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FIXED POINT THEOREMS ON S-METRIC SPACES
Shaban Sedghi and Nguyen Van Dung

Abstract. In this paper, we prove a general fixed point theorem in S-metric spaces which is
a generalization of Theorem 3.1 from [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik 64 (2012),
258-266]. As applications, we get many analogues of fixed point theorems from metric spaces to
S-metric spaces.

1. Introduction and preliminaries

In [13], S. Sedghi, N. Shobe and A. Aliouche have introduced the notion of an
S-metric space as follows.

DEFINITION 1.1. [13, Definition 2.1] Let X be a nonempty set. An S-metric
on X is a function S : X3 — [0,00) that satisfies the following conditions for all
z,y, 2,0 € X.

(S1) S(x,y,2z) =0if and only if x = y = 2.
(52) S(z,y,2) < S(x,2,0) + S(y,y,a) + 5(2,2,0a).
The pair (X, .5) is called an S-metric space.

This notion is a generalization of a G-metric space [11] and a D*-metric space
[14]. For the fixed point problem in generalized metric spaces, many results have
been proved, see [1, 7, 9, 10], for example. In [13], the authors proved some
properties of S-metric spaces. Also, they proved some fixed point theorems for
a self-map on an S-metric space.

In this paper, we prove a general fixed point theorem in S-metric spaces which
is a generalization of [13, Theorem 3.1]. As applications, we get many analogues of
fixed point theorems in metric spaces for S-metric spaces.

Now we recall some notions and lemmas which will be useful later.
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DEFINITION 1.2. [2] Let X be a nonempty set. A B-metric on X is a function
d : X? — [0,00) if there exists a real number b > 1 such that the following
conditions hold for all z,y,z € X.

(B1) d(z,y) =0if and only if z = y.
(B2) d(z,y) = d(y, z).
(B3) d(=, 2) < bld(x,y) + d(y, 2)].
The pair (X, d) is called a B-metric space.

DEFINITION 1.3. [13] Let (X, S) be an S-metric space. For » > 0 and z € X,
we define the open ball Bg(z,r) and the closed ball Bg[x, r] with center z and radius
r as follows

BS(ZEJ") = {y €X: S(y,y,l’) < T},

BS[‘raT] = {y €X: S(yvyax) < 7‘}.
The topology induced by the S-metric is the topology generated by the base of all
open balls in X.

DEFINITION 1.4. [13] Let (X, S) be an S-metric space.

(1) A sequence {z,} C X converges to x € X if S(xn,zpn,z) — 0 as n — oo.
That is, for each € > 0, there exists ng € N such that for all n > ng we have
S(xp, Ty, ) < e. We write z,, — x for brevity.

(2) A sequence {x,} C X is a Cauchy sequence if S(xy, Tpn, Tm) — 0 asn,m — oo.
That is, for each € > 0, there exists ng € N such that for all n, m > ng we have
S(Tny Ty T) < €.

(3) The S-metric space (X, S) is complete if every Cauchy sequence is a convergent
sequence.

LEMMA 1.5. [13, Lemma 2.5] In an S-metric space, we have
S(z,z,y) = S(y,y,x)

forallxz,y € X.

LEMMA 1.6. [13, Lemma 2.12] Let (X,S) be an S-metric space. If v, — x
and yn, — y then S(zy,, n, yn) — S(z,z,y).

As a special case of [13, Examples in page 260] we have the following

ExaMPLE 1.7. Let R be the real line. Then

S(w,y,2) = o — 2 + |y — »

for all z,y,z € R is an S-metric on R. This S-metric on R is called the usual
S-metric on R.

2. Main results
First, we prove some properties of S-metric spaces.

PROPOSITION 2.1. Let (X, S) be an S-metric space and let

d(z,y) = S(z,z,y)
for all x;y € X. Then we have
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(1) d is a B-metric on X;
(2) 2 — z in (X,9) if and only if x, — x in (X,d);
(3) {xn} is a Cauchy sequence in (X, S) if and only if {x,} is a Cauchy sequence
in (X,d).
Proof. For the statement (1), conditions (B1) and (B2) are easy to check. It
follows from (S2) and Lemma 1.5 that
d(z,z) = S(z,x,2) < S(z,z,y) + S(z,z,y) + S(z,2,9)
=28(z,z,y) + S(y,y, 2) = 2d(x,y) + d(y, 2)
d(z,2) = S(z,2z,2) < S(z,2,y) + S(z,2,9) + S(z,z,y)
=25(z,2,y) + S(z,x,y) = 2d(y, z) + d(z,y).
It follows that d(x, z) < 3/2[d(z,y) + d(y, z)]. Then d is a B-metric with b = 3/2.
Statements (2) and (3) are easy to check. m
The following property is trivial and we omit the proof.

