the subgroup of GL,11(K) consisting of all matrices of the
form

0
Y s
0
ai - Qp ‘ 1
where Y € GL,,(K) is of the form
Y11 Y12 Yin
Y21 Y22 Yon
Yn—1,1 Yn—1,2 o Yn—1,n

1- Z?:_ll yi1 1— Z?:_ll Yz ... 1-— Z?:_ll Yin
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Obviously Im¢ C H,,4+1(K), by (3). Suppose now

0
Y b € Hoy
0
ai -+ Qp ‘ 1
It is easy to check that the equation

0 0
VX+U . Y :
0 0
Tni e Tnn ‘ 1 ap -+ An ‘ 1

has a unique solution X € M, (K). Thus we have the following.
COROLLARY 4.4. The group G,,(K) is isomorphic to the subgroup Hy,11(K) of GLy41(K).
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