The concept of a quasi-king space is introduced, which is a natural generalisation of a king space. In the realm of suborderable spaces, king spaces are precisely the compact spaces, so are the quasi-king spaces. In contrast, quasi-king spaces are more flexible in handling coarser selection topologies. The main purpose of this paper is to show that a weakly orderable space is quasi-king if and only if all of its coarser selection topologies are compact.