PROPOSITION 2.2. Let (X, S) be an S-metric space. Then we have
(1) X is first-countable;
(2) X is regular.

REMARK 2.3. By Propositions 2.1 and 2.2 we have that every S-metric space
is topologically equivalent to a B-metric space.

COROLLARY 2.4. Let f : X — Y be a map from an S-metric space X to an
S-metric space Y. Then f is continuous at x € X if and only if f(x,) — f(z)
whenever T, — T.

Now, we introduce an implicit relation to investigate some fixed point theorems
on S-metric spaces. Let M be the family of all continuous functions of five variables
M :R5 — R4. For some k € [0,1), we consider the following conditions.

(C1) For all z,y,z e Ry, if y < M(z,x,0,2,y) with 2 < 2z 4y, then y < k.
(C2) Forally e Ry, if y < M(y,0,y,y,0), then y = 0.
(C3) If x; < y; + 2; for all z;,y;,2; € Ry, 4 <5, then

M(z1,...,25) < M(y1,...,y5) + M(z1,...,25).

Moreover, for all y € X, M(0,0,0,y,2y) < ky.

REMARK 2.5. Note that the coefficient & in conditions (C1) and (C3) may be
different, for example, k; and k3 respectively. But we may assume that they are
equal by putting k¥ = max{k;, k3}.

A general fixed point theorem for S-metric spaces is as follows.

THEOREM 2.6. Let T' be a self-map on a complete S-metric space (X,S) and
STz, Tz, Ty) < M(S(x,z,y),S(Tz, Tz, z),S(Tx,Tx,y),

S(Ty,Ty,x),5(Ty,Ty,y)) (2.1)
forall x,y,z € X and some M € M. Then we have
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(1) If M satisfies the condition (C1), then T has a fized point. Moreover, for any
xo € X and the fized point x, we have

2k"
S(Txy, Twn, ) <
(Tzp, Ty, x) T %

S(Z‘o,xo,T.ﬁo).

(2) If M satisfies the condition (C2) and T has a fixed point, then the fixed point
18 unique.

(3) If M satisfies the condition (C3) and T has a fized point z, then T is continuous
at x.

Proof. (1) For each xgp € X and n € N, put 2,11 = Tzy,. It follows from (2.1)
and Lemma 1.5 that

S(Tna1; Tnat, Tnaa) = ST, Tey, Txpi)
< M (S(@ns Tny Tng1)s S(Tnt1, Tntt, Tn)y S (Tng1s Tngts Tng),
S(Tnt2: Tnt2,Tn), S(xn+2vxn+27xn+1))
= M (S(zn, T, Tnt1), S(@n, Tns Tni1), 0,
S(xn, Tn, Tnaa), S(Tnt1, Tnti, xn+2)).
By (S2) and Lemma 1.5 we have
S(Tn, Tn, Tnto) < 25T, Tny Tnt1) + S (@Tnt2, Tnta, Tnt1)
=25(xn, Tny Tny1) + S(@nt1, Tnt1, Tntz2)-
Since M satisfies the condition (C1), there exists k € [0, 1) such that
S(Trg1, Tngt, Tnio) < kS(n, Tn, 2ni1) < E"T1S(20, 20, 21). (2.2)
Thus for all n < m, by using (S2), Lemma 1.5 and (2.2), we have
STy Ty Tm) < 25Ty Ty Tpg1) + STy Ty Trg 1)

= 2S(xn7 T, zn-&-l) + S(In-&-l; Tn+1, xm)

<2[k™ + -+ + k™1 S(zo, w0, 1)

2k™

1—k

Taking the limit as n,m — oo we get S(zn,Zn,%m) — 0. This proves that {x,}
is a Cauchy sequence in the complete S-metric space (X,S). Then x, — 2 € X.
Moreover, taking the limit as m — oo we get
2kn+1
1-k

IN

S(Q?o,l’o,l’l).

