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ON EXTENSION OF GABOR TRANSFORM TO BOEHMIANS

R. Roopkumar

Abstract. On the theory of windowed Fourier transform proposed in the article “Wavelet
transforms for integrable Boehmians, J. Math. Anal. Appl. 296 (2004) 473–478” many conceptual
mistakes are pointed out, and the windowed Fourier transform (Gabor transform) on L2(R) is
extended to a suitable Boehmian space. The properties of the extended Gabor transform are also
established.

1. Introduction

The Nobel laureate in physics D. Gabor [2], first introduced an integral trans-
form in 1964, which provides the joint time-frequency representation of a given
signal. This integral transform is called windowed Fourier transform [4], short time
Fourier transform [3] and Gabor transform [11]. We prefer to use the name Gabor
transform. It is well known that it has various applications in signal processing.

On the other hand, starting from the works [12, 13] of J. Mikusiński and
P. Mikusiński, many Boehmian spaces have been constructed and various inte-
gral transforms have been extended on them. The complete list of references on
Boehmians is available in http://math.ucf.edu/∼piotr/Boehmians.pdf.

Though the title of the article [1] is “Wavelet transforms for integrable Boehmi-
ans”, actually windowed Fourier transform is proposed to extend to the space of
integrable Boehmians [14]. The definition of windowed Fourier transform of a
Boehmian [1] and its properties have so many uncorrectable errors on fundamen-
tals of mathematics, which are discussed in Section 5.

For the theory of wavelet transform in the context of Boehmians, we refer the
reader to [6, 7, 8, 9]. While thinking how the windowed Fourier transform can be
extended to the context of Boehmians, we arrived at this article, in which, we recall
the preliminaries in Section 2, