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DECOMPOSITIONS OF NORMALITY AND INTERRELATION
AMONG ITS VARIANTS

A. K. Das and Pratibha Bhat

Abstract. Interrelation among some existing variants of normality is discussed and charac-
terizations of these variants are obtained. It is verified that Urysohn’s type lemma and Tietze’s
type extension hold for some of these variants of normality. Decomposition of normality in terms
of near normality and some factorizations of normality in presence of some lower separation axioms
are given.

1. Introduction and preliminaries

To properly study normality in general topology several forms of decomposition
exist in the literature, e.g., Singal and Arya [20] provided decomposition in terms
of almost normality and seminormality. Kohli and Das [8] gave a decomposition
in terms of θ-normality and θ-regularity whereas Kohli and Singh [11] decomposed
normality in terms of weak δ-normality by using Σ-normality. Arhangel’skii and
Ludwig [1] introduced the notion of β-normality and studied the space in detail
in which the authors provided one more decomposition of normality by using β-
normality and κ-normality. Das [3] introduced (weak) (functional) ∆-normality and
decomposed normality in terms of ∆-regularity which is a simultaneous generaliza-
tion of regularity and normality. In this paper, interrelation among some existing
variants of normality is established and some characterizations of these variants
are given. Further, normality is decomposed by using a newly defined notion of
near regularity and in terms of β-normality in presence of other lower separation
axioms.

Let X be a topological space and A ⊂ X. Throughout the present paper
closure of A is denoted by A and interior is denoted by intA. A set A is said
to be regularly closed [12] if U = int U . Complement of a regularly closed set is
known as regularly open. A finite union of regular open sets is called π-open set
and a finite intersection of regular closed sets is called π-closed set. A topological
space X is said to be almost regular [19] if every regularly closed set A and a point
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outside it can be separated by disjoint open sets. A space X is said to be almost
compact [2] if every open cover of X has a finite subcover whose closures covers X.
A space X is said to be almost normal [20] if every pair of disjoint closed sets, one
of which is regularly closed, are contained in disjoint open sets. A space is κ-normal
[22] (mildly normal [21]) if any two disjoint regularly closed sets are contained in
disjoint open sets. A topological space is a Lindelöf space if every open cover has
a countable subcover. A point x is said to be θ-limit point [24] of A if closure of
every neighborhood containing x intersects A. A set Aθ is the θ-closure of A which
contains all θ-limit points of A. A set A is θ-closed if A = Aθ. Complement of a
θ-closed set is known as θ-open set. Similarly a point x is called δ-limit point of
A if every regularly open neighborhood of x intersects A. A set A is said to be
δ-closed if Aδ containing all δ-limit points of A is same as A. Complement of a
δ-closed set is known as δ-open set.

2. Interrelation among variants of normality

Definition 2.1. A topological space X is said to be:
(i) θ-normal [8] if every pair of disjoint closed sets one of which is θ-closed are

contained in disjoint open sets.
(ii) functionally θ-normal(fθ-normal) [8] if for every pair of disjoint closed sets A

and B one of which is θ-closed there exists a continuous function f : X →
[0, 1] such that f(A) = 0 and f(B) = 1.

(iii) weakly θ-normal (wθ-normal) [8] if every pair of disjoint θ-closed sets are
contained in disjoint open sets.

(iv) weakly functionally θ-normal (wfθ-normal) [8] if for every pair of disjoint θ-
closed sets A and B there exists a continuous function f : X → [0, 1] such
that f(A) = 0 and f(B) = 1.

(v) ∆-normal [3] if every pair of disjoint closed sets one of which is δ-closed are
contained in disjoint open sets.

(vi) weakly ∆-normal (w∆-normal) [3] if every pair of disjoint δ-closed sets are
contained in disjoint open sets.

(vii) weakly functionally ∆-normal (wf∆-normal) [3] if for every pair of disjoint
δ-closed sets A and B there exists a continuous function f : X → [0, 1] such
that f(A) = 0 and f(B) = 1.

(viii) α-normal [1] if for any two disjoint closed subsets A and B of X there exist
disjoint open subsets U and V of X such that A ∩ U is dense in A, B ∩ V is
dense in B.

(ix) β-normal [1] if any two disjoint closed sets A and B of X there exist disjoint
open subsets U and V of X such that (A ∩ U) = A, (B ∩ V ) = B and
U ∩ V = φ.

(x) nearly normal [14] if for any pair of nonempty disjoint sets A and B in X, of
which one is δ-closed and the other regularly closed, there exist disjoint open
sets U and V in X such that A ⊆ U and B ⊆ V .
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(xi) quasi-normal [22] if for any two disjoint π-closed subsets A and B of X there
exist two open disjoint subsets U and V of X such that A ⊆ U and B ⊆ V .

(xii) π-normal [7] if for any two disjoint closed subsets A and B of X one of which
is π-closed, there exist two open disjoint subsets U and V of X such that
A ⊆ U and B ⊆ V .

Theorem 2.2. Every almost normal space is nearly normal.

Proof. Since every δ-closed set is closed the proof is obvious.

Theorem 2.3 Every nearly normal space is κ-normal.

Proof. The proof directly follows from the fact that, every regularly closed set
is δ-closed and every δ-closed set is closed.

Remark 2.4. In [16], Mukherjee and Mandal independently introduced the
notion of semi nearly normal spaces during the study of countably nearly paracom-
pact space whereas the same notion was earlier introduced and studied by Das in [3]
with a different name as “∆-normality”. For the sake of continuity of the work, the
notion semi nearly normal or ∆-normal spaces will be referred as ∆-normal spaces
throughout the present paper. The following implications are obvious from the def-
initions and above observations. However, none of these implications is reversible
(see [3, 4, 8–10, 17] and Example 2.5 and Example 2.8 below).

Example 2.5. Example of a space which is nearly normal but not almost
normal. Let X = {a, b, c, d} and τ = {φ, X, {b}, {c}, {a, b, c}, {c, d}, {b, c}, {b, c, d}}.
This space is vacuously nearly normal but not almost normal because there does
not exist disjoint open sets that separate disjoint regularly closed set {a, b} and
closed set {d} respectively.

Urysohn’s type lemma holds for most of the generalized notions of normality.
Whereas Urysohn’s type lemma does not hold for the class of θ-normal and weak
θ-normal spaces defined by Kohli and Das in [8]. Thus the authors in [8] defined
two new notions (weakly)functionally θ-normal spaces. Similarly, ∆-normality de-
fined in [3] satisfies Urysohn’s type lemma in contrary to weak ∆-normality. Near
normality was defined by Mukherjee and Debray in [14] to study nearly paracom-
pact spaces and observed that in a Hausdorff space near paracompactness implies
near normality.
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Theorem 2.6. For a space X, the following are equivalent:
(1) X is nearly normal.
(2) For every δ-closed set A and for every regularly open set B containing A, there

is an open set V such that A ⊆ V ⊆ V ⊆ B.
(3) For every regularly open set B containing a δ-closed set A, there exists a reg-

ularly open set U such that A ⊆ U ⊆ U ⊆ B.
(4) For every regularly closed set B disjoint from the δ-closed set A, there exist

open sets U and V such that A ⊆ U , B ⊆ V and U ∩ V = φ.

Proof. The implications (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (1) are obvious.
To prove (2) ⇒ (3), let B be a regularly open set containing a δ-closed set A,

then there exists an open set V such that A ⊆ V ⊆ V ⊆ B. If int(V ) = U , then
A ⊆ U ⊆ U ⊆ B where U is regularly open.

The following result of [15] shows that Urysohn’s type lemma holds for nearly
normal spaces which is useful in the sequel to obtain an example of a κ-normal
space which is not nearly normal.

Theorem 2.7. [15] A space X is nearly normal if and only if for every disjoint
δ-closed set A and regularly closed set B, there exists a continuous function f : X →
[0, 1] such that f(A) = 0 and f(B) = 1.

Example 2.8. A space which is κ-normal but not nearly normal.
Let X be the simplified Arens square in which S be the unit square and

X = intS ∪ {(0, 0), (1, 0)}. Define the topology on X as defined in [23] by taking
usual Euclidean neighbourhood for every point in intS. The points (0, 0) and (1, 0)
have neighbourhoods of the form Un and Vn respectively, where

Un = {(0, 0)} ∪ {
(x, y) : 0 < x <

1
2
, 0 < y <

1
n

}

and
Vn = {(1, 0)} ∪ {

(x, y) :
1
2

< x < 1, 0 < y <
1
n

}
.

Since every pair of disjoint regularly closed sets in X are separated by disjoint open
sets, the space is κ-normal. But the δ-closed set A = {(0, 0)} disjoint from regularly
closed set B = {(x, y) : 0 < x ≤ 1

2 , 0 < y ≤ 1
2} can’t be functionally separated.