S(xp, xn,x) <

S(xo,xo, x1).

It implies that

2k
S(Txn,Txn,x) < 1 kS($0,$0,TZ‘O)-




Fixed point theorems on S-metric spaces 117

Now we prove that x is a fixed point of T. By using (2.1) again we get
S(Tnt1, Tnt1, Tx) = S(Txp, Ty, Tx)
< M(S(mn,xn,m),S(Txn,T:vn,a:),S(Txn,Ta:n,xn),
S(Tx,Tx,x,),S(Tx, Tz, z))
= M(S(xn,xn, ), S(Tnt1, i1, )y S(Tnt1s Tntl, Tn)s
S(Tx,Tx,x,),STx, Tz, 1:))
Note that M € M, then using Lemma 1.6 and taking the limit as n — oo we obtain
S(z,x,Tx) < M(0,0,0, S(Tx,Tx,x), S(Tx,Tx,x)).
Then, from Lemma 1.5, we obtain
S(x,z,Tx) < M(0,0,0,S(m,x,Tx), S(a?,m,Tx,)).

Since M satisfies the condition (C1), then S(z,z,Tx) < k-0 = 0. This proves that
z="Tx.

(2) Let z,y be fixed points of T. We shall prove that x = y. It follows
from (2.1) and Lemma 1.5 that

S(z,x,y) = STz, Tx,Ty)
< M(S(x, x,y),S(Tz, Tx,x), STz, Tx,y),S(Ty, Ty, x),S(Ty, Ty, y))
= M(S(z,2,y),0,5(x,z,y), S(y,y,2),0)
= M(S(x,x,y),O,S(a:,x,y),S(x,x,y),O).
Since M satisfies the condition ((C2), then S(z,z,y) = 0. This proves that z = y.

(3) Let x be the fixed point of T and y, — = € X. By Corollary 2.4, we need
to prove that Ty, — Tx. It follows from (2.1) that

S(z,xz,Ty,) = STz, Tz, Tyy)
< M(S(x, T, yn), S(Tx, Tx,x), STz, Tx,yn),
S(Tyn, Tyn, @), S(TYn, Tyn, Yn))
= M(S(x, ,Yn), 0, S(z, 2, yn), S(Tyn, Tyn, ), S(TYny TYn, yn))
Since M satisfies the condition (C3) and by (S2)
S(TYn, Tynsyn) < 28(TYn; TYn, ) + S(Yn, Yn, ©)
then we have
S(z,x, Ty,) < M(S(a:,x,yn),o, S(z,x,yn),0,5(z, x, yn))
+ M(0,0,0,S(Tyn, Tyn, ), 2.5(Tyn, Tyn, x))
< M(S(x,:c,yn),o, S(z,z,y,),0,59(z, z, yn)) + kS(Tyn, Tyn,x).

Therefore

1
S(x7$7Tyn) < ﬁM(S(%%yn),OvS($7$ayn),075($7$ayn))-
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Note that M € M, hence taking the limit as n — oo we get S(z, x, Ty,) — 0. This
proves that Ty, - x=Tz. m

Next, we give some analogues of fixed point theorems in metric spaces for S-
metric spaces by combining Theorem 2,6 with examples of M € M and M satisfies
conditions (C1), (C2) and (C3). The following corollary is an analogue of Banach’s
contraction principle.

COROLLARY 2.7. [13, Theorem 3.1] Let T be a self-map on a complete S-metric
space (X, S) and
S(Tz, Tz, Ty) < LS(z,z,y)

for some L € [0,1) and all z,y € X. Then T has a unique fized point in X.
Moreover, T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M (z,vy, z,s,t) = L for
some L € [0,1) and all z,y,z,5,t € R;. m

The following corollary is an analogue of R. Kannan’s result in [8].

