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ON LINEAR MAPS APPROXIMATELY PRESERVING
THE APPROXIMATE POINT SPECTRUM

OR THE SURJECTIVITY SPECTRUM

M. Elhodaibi, A. Jaatit

Abstract. Let X and Y be superreflexive complex Banach spaces and let L(X) and L(Y ) be
the Banach algebras of all bounded linear operators on X and Y , respectively. We describe a linear
map φ : L(X) → L(Y ) that almost preserves the approximate point spectrum or the surjectivity
spectrum. Furthermore, in the case where X = Y is a separable complex Hilbert space, we show
that such a map is a small perturbation of an automorphism or an anti-automorphism.

1. Introduction

Many authors are interested in describing additive or linear maps that pre-
serve, compress or depress some distinguished parts of the spectrum of an operator
acting between Banach spaces (see, among others [2–4, 9]). Among these parts, the
approximate point spectrum and the surjectivity spectrum are of special interest.

Recently, in [1], linear maps on L(X), which almost preserve or almost com-
press the spectrum are studied. Motivated by the approximate versions of pre-
serving and compressing the spectrum discussed in [1], we identify in this note the
approximately multiplicative or anti-multiplicative linear maps among all linear
maps φ : L(X) → L(Y ) that almost preserve or almost compress the approximate
point spectrum or the surjectivity spectrum.

2. Notations and preliminaries

Let X and Y be two complex Banach spaces and let L(X, Y ) be the Banach
space of all bounded operators from X into Y . As usual, we abbreviate L(X, X)
to L(X). Let distH denote the Hausdorff distance (on the set of compact subsets
of C) and BX the closed unit ball of X. We write D = {z ∈ C :| z |< 1}.

Recall that the minimum modulus and the surjectivity modulus of an operator
T ∈ L(X, Y ) are defined respectively, see [7], by
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m(T ) = inf{‖Tx‖ : x ∈ X, ‖x‖ = 1} and q(T ) = sup{r ≥ 0 : rBY ⊂ TBX}.
Note that m(T ) > 0 if and only if T is bounded below, i.e., T is injective and has
closed range, and q(T ) > 0 if and only if T is surjective. The approximate point
spectrum and the surjectivity spectrum of T are given respectively by σap(T ) =
{λ ∈ C : m(T − λ) = 0} and σsu(T ) = {λ ∈ C : q(T − λ) = 0}. Recall also that
m(T ∗) = q(T ) and q(T ∗) = m(T ) where T ∗ ∈ L(Y ∗, X∗) is the adjoint of T acting
between the dual spaces of Y and X.

Let T ∈ L(X,Y ). We introduce the two following subsets of C denoted σε
ap(T )

and σε
su(T ) and defined by

σε
ap(T ) := {λ ∈ C : m(T − λ) < ε}

and
σε

su(T ) := {λ ∈ C : q(T − λ) < ε}
for ε > 0. We use the terms pseudo approximate point spectrum and pseudo
surjectivity spectrum to designate them respectively. It is clear that σap(T ) ⊂
σε

ap(T ) and σsu(T ) ⊂ σε
su(T ).

Throughout this paper σ∗(T ) denotes σap(T ) or σsu(T ) and σε
∗(T ) denotes

σε
ap(T ) or σε

su(T ). Let ω denote the minimum modulus if ∗ = ap and let it denote
the surjectivity modulus if ∗ = su.

We will make an extensive use of the following result.

Lemma 2.1. Let T ∈ L(X). Then the following assertions hold.
(i) σ∗(T ) =

⋂
ε>0 σε

∗(T ).
(ii) σε1∗ (T ) ⊂ σε2∗ (T ) for all 0 < ε1 < ε2.

(iii) ασε
∗(T ) = σ

|α|ε
∗ (αT ) for all α 6= 0 and ε > 0.

(iv) σ∗(T ) + εD ⊂ σε
∗(T ) for all ε > 0.

(v) σε
∗(T + S) ⊂ σ

ε+‖S‖
∗ (T ) for all ε > 0 and S ∈ L(X).

(vi) σ∗(T + S) ⊂ σε
∗(T ) for all ε > 0 and S ∈ L(X) with ‖S‖ < ε.

(vii) σε
∗(T ) ⊂ ⋃{σ∗(T + S) : S ∈ L(X), ‖S‖ < ε} for all ε > 0.

Proof. It is immediate to check the assertions (i), (ii) and (iii).
Let T ∈ L(X). It is easy to see that ω(T + S) ≥ ω(T )−‖S‖ for all S ∈ L(X).
Let λ ∈ σ∗(T ) and let α ∈ C such that |α| < ε. It turns out that ω(T − λ −

α)− |α| ≤ ω(T − λ) = 0 and so ω(T − λ− α) < ε which yields (iv).

In order to check (v), let S ∈ L(X) and assume that λ /∈ σ
ε+‖S‖
∗ (T ). Then we

have ω(T − λ) ≥ ε + ‖S‖. Therefore we get ω(T + S − λ) ≥ ω(T − λ) − ‖S‖ ≥ ε.
Thus λ /∈ σε

∗(T + S).
Now, let S ∈ L(X) with ‖S‖ < ε and λ /∈ σε

∗(T ). Then ω(T + S − λ) ≥
ω(T − λ)− ‖S‖ ≥ ε− ‖S‖ > 0. This completes the proof of the assertion (vi).

If λ /∈ σ∗(T + S) for all S ∈ L(X) with ‖S‖ < ε, then ω(T + S − λ) > 0 for
all S ∈ L(X) with ‖S‖ < ε. Observe that ω(T ) = sup{r > 0, ω(T − S) > 0 for all
S ∈ L(X, Y ), ‖S‖ < r}, see [7, Proposition II.9.10]. Hence we get that ω(T −λ) ≥ ε
and so (vii) holds.
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Let us give another basic tool that will be used later in this paper.
Let U ⊂ P(N) be a free ultrafilter on N and denote by µU the finitely additive

{0, 1}-valued measure on N, given by µU (A) = 1 if A ∈ U .
We consider the Banach space `∞(X) of all bounded sequences (xn) with xn ∈

X for all n ∈ N, equipped with the norm ‖(xn)‖ := supn ‖xn‖. Then NU (X) :=
{(xn) ∈ `∞(X) : limU ‖xn‖ = 0} is a closed linear subspace of `∞(X). The quotient
Banach space XU := `∞(X)/NU (X) is called the ultrapower of X with respect to
U . We continue to denote the equivalence class of (xn) also by (xn). It should
cause no confusion if we denote (xn)n∈M by x̂ where µU (M) = 1 and xn ∈ X for
all n ∈ M . The norm on XU is given by

‖x̂‖ = lim
U
‖xn‖ where x̂ = (xn) ∈ XU .

The ultrapower L(X)U is a Banach algebra with respect to the product

T̂ Ŝ = (TnSn) where T̂ = (Tn), Ŝ = (Sn) ∈ L(X)U .

There exists a canonical isometric linear map L(X, Y )U → L(XU , Y U ) which
is defined by

T̂ (x̂) = (Tnxn) where T̂ = (Tn) ∈ L(X, Y )U and x̂ = (xn) ∈ XU .

We consider L(X, Y )U as being a closed subspace of L(XU , Y U ). For more details
on ultrapowers, we refer the reader to [10].

Lemma 2.2. Let X and Y be complex Banach spaces and T̂ = (Tn) ∈
L(X,Y )U ⊂ L(XU , Y U ). Then:

(i) m(T̂ ) = limU m(Tn).

(ii) q(T̂ ) = limU q(Tn).

Proof. (i) According to [7, Theorem II.9.11], we have

m(T ) = inf{‖TS‖, S ∈ L(Y ), ‖S‖ = 1}.
Let ε > 0. Then for each n ∈ N there exists Sn ∈ L(Y ) with ‖Sn‖ = 1 and

‖TnSn‖ < m(Tn) + ε.