Thus by Theorem 2.7, the space is not nearly normal.
The following theorem gives characterization of nearly normal spaces in terms

of θ-open sets. Since θ-closure of a set defined by Veličko may not be θ-closed [6],
θ-closure operator is not Kuratowski closure operator. In [13], M. Mrs̆ević and D.
Andrijević observed that θ-closure operator is Čech closure operator. Kohli and
Das in [10], obtained uθ-closure operator which is a Kuratowski closure operator.

Definition 2.9. [9] Let X be a topological space and let A ⊂ X. A point
x ∈ X is called a uθ-limit point of A if every θ-open set U containing x intersects
A. Let Auθ denote the set of all uθ-limit points of A.
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Lemma 2.10. [10] The correspondence A 7→ Auθ is a Kuratowski closure
operator.

It turns out that the set Auθ is the smallest θ-closed set containing A. Above
discussed uθ-closure operator is the closure operator in the θ-topology [τθ for the
space (X, τ)].

Theorem 2.11. For a topological space X, the following statements are equiv-
alent
(1) X is nearly normal.
(2) For every pair of disjoint closed sets A and B out of which A is δ-closed and

B is regularly closed there exist disjoint θ-open sets U and V such that A ⊂ U
and B ⊂ V .

(3) For every δ-closed set A and for regularly open set U containing A there exists
a θ-open set V such that A ⊂ V ⊂ Vuθ ⊂ U .

(4) For every regularly closed set A and every δ-open set U containing A there
exists a θ-open set V such that A ⊂ V ⊂ Vuθ ⊂ U .

(5) For every pair of disjoint closed sets A and B, one of which is δ-closed and
the other is regularly closed, there exist θ-open sets U and V such that A ⊂ U ,
B ⊂ V and Uuθ ∩ Vuθ = φ.

Proof. To prove (1)⇒(2), let X be a nearly normal space and A be a δ-closed
set disjoint from the regularly closed set B. Thus by Theorem 2.7, there exists a
continuous function f : X → [0, 1] such that f(A) = 0 and f(B) = 1. Since the
inverse image of a θ-open set is θ-open under a continuous mapping, f−1[0, 1

2 ) and
f−1( 1

2 , 1] are two disjoint θ-open sets containing A and B respectively.
To prove (2)⇒(3), let A be a δ-closed set contained in a regularly open set U .

Here A is a δ-closed set disjoint from the regularly closed set B = X − U . So by
(2), there exist disjoint θ-open sets V and W such that A ⊂ V and B ⊂ W . Thus
A ⊂ V ⊂ X −W ⊂ U . As X −W is θ-closed and Vuθ is the smallest θ-closed set
containing V, A ⊂ V ⊂ Vuθ ⊂ U .

Similarly, the implications (3)⇒ (4) and (4)⇒(5) can be proved and the prove
of (5)⇒(1) is obvious as every θ-open set is open.

Recall that a covering U = {Uα : α ∈ Λ} of a topological space X is said to be
a shrinking of X if there exists a cover V = {Vα : α ∈ Λ} of X such that Vα ⊂ Uα

for each α ∈ Λ.

Theorem 2.12. [14] If X is a nearly normal space then every point finite
regularly open cover of X is shrinkable.

Corollary 2.13. In an almost normal space every point finite regularly open
cover of X is shrinkable.

Theorem 2.14. [3] A topological space X is weakly ∆-normal iff for every
δ-closed set A and a δ-open set U containing A there is an open set V such that
A ⊂ V ⊂ V ⊂ U .



82 A.K. Das, P. Bhat

Theorem 2.15. A topological space X is weakly ∆-normal if and only if every
point finite δ-open cover of X is shrinkable.

Proof. Let U = {Uα : α ∈ Λ} be a point finite open cover of a weakly ∆-normal
space X. Well order the set by assuming Λ = {1, 2, 3, . . . , α, . . . }. Since arbitrary
union of δ-open sets is δ-open [24],

⋃
α>1 Uα is δ-open. Thus A1 = X −⋃

α>1 Uα

is a δ-closed set contained in the δ-open set U1. So by Theorem 2.14, there exists
an open set V1 such that A1 ⊂ V1 ⊂ V1 ⊂ U1. As closure of an open set is
regularly closed and every regularly closed set is δ-closed, V1 is δ-closed. Let A2 =
X − [

V1 ∪
⋃

α>2 Uα

]
. Here A2 is a δ-closed set contained in the δ-open set U2.