COROLLARY 2.8. Let T be a self-map on a complete S-metric space (X, S) and
S(Tz,Tz,Ty) < a(S(Tx, Tx,x) + S(Ty,Ty,y))

for some a € [0,1/2) and all z,y € X. Then T has a unique fized point in X.
Moreover, T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M (x,y, z,s,t) = a (y+1)
for some a € [0,1/2) and all z,y, z,s,t € R;. Indeed, M is continuous. First, we
have M (x,z,0,z,y) = a(z +y). So, if y < M(x,z,0,z,y) with z < 2z + y, then
y<a/(l—a),z with a/(1 —a) < 1. Therefore, T satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = 0, then y = 0. Therefore, T satisfies the condi-
tion (C2).
Finally, if x; < y; + 2; for i <5, then
M(xy,...,25) = a(z2 +75) < al(y2 + 22) + (y5 + 25)]
=a(y2 + 22) +a.(ys + 25) = M(y1,...,ys5) + M(z1,...,25).
Moreover
M(0,0,0,y,2y) = a(0 + 2y) = 2ay
where 2a < 1. Therefore, T satisfies the condition (C3). m
ExXAMPLE 2.9. Let R be the usual S-metric space as in Example 1.7 and let
1/2 ifze(0,1)
Tz = .
1/4 fz=1.
Then T is a self-map on a complete S-metric space [0,1] C R. For all z € (3/4,1)
we have

S(Ta, Tz, T1) = S(1/2,1/2,1/4) = [1/2 — 1/4] +|1/2 — 1/4] = 1/2
S(z,z,1) =]z =1+ |z -1 =2z -1] < 1/2.
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Then T does not satisfy the condition of Corollary 2.7. We also have
921/2 — if €0, 1
STz, Tz, x) = /2~ ] 1 v€[0.1)
3/2 ifx=1.
It implies that
5/12((S(T', T, z) + S(Ty, Ty, y))
{ 5/6(11/2 — x|+ (1/2—y|) ifz,yel0,1)
5/12]1/2 — x| +5/8 if z €[0,1),y =1.
Then we get S(Tz, Tz, Ty) < 5/12((S(Tx,Tz,z) + S(Ty,Ty,y)). Therefore, T
satisfies the condition of Corollary 2.8. It is clear that x = 1/2 is the unique fixed
point of T'.

The following corollary is an analogue of R. M. T. Bianchini’s result in [3].

COROLLARY 2.10. Let T be a self-map on a complete S-metric space (X, S)
and
STz, Tz, Ty) < hmax{S(Tz,Tz,x),S(Ty, Ty,y)}
for some h € [0,1) and all z,y € X. Then T has a unique fized point in X.
Moreover, if h € [0,1/2), then T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M(x,y,z,s,t) =
hmax{y,t} for some h € [0,1) and all z,y,z2,s,t € Ry. Indeed, M is continu-
ous. First, we have M(z,z,0, z,y) = hmax{z,y}. So, if y < M(x,x,0,z,y) with
z <2x+y, then y < hz or y < hy. Therefore, y < hx. Therefore, T satisfies the
condition (C1).

Next, if y < M(y,0,y,y,0) = hmax{y,0} = hy, then y = 0 since h < 1/2.
Therefore, T satisfies the condition (C2).

Finally, if z; < y; + 2z; for ¢ < 5, then

M(z1,...,25) = hmax{xs, x5} < hmax{ys + z2,y5 + 25}
< hmax{yz,ys} + hmax{zz, 25} = M(y1,...,y5) + M(z1,...,25).
Moreover, if h € [0,1/2), then 2h < 1 and M (0,0,0,y,2y) = hmax{0,2y} = 2hy
where 2h < 1. Therefore, T satisfies the condition (C3). m

EXAMPLE 2.11. Let R be the usual S-metric space as in Example 1.7 and let
Tx = /3 for all x € [0,1]. We have

STz, Tz, Ty) = S(x/3,2/3,y/3) = |2/3 —y/3| + [2/3 —y/3| = 2/3[x —y|

STz, Tx,x) = S(x/3,2/3,z) = |x/3 — x| + |z/3 — x| = 4/3|z]
S(Ty, Ty,y) = S(y/3,y/3,y) = ly/3 =yl + |y/3 =yl = 4/3]y|
S(Tz,Tz,x) + STy, Ty, y) = 4/3(|z[ + |y|)

max{S(Tx, Tz, z),S(Ty,Ty,y)} = 4/3max{|z|, |y|}.