Let Ŝ = (Sn) ∈ L(Y )U . Since ‖Ŝ‖ = 1, it turns out that

m(T̂ ) ≤ ‖T̂ Ŝ‖ = lim
U
‖TnSn‖ ≤ lim

U
m(Tn) + ε

which gives m(T̂ ) ≤ limU m(Tn).

Let T̂ = (Tn) ∈ L(X,Y )U ⊂ L(XU , Y U ). Let x̂ = (xn) ∈ XU . We have

‖T̂ x̂‖ = lim
U
‖Tnxn‖ ≥ lim

U
m(Tn)‖xn‖ = lim

U
m(Tn)‖x̂‖

and so m(T̂ ) ≥ limU m(Tn).
(ii) See [1, Lemma 2.5].
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Lemma 2.3. Let X be a complex Banach space, and let Ŝ = (Sn), T̂ = (Tn) ∈
L(X)U ⊂ L(XU ). Suppose that there are bounded sequences of positive numbers
(εn) and (δn) such that σεn∗ (Sn) ⊂ σδn∗ (Tn) almost everywhere on N. Then σε

∗(Ŝ) ⊂
σδ
∗(T̂ ) whenever ε, δ > 0 are such that ε < limU εn and δ > limU δn.

Proof. Let 0 < ε < ε′ < limU εn and limU δn < δ′ < δ. So ε′ < εn and
δn < δ′ almost everywhere. Set ◦σε′

∗ ((Sn)) := {limU λn : λn ∈ σε′
∗ (Sn) µU -almost

everywhere }. First we establish that σε
∗(Ŝ) ⊂ ◦σε′

∗ ((Sn)). Let λ /∈ ◦σε′
∗ ((Sn)), so

λ /∈ σε′
∗ (Sn) µU -almost everywhere and hence ω(Sn−λ) ≥ ε′ µU -almost everywhere.

Therefore ω(Ŝ − λ) = limU ω(Sn − λ) ≥ ε′ > ε, i.e., λ /∈ σε
∗(Ŝ).

Now we show that ◦σε′
∗ ((Sn)) ⊂ σδ

∗(T̂ ). Let λ ∈ ◦σε′
∗ ((Sn)), i.e., λ = limU λn

where λn ∈ σε′
∗ (Sn) µU -almost everywhere. According to Lemma 2.1 (ii) and the

hypothesis of this Lemma, we get

λn ∈ σε′
∗ (Sn) ⊂ σεn∗ (Sn) ⊂ σδn∗ (Tn) ⊂ σδ′

∗ (Tn) almost everywhere on N.

Clearly, T̂ −λ = (Tn−λn). We have so ω(T̂ −λ) = limU ω(Tn−λn) ≤ δ′ < δ. This
implies that λ ∈ σδ

∗(T̂ ).
The two following lemmas are derived from [1], and adapted to pseudo approx-

imate point spectrum and pseudo surjectivity spectrum.

Lemma 2.4. Let X and Y be complex Banach spaces and φ : L(X) → L(Y )
be a surjective linear map such that

σ∗(φ(T )) ⊂ σδ
∗(T ) for all T ∈ L(X), ‖T‖ = 1

and some δ > 0. Then q(φ) ≤ 1 + δ and

σε
∗(φ(T )) ⊂ σ

δ(‖T‖+ ε
k )+ ε

k∗ (T ) for all T ∈ L(X),

ε > 0 and 0 < k < q(φ).

Proof. Let T ∈ L(X), ε > 0 and 0 < k < q(φ). Let then k < τ < q(φ). Let
λ ∈ σε

∗(φ(T )). According to Lemma 2.1 (vii), there exists S ∈ L(Y ) with‖S‖ < ε
such that λ ∈ σ∗(φ(T )+S). It is clear that S = φ(R) for some R ∈ L(X) such that
‖R‖ < ε

τ . Indeed, using the definition of q(φ) and the fact that ‖1
ε S‖ < 1, there is

R′ ∈ L(X) with ‖R′‖ ≤ 1 such that q(φ) 1
ε S = φ(R′), i.e., S = φ( ε

q(φ)R
′), then we

may take R = ε
q(φ)R

′.

Now, let 0 < ρ < (1 + δ)( ε
k − ε

τ ). We first treat the case where T + R 6= 0. By
Lemma 2.1 (ii),(iii),(v) and our hypothesis, we have

λ ∈ σ∗(φ(T ) + S) = σ∗(φ(T + R))

= ‖T + R‖σ∗
(

φ

(
T + R

‖T + R‖
))

⊂ ‖T + R‖σδ
∗

(
T + R

‖T + R‖
)

= σ
δ‖T+R‖
∗ (T + R) ⊂ σ

δ‖T+R‖+ρ
∗ (T + R)

⊂ σ
δ(‖T‖+ ε

τ )+ρ
∗ (T + R) ⊂ σ

δ(‖T‖+ ε
τ )+ρ+ ε

τ∗ (T ) ⊂ σ
δ(‖T‖+ ε

k )+ ε
k∗ (T ).
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If T + R = 0, the inclusion σ∗(φ(T + R)) ⊂ σ
δ(‖T‖+ ε

τ )+ρ
∗ (T + R) is obvious. The

rest of inclusions can be checked as in the precedent case.

Since εD = σε
∗(φ(0)) ⊂ σ

δ(‖0‖+ ε
k )+ ε

k∗ (0) = 1+δ
k εD for all ε > 0 and 0 < k < q(φ),

then q(φ) ≤ 1 + δ.

Lemma 2.5. Let X and Y be complex Banach spaces and φ : L(X) → L(Y )
be a continuous linear map such that

σ∗(T ) ⊂ σδ
∗(φ(T )) for all T ∈ L(X), ‖T‖ = 1

and some δ > 0. Then 1− δ ≤ ‖φ‖ and

σε
∗(T ) ⊂ σ

δ(‖T‖+ε)+νε
∗ (φ(T )) for all T ∈ L(X),

ε > 0 and ν > ‖φ‖.
Proof. Let T ∈ L(X), ε > 0 and ν > ‖φ‖. Let then k < ρ < (ν − ‖φ‖)ε. Let

λ ∈ σε
∗(T ). According to Lemma 2.1 (vii), there exists S ∈ L(Y ) with‖S‖ ≤ ε such

that λ ∈ σ∗(T + S).
We proceed as in the proof of Lemma 2.4. If T + S 6= 0, we get, by Lemma

2.1 (ii), (vi), that

λ ∈ σ∗(T + S) = ‖T + S‖σ∗
(

T + S

‖T + S‖
)

⊂ ‖T + S‖σδ
∗

(
φ

(
T + S

‖T + S‖
))

= σ
δ‖T+S‖
∗ (φ(T + S)) ⊂ σ

δ‖T+S‖+ρ
∗ (φ(T + S))

⊂ σ
δ(‖T‖+ε)+ρ
∗ (φ(T ) + φ(S)) ⊂ σ

δ(‖T‖+ε)+ρ+‖φ‖ε
∗ (φ(T )) ⊂ σ

δ(‖T‖+ε)+νε
∗ (φ(T ))

If T +S = 0, obviously, σ∗(T +S) ⊂ σ
δ(‖T+S‖+ρ
∗ (φ(T +S)) and it follows, similarly

to the precedent case, the desired inclusion. By taking T = 0 in the inclusion
checked, we have

εD = σε
∗(0) ⊂ σ

δ(‖0‖+ε)+νε
∗ (φ(0)) = (δ + ν)εD

for all ε > 0 and ν > ‖φ‖. Then 1− δ ≤ ‖φ‖.
The following result (see for instance [2, 3, 4], will be important in the sequel.

Lemma 2.6. Let X and Y be complex Banach spaces and let A and B be
standard operator algebras on X and Y , respectively. Let φ : A → B be a linear
map. Suppose that either of the following conditions hold:
(1) φ : A → B is surjective and σ∗(φ(T )) = σ∗(T ) for all T ∈ A or
(2) φ : A → B is bijective and σ∗(φ(T )) ⊂ σ∗(T ) for all T ∈ A or
(3) φ : A → B is bijective and σ∗(T ) ⊂ σ∗(φ(T )) for all T ∈ A.

Then either there exists an invertible operator A ∈ L(X, Y ) such that φ(T ) =
ATA−1 for all T ∈ A or there exists an invertible operator A ∈ L(X∗, Y ) such that
φ(T ) = AT ∗A−1 for all T ∈ A. In the last case, X and Y are reflexive.
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3. Main results

Before formulating our results, we introduce the following quantities (see [6]) :

mult(φ) := sup{‖φ(TS)− φ(T )φ(S)‖ : T, S ∈ L(X), ‖T‖ = ‖S‖ = 1},
amult(φ) := sup{‖φ(TS)− φ(S)φ(T )‖ : T, S ∈ L(X), ‖T‖ = ‖S‖ = 1}

which allow to measure respectively the multiplicativity and the anti-multiplicativity
of φ.

The following theorems are given for superreflexive Banach spaces. For details
on this type of spaces, see for instance [5, 11]. Recall that if X is a superreflex-
ive Banach space then the Banach algebra L(X)U is an unital standard operator
algebra on XU (see [1, Lemma 2.2 ].

Proposition 3.1. Let X and Y be complex Banach spaces. Let (φn) be a
sequence of surjective linear maps from L(X) onto L(Y ) and let φ̂ be the linear
map (φn) from L(X)U ⊂ L(XU ) into L(Y )U ⊂ L(Y U ). The following assertions
hold.

(i) If there exist k, K > 0 and a sequence of positive numbers (εn) tending to
0 such that

σ∗(φn(T )) ⊂ σεn∗ (T ) for all T ∈ L(X), ‖T‖ = 1,

q(φn) > k and ‖φn‖ < K

for each n ∈ N, then

σ∗(φ̂(T̂ )) ⊂ σ∗(T̂ ) for all T̂ = (Tn) ∈ L(X)U .

(ii) If there exist K > 0 and a sequence of positive numbers (εn) tending to 0
such that

σ∗(T ) ⊂ σεn∗ (φn(T )) for all T ∈ L(X), ‖T‖ = 1

and ‖φn‖ < K

for each n ∈ N, then

σ∗(T̂ ) ⊂ σ∗(φ̂(T̂ )) for all T̂ = (Tn) ∈ L(X)U .

Proof. (i) Let T̂ = (Tn) ∈ L(X)U . Let ε > 0 and let ρ such that ε < ρ <
(k + 1)ε. Applying Lemma 2.4, we obtain

σ
ρk

k+1∗ (φn(Tn)) ⊂ σ
εn(‖Tn‖+ ρ

k+1 )+ ρ
k+1∗ (Tn) for all n ∈ N.

Since limU εn(‖Tn‖+ ρ
k+1 ) + ρ

k+1 ≤ limU εn(K + ρ
k+1 ) + ρ

k+1 = ρ
k+1 < ε, it follows

by Lemma 2.3, that

σ
εk

k+1∗ (φ̂(T̂ )) ⊂ σε
∗(T̂ ).
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Consequently, by Lemma 2.1 (i), it turns out that

σ∗(φ̂(T̂ )) = ∩ε>0σ
εk

k+1∗ (φ̂(T̂ )) ⊂ ∩ε>0σ
ε
∗(T̂ ) = σ∗(T̂ ),

as desired.
(ii) Let ε > 0 and let ρ such that ε < ρ < (K−1 + 1)ε. Applying Lemma

2.5 instead of Lemma 2.4, and using the same technique as in the proof of (i), we
conclude the proof of (ii).