Again by Theorem 2.14, there exists a open set V2 such that A2 ⊂ V2 ⊂ V2 ⊂ U2.
Continuing in this manner we obtain a collection V = {Vα : α ∈ Λ} of open sets
which is a shrinking of U provided V covers X. Let x ∈ X, since V is a point finite
open cover of X, x belongs to finitely many members of U , say Uα1, Uα2, . . . , Uαk.
Suppose α = max{α1, α2, . . . , αk}. Now x /∈ Uλ for λ > α and if x /∈ Vβ for β < α,
then x ∈ Aα ∈ Bα. Thus in any case x ∈ Vβ for β ≤ α. Hence V is a shrinking
of U .

Conversely, let A and B be two disjoint δ-closed sets in X. Let U1 = X − A
and U2 = X − B. Here U = {U1, U2} is a point finite δ-open cover of X and thus
by the hypothesis, there exists a shrinking V = {V1, V2} of U = {U1, U2}. Since
V1 ⊂ U1 and V2 ⊂ U2, X − V1 and X − V2 are two disjoint open sets containing A
and B respectively. Hence X is weakly ∆-normal.

Corollary 2.16. In a weakly functionally ∆-normal space every point finite
δ-open cover of X is shrinkable.

Corollary 2.17. In a ∆-normal space every point finite δ-open cover of X
is shrinkable.

The following formulation of δ-embedded set is useful to establish that Tietze’s
type theorem holds for ∆-normal spaces.

Definition 2.18. A subset A of a topological space X is said to be δ-
embedded in X if every δ-closed set in the subspace topology of A is the intersection
of A with a δ-closed set in X.

Theorem 2.19. Let X be a ∆-normal space and A be a δ-closed, δ-embedded
subset of X then
(1) Every continuous function f : A → [−1, 1] defined on the set A can be extended

to a continuous function g : X → [−1, 1].
(2) Every continuous function f : A → R can be extended to a continuous function

g : X → R.

Proof. To prove (1), let X be a ∆-normal space and A be a δ-closed, δ-
embedded subset of X. Suppose f : A → [−1, 1] is a continuous function. Let
A1 = {x ∈ A : f(x) ≥ 1

3} and B1 = {x ∈ A : f(x) ≤ − 1
3}. Since the inverse image

of a δ-closed set is δ-closed under a continuous mapping, A1 and B1 are two disjoint
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δ-closed sets in A. Since A is δ-embedded in X, there exist two δ-closed sets P1 and
P2 in X such that A1 = P1∩A and B1 = P2∩A. As intersection of two δ-closed sets
is δ-closed [24], A1 and B1 are δ-closed in X. Since X is ∆-normal by [3, Theorem
2.2], there exists a continuous function f1 : X → [− 1

3 , 1
3 ] such that f1(A1) = 1

3

and f1(B1) = − 1
3 . It is obvious that |f(x) − f1(x)| ≤ 2

3 for every x ∈ A. So
g1 = f − f1 is a mapping of A into [− 2

3 , 2
3 ]. Clearly A2 = {x ∈ A : g1(x) ≥ 2

9} and
B2 = {x ∈ A : g1(x) ≤ − 2

9} are two disjoint δ-closed sets in A. As A is δ-embedded
and as per the argument mentioned above, A2 and B2 are δ-closed in X. Again
applying ∆-normality of X, there exists a continuous function f2 : X → [− 2

9 , 2
9 ]

such that f2(A2) = 2
9 and f2(B2) = − 2

9 . Here |g − f2| ≤ ( 2
3 )2 on A. Thus

|f − (f1 + f2)| ≤ ( 2
3 )2 on A. Continuing this process we obtained a sequence of

continuous functions {fn} defined on A such that |f −∑n
i=1 fi| ≤ (2

3 )n on A. It
can be easily verified that the function g : X → R defined by g(x) =

∑∞
i=1 fi(x)

for every x ∈ X is a continuous extension of the function f .
The proof of (2) is similar to the proof of (1).
Remark 2.20. In a similar fashion the Tietze’s type theorem also holds for

weakly functionally ∆-normal spaces.

3. Decompositions of normality

Definition 3.1. A topological space X is said to be nearly regular if for every
regularly closed set A and each open set U containing A there exists a δ-open set
V such that A ⊂ V ⊂ U .

Definition 3.2. [25] A topological space X is said to be seminormal if for
every closed set A and each open set U containing A there exists a regularly open
set V such that A ⊂ V ⊂ U .

Definition 3.3. [3] A topological space X is said to be ∆-regular if for every
closed set F and each open set U containing F , there exists a δ-open set V such
that F ⊂ V ⊂ U .

Theorem 3.4. Every ∆-regular space is nearly regular.