It implies that S(T'1,71,70) = 2/3, S(T1,T1,1)+S5(70,70,0) = 4/3. This proves
that T' does not satisfy the condition of Corollary 2.8. We also have that 7" satisfies
the condition of Corollary 2.10 with h = 3/4 and T has a unique fixed point 2 = 0.
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The following corollary is an analogue of S. Reich’s result in [12].

COROLLARY 2.12. Let T be a self-map on a complete S-metric space (X, S)

and
STz, Tz, Ty) <aS(x,z,y) +bS(Tz, Tx,z)+cS(Ty,Ty,y)

for some a,b,c >0, a+b+c<1, and all x,y € X. Then T has a unique fized
point in X. Moreover, if ¢ < 1/2, then T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M(z,y, 2, s,t) = ax +
by + ct for some a,b,c > 0, a+b+c < 1 and all z,y,z2,s,t € Ry. Indeed, M is
continuous. First, we have M (z,x,0,z2,y) = ax +bx+cy. So, if y < M(z,z,0, z,y)
with z < 2z 4y, then y < (a +b)/(1 — ¢) x with (a +b)/(1 — ¢) < 1. Therefore, T
satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = ay, then y = 0 since a < 1. Therefore, T satisfies
the condition (C2).

Finally, if z; < y; + 2; for i <5, then
M(xy,...,x5) = ax1 + bxs + cxs
<a(yr +21) +b(y2 + 22) + c(ys + 25)
= (ay1 + bya + cys) + (az1 + bza + cz5)
ZM(yl,...7y5)+M(21,...7Z5).
Moreover M (0,0,0,y,2y) = 2cy where 2¢ < 1. Therefore, T satisfies the condi-
tion (C3). m
ExXAMPLE 2.13. Let R be the usual S-metric space as in Example 1.7 and let
Tx = x/2 for all z € [0,1]. We have
STz, Tz, Ty) = |x/2 —y/2| + x/2 — y/2| = |z — y|
S(x,z,y) = o —yl+ |z -yl =2z -yl
STz, Tx,x) = |z/2 — x|+ |z/2 — x| = |x|.
Then S(Tx,Tx,T0) = |z|, max{S(Tz, Tz, x),S(T0,70,0)} = |z|. This proves that
T does not satisfy the condition of Corollary 2.10. We also have
STz, Tx,Ty) < 1/25(x,z,y) +1/35(Tz, Tz, x) + 1/35(Ty, Ty, y).
Then T satisfy the condition of Corollary 2.12. It is clear that 7" has a unique fixed
point x = 0.

The following corollary is an analogue of S. K. Chatterjee’s result in [4].

COROLLARY 2.14. Let T be a self-map on a complete S-metric space (X, S)
and
STz, Tx,Ty) < hmax{S(Tz,Tz,y),S(Ty, Ty, z)}
for some h € [0,1/3) and all x,y € X. Then T has a unique fized point in X.
Moreover, T is continuous at the fized point.
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Proof. The assertion follows using Theorem 2.6 with M(z,y,z,s,t) =
hmax{z,s} for some h € [0,1/3) and all x,y,z,s,t € Ry. Indeed, M is con-
tinuous. First, we have M(z,x,0,z,y) = hmax{0,z}. So, if y < M(x,z,0,z,y)
with z < 2z 4+ y, then y < 2hx + hy. So y < 2h/(1 — h)x with 2h/(1 — h) < 1.
Therefore, T satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = hy, then y = 0 since h < 1/3. Therefore, T
satisfies the condition (C2).