In the following theorem, we describe linear maps that almost compress the
approximate point spectrum or the surjectivity spectrum.

Theorem 3.2. Let X and Y be superreflexive Banach spaces. Then for each
K, ε > 0 there is δ > 0 such that if φ : L(X) → L(Y ) is a bijective linear map with

σ∗(φ(T )) ⊂ σδ
∗(T ) for all T ∈ L(X), ‖T‖ = 1

and ‖φ‖, ‖φ−1‖ < K, then

min{mult(φ), amult(φ)} < ε.

Proof. Suppose that there exist K, τ > 0 and a sequence (φn) of bijective
linear maps from L(X) onto L(Y ) verifying

σ∗(φn(T )) ⊂ σ
1
n∗ (T ) for all T ∈ L(X), ‖T‖ = 1,

‖φn‖, ‖φ−1
n ‖ < K

and
min{mult(φn), amult(φn)} ≥ τ

for each n ∈ N. We consider the map

φ̂ = (φn) : L(X)U ⊂ L(XU ) → L(Y )U ⊂ L(Y U ).

The linear map φ̂ is continuous and by [8, Lemma 2.1] it is bijective with inverse
given by φ̂−1 = (φ−1

n ).

Observe that q(φn) = ‖φ−1
n ‖−1 > K−1 for each n ∈ N. Let T̂ = (Tn) ∈ L(X)U .

Using Proposition 3.1 (i), we obtain that

σ∗(φ̂(T̂ )) ⊂ σ∗(T̂ ).

Since L(X)U and L(Y )U are unital standard operator algebras on XU and Y U

respectively, we get, by Lemma 2.6, that φ̂ is either a homomorphism or an anti-
homomorphism. Since mult(φ̂) = limU mult(φn) and amult(φ̂) = limU amult(φn)
(see [1, Lemma 3.4]), we have

lim
U

min{mult(φn), amult(φn)} = min{lim
U

mult(φn), lim
U

amult(φn)}
= min{mult(φ̂), amult(φ̂)} = 0

which yields a contradiction.
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Note that a Hilbert space is supereflexive. As an application of the above
theorem in the context of a Hilbert space, we give the following result.

Corollary 3.3. Let H be a separable Hilbert space. Then for each K, ε > 0
there is δ > 0 such that if φ : L(H) → L(H) is a bijective linear map with

σ∗(φ(T )) ⊂ σδ
∗(T ) for all T ∈ L(X), ‖T‖ = 1

and ‖φ‖, ‖φ−1‖ < K, then ‖φ − ψ‖ < ε for some automorphism or anti-automor-
phism ψ : L(H) → L(H).

Proof. The hypothesis of this Corollary and Theorem 3.2 give immediate-
ly for each K, δ′ > 0 that min{mult(φ), amult(φ)} < δ′. It is well known that
jmult(φ) ≤ min{mult(φ), amult(φ)} where jmult(φ) := sup{‖φ(T 2)− φ(T )2‖ : T ∈
L(H), ‖T‖ = 1} (see [6]). Therefore jmult(φ) < δ′.

Let ε > 0 and let ε′ = min{ε, ‖φ−1‖−1}. Clearly q(φ) = ‖φ−1‖−1 > K−1, we
obtain, by [1, Corollary 3.10], that ‖φ − ψ‖ < ε′ for some epimorphism or anti-
epimorphism ψ : L(H) → L(H). Since φ is invertible and ‖φ − ψ‖ < ‖φ−1‖−1,
then ψ is invertible. Consequently ψ is either an automorphism or an anti-
automorphism.

If we replace φ(T ) by T and T by φ(T ) in Theorem 3.2 we obtain, by using
Lemma 2.5 instead of Lemma 2.4, the following theorem.

Theorem 3.4. Let X and Y be superreflexive Banach spaces. Then for each
K, ε > 0 there is δ > 0 such that if φ : L(X) → L(Y ) is a bijective linear map with

σ∗(T ) ⊂ σδ
∗(φ(T )) for all T ∈ L(X), ‖T‖ = 1

and ‖φ‖, ‖φ−1‖ < K, then

min{mult(φ), amult(φ)} < ε.