From the definitions and above result, the following implications hold. How-
ever, none of these implications is reversible (see [3] and Example 3.5 below).

Example 3.5. Example of a nearly regular space which is not ∆-regular. Let
X be an infinite set with co-finite topology in which the only regularly closed set is
the whole space X. Thus the space is vacuously nearly regular but not ∆-regular
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as for a closed set F containing finite points and contained in an open set U there
does not exists an δ-open set satisfying F ⊂ V ⊂ U .

The following decomposition of almost normality directly follows from defini-
tions.

Theorem 3.6. A space is almost normal iff it is nearly normal and nearly
regular.

Theorem 3.7. In a nearly regular seminormal space the following are equiv-
alent:
(1) X is normal.
(2) X is ∆-normal.
(3) X is π-normal.
(4) X is almost normal.
(5) X is nearly normal.

Proof. The proof of (1)=⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) is obvious from defini-
tions.

Now we have to show (5) =⇒ (1). Let X be a nearly normal, nearly regular,
seminormal space and let A, B be disjoint closed sets in X. By Theorem 3.6, X is
an almost normal, seminormal space. Since A ⊆ X − B, by seminormality , there
exists a regular open set U such that A ⊂ U ⊂ X − B. Then X − U is regularly
closed set disjoint from closed set A. Thus by almost normality there exist disjoint
open sets W and Z such that X − U ⊆ W and A ⊆ Z which implies A ⊆ Z and
B ⊆ W . Hence X is normal.

Theorem 3.8. In a β-normal space the following are equivalent:
(1) X is normal.
(2) X is ∆-normal.
(3) X is π-normal.
(4) X is almost normal.
(5) X is nearly normal.
(6) X is wf∆-normal.
(7) X is w∆-normal.
(8) X is quasi-normal.
(9) X is κ-normal.

Proof. The proof of (1)=⇒ (2)=⇒ (3)=⇒ (4)=⇒ (5)=⇒ (9) and (1)=⇒(2)=⇒
(6)=⇒ (7) =⇒ (8) =⇒ (9) are obvious from definitions. The prove of (9) =⇒
(1) directly follows from the fact that a space is normal iff it is κ-normal and
β-normal [1].

Lemma 3.9. [10] A space X is almost regular iff for every open set U in X,
int(U) is θ-open.
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Theorem 3.10. An almost regular space X is normal iff it is β-normal and
weakly θ-normal.

Proof. Normality implies β-normality and wθ-normality is evident from [1, 8].
Conversely, let X be an almost regular β-normal, weakly θ-normal space. Let A
and B be two disjoint closed sets in X by β-normality of X, there exist open sets U
and V of X such that A∩U is dense in A and B ∩V is dense in B and U ∩V = φ.
This implies A ⊂ U and B ⊂ V . Since U and V are open sets, by almost regularity
of X and by Lemma 3.9, U and V are disjoint θ-closed sets in X. Thus by weak
θ-normality of X, there exist open sets O and P such that U ⊂ O, V ⊂ P . Hence
O and P are two disjoint open sets separating two disjoint closed sets A and B.
Hence the space is normal.

Corollary 3.11. Every almost regular, almost compact β-normal space is
normal.

Proof. Since every almost compact space is weakly θ-normal [8], the proof is
immediate from the above theorem.

Corollary 3.12. Every almost regular, Lindelöf β-normal space is normal.

Proof. As every Lindelöf space is weakly θ-normal [8], the result is obvious.

Corollary 3.13. An almost regular space X is normal iff it is β-normal and
w∆-normal.

Proof. The result immediately follows from the implication that every w∆-
normal space is wθ-normal [3].

Theorem 3.14. A Hausdorff space X is normal iff it is β-normal and w∆-
normal.

Proof. Every normal space is β-normal as well as w∆-normal. Conversely,
let X be a Hausdorff, β-normal, w∆-normal space. Since a Hausdorff w∆-normal
space is almost regular [3], by Theorem 3.10, X is normal.

Theorem 3.15. A T1 space is normal iff it is β-normal and wθ-normal.

Proof. Let X be a T1 wθ-normal and β-normal space. Since every T1 β-normal
space is regular [1], X is a regular wθ-normal space. Again by [5, 2.4] a space X is
regular if and only if every closed set in X is θ-closed. Thus X is normal.

Theorem 3.16. A T1 space is normal iff it is α-normal and θ-normal.

Proof. Let X be a T1 α-normal, θ-normal space. Since every T1 α-normal
space is Hausdorff, by [8, Theorem 3.5], X is normal.
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