Finally, if x; < y; + z; for i <5, then

M(z1,...,25) = hmax{xs, x4} < hmax{ys + 2z3,y4 + 24}
< hmax{ys,ys} + hmax{zs, 24} = M(y1,...,y5) + M(z1,...,25).
Moreover
M(0,0,0,y,2y) = hmax{0,y} = hy
where h < 1. Therefore, T satisfies the condition (C3). m

COROLLARY 2.15. Let T be a self-map on a complete S-metric space (X, S)
and
S(Tx, Tz, Ty) < a.(S(Tx, Tz,y)+ STy, Ty, x))
for some a € [0,1/3) and all z,y € X. Then T has a unique fized point in X.
Moreover, T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M (z,y, z,s,t) = a(z + s)
for some a € [0,1/3) and all z,y, 2, s,t € R;. Indeed, M is continuous. First, we
have M(x,2,0,z,y) = a(0 + 2) = az. So, if y < M(z,x,0,z,y) with z < 2z + y,
then y < 2az + ay. So y < 2a/(1 —a)x with 2a/(1 — a) < 1. Therefore, T satisfies
the condition (C1).

Next, if y < M(y,0,y,y,0) = a(y + y) = 2ay then y = 0 since 2a < 2/3.
Therefore, T satisfies the condition (C2).

Finally, if z; < y; + 2; for ¢ <5, then

M(x1,...,25) = a(zs + x4) < alys + 23 + ya + 24)
=a(ys +ya) +alzs + 24) = M(y1,...,y5) + M (21, 25).

Moreover M (0,0,0,y,2y) = a(0 + y) = ay where a < 1. Therefore, T satisfies the
condition (C3). m

ExXAMPLE 2.16. Let R be the usual S-metric space as in Example 1.7 and
let Tx = z/3 for all z € [0,1]. Then we have S(Tx,Tz,Ty) = 2|z/3 — y/3| =
2/3|z —y|, STz, Tx,y) = 2|x/3 —y|, S(Ty,Ty,x) = 2|y/3 — z|. It implies that
S(T1,T1,7T0) = 2/3, S(T'1,71,0) = 2/3, S(T0,70,1) = 2. This proves that T
does not satisfy the condition of Corollary 2.14. We also have

STz, Tx,y) + S(Ty,Ty,x) =2|z/3 — y| + 2|y/3 — x| > 8/3|x — y|.

Therefore, T satisfies the condition of Corollary 2.15. It is clear that T" has a unique
fixed point x = 0.
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COROLLARY 2.17. Let T be a self-map on a complete S-metric space (X, S)
and
STz, Tx, Ty) < aS(z,z,y) + bS(Tx,Tz,y) + cS(Ty, Ty, )
for some a,b,c > 0, a+b+c<1,a+3c<1andall z,y € X. Then T has a
unique fized point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M (z,y, 2, s,t) = ax+bz+
cs for some a,b,c > 0, a+b+c < 1,a+3c < landallz,y,z,s,t € Ry. Indeed, M is
continuous. First, we have M (z,z,0, z,y) = ar+cz. So, if y < M(z,x,0, z,y) with
z < 2x+y, then y < ax+2cz+cy. Soy < (a+2¢)/(1—c) x with (a+2¢)/(1—c) < 1.
Therefore, T satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = ay + by + cy = (a + b+ ¢)y then y = 0 since
a+ b+ ¢ < 1. Therefore, T satisfies the condition (C2).

Finally, if x; < y; + z; for i < 5, then

M(z1,...,25) = ax1 +bas + cva < ayr + 21) + b(ys + 23) + c(ya + 24)
= (ay1 + bys + cys) + (az1 + bzs + cz4)
:M(yl,...7y5)+M(Zl,...7Z5).
Moreover M(0,0,0,y,2y) = cy where ¢ < 1. Therefore, T satisfies the condi-
tion (C3). m
ExAMPLE 2.18. Let R be the usual S-metric space as in Example 1.7
and let Tx = 3/4(1 — z) for all x € [0,1]. Then we have S(Tz, Tz, Ty) =
3/2|lz —y|, STz, Tx,y) = 2|3/4(1 — x) — y|. It implies that S(T1,T1,70) = 3/2,
max{S(7T1,71,0),5(70,70,1)} = max{0,1/2} = 1/2. This proves that T does
not satisfy the condition of Corollary 2.14. We also have
4/55(x,z,y) +0-S(Tx, Tx,y) +0-S(Ty, Ty,z) = (8/5)|x — y| > S(Tz, Tz, Ty).
Therefore, T satisfies the condition of Corollary 2.17. It is clear that T" has a unique
fixed point x = 3/7.
The following corollary is an analogue of G. E. Hardy and T. D. Rogers’ result
in [6].

COROLLARY 2.19. Let T be a self-map on a complete S-metric space (X, S)
and

STz, Tx,Ty) < a158(x,x,y) + a2S(Tx, Tz, x) + a3S(Tx, Tx,y)
+as1S(Ty, Ty, ) + asS(Ty, Ty, y)
for some ay,...,as > 0 such that max{a; +as+3as+as,a1 +az+aq,as+2a5} < 1

and all x,y € X. Then T has a unique fixed point in X. Moreover, T is continuous
at the fized point.

Proof. The assertion follows using Theorem 2.6 with M (z,y, z,s,t) = a1z +
asy +asz+ aygs+ ast for some aq,...,as > 0 such that max{a1 +as+3a4+as, a1 +
az + ag,a4 + 2a5} < 1 and all x,y,2,s,t € Ry. Indeed, M is continuous. First,
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we have M (z,2,0,2,y) = a1z + asx + agz + asy. So, if y < M(z,x,0, z,y) with
z < 2z 4y, then
Yy < a1x + ax + aqz + asy < a1x + asx + a4(2x +y) + asy.

Then y < (a1 + a2 + 2a4)/(1 — ag — as) x with (a1 + a2 +2a4)/(1 — ag — as) < 1.
Therefore, T satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = a1y + a3y + asy = (a1 + a3 + as)y then y = 0
since a1 + as + a4 < 1. Therefore, T satisfies the condition (C2).

Finally, if z; < y; + z; for i <5, then
M(zy1,...,x5) = a1x1 + - + aszs
<ai(yr +21)+ - +as(ys + 25)
= (a1y1 + -+ asys) + (@121 + -+ + aszs)
=M(y1,...,y5) + M(z1,...,25).
Moreover M (0,0,0,y,2y) = asy+2a5y = (as+2a5)y where ag+2as < 1. Therefore,
T satisfies the condition (C3). m
ExaMpLE 2.20. Let T be the map in Example 2.16. Then we have

S(T1,T1,T1/2) =1,

aS(1,1,1/2) +bS(T1,T1,1/2) + ¢S(T1/2,T1/2,1) = a + 2c.
This proves that T' does not satisfy the condition of Corollary 2.17. We also have
0-S(x,x,y)+(3/4)S(Tx, Tz, x)+(3/4)S(Tz, Tz,y)+0-S(Ty, Ty, z)+0-S(Ty, Ty, y)
= (3/4)S(Tz, Tz, x) + (3/4)S(Tz, Tz, y) > S(Tz, Tz, Ty).
Therefore, T satisfies the condition of Corollary 2.19. It is clear that 7" has a unique

fixed point x = 0.
The following corollary is an analogue of L. B. Ciri¢’s result in [5].

COROLLARY 2.21. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tz, Ty) < hmax {S(x,a:, y),S(Tx, Tx,x),S(Tx, Tx,y),
S(Ty,Ty,x),S(Ty,Ty,y)}

for some h € [0,1/3) and all x,y € X. Then T has a unique fized point in X.
Moreover, T is continuous at the fized point.

Proof. The assertion follows using Theorem 2.6 with M(x,y,z,s,t) =
hmax{z,y,z,s,t} for some h € [0,1/3) and all z,y,2,s,t € Ry. Indeed, M
is continuous. First, we have M(z,z,0,z,y) = hmax{z,z,0,z,y}. So, if y <
M(z,2,0,z,y) with 2 < 2z 4y, then y < hx or y < hz < h(2z +y). Then y < kz
with k& = max{h,2h/(1 — h)} < 1. Therefore, T satisfies the condition (C1).

Next, if y < M(y,0,y,y,0) = h.y, then y = 0 since h < 1/3. Therefore, T
satisfies the condition (C2).
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Finally, if z; < y; + z; for i <5, then

M(z1,...,25) = hmax{xy,..., x5} < hmax{y; + 2z1,...,Y5 + 25}
< hmax{yi,...,ys} + hmax{zy,..., 25}
:M(yl,...,y5)+M(Zl,...,25).

Moreover M (0,0,0,y,2y) = 2hy where 2h < 1. Therefore, T satisfies the condi-
tion (C3). m
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