Using Theorem 3.4 and the same technique as in Corollary 3.3, we get the
following corollary.

Corollary 3.5. Let H be a separable Hilbert space. Then for each K, ε > 0
there is δ > 0 such that if φ : L(H) → L(H) is a bijective linear map with

σ∗(T ) ⊂ σδ
∗(φ(T )) for all T ∈ L(H), ‖T‖ = 1

and ‖φ‖, ‖φ−1‖ < K, then ‖φ − ψ‖ < ε for some automorphism or anti-automor-
phism ψ : L(H) → L(H).

The following theorem gives a description of linear maps which almost preserve
the approximate point spectrum or the surjectivity spectrum.

Theorem 3.6. Let X and Y be superreflexive Banach spaces. Then for each
k, K, ε > 0 there is δ > 0 such that if φ : L(X) → L(Y ) is a surjective linear map
with

distH(σ∗(φ(T )), σ∗(T )) < δ for all T ∈ L(X), ‖T‖ = 1,
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q(φ) > k and ‖φ‖ < K, then

φ is injective and min{mult(φ), amult(φ)} < ε.

Proof. Suppose that there exist k, K, τ > 0 and a sequence (φn) of surjective
linear maps from L(X) onto L(Y ) satisfying

sup
‖T‖=1

distH(σ∗(φn(T )), σ∗(T )) → 0, q(φn) > k, ‖φn‖ < K

and
φn is not injective or min{mult(φn), amult(φn)} ≥ τ

for each n ∈ N. Let εn be a sequence of positive numbers such that

lim εn = 0 and sup
‖T‖=1

distH(σ∗(φn(T )), σ∗(T )) < εn for all n ∈ N.

It is well known that distH(σ∗(φn(T )), σ∗(T )) = max{inf{ε > 0, σ∗(φn(T )) ⊂
σ∗(T ) + εD}, inf{ε > 0, σ∗(T ) ⊂ σ∗(φn(T )) + εD}}. So, by Lemma 2.1 (iv), we
get for all T ∈ L(X), ‖T‖ = 1 that

σ∗(φn(T )) ⊂ σ∗(T ) + εnD ⊂ σεn∗ (T )

and
σ∗(T ) ⊂ σ∗(φn(T )) + εnD ⊂ σεn∗ (φn(T ))

for each n ∈ N.
Now, we consider the continuous linear operator

φ̂ = (φn) : L(X)U ⊂ L(XU ) → L(Y )U ⊂ L(Y U ).

Since q(φ̂) = limU q(φn) ≥ k > 0, so φ̂ is surjective. By Proposition 3.1 (i), (ii), we
obtain that for all T̂ = (Tn) ∈ L(X)U

σ∗(φ̂(T̂ )) = σ∗(T̂ ).

Thus, Lemma 2.6 yields that φ̂ is either an isomorphism or an anti-isomorphism.
We have then that φ̂ is bijective and so (φn) is bijective, thus (φn) is injective,

furthermore we have

lim
U

min{mult(φn), amult(φn)} = min{lim
U

mult(φn), lim
U

amult(φn)}
= min{mult(φ̂), amult(φ̂)} = 0

which is a contradiction.

Corollary 3.7. Let H be a separable Hilbert space. Then for each k,K, ε > 0
there is δ > 0 such that if φ : L(H) → L(H) is a surjective linear map with

distH(σ∗(φ(T )), σ∗(T )) < δ for all T ∈ L(H), ‖T‖ = 1,

q(φ) > k and ‖φ‖ < K, then ‖φ − ψ‖ < ε for some automorphism or anti-
automorphism ψ : L(H) → L(H).

Proof. Using Theorem 3.6 and [1, Corollary 3.10], we proceed as in the proof
of Corollary 3.3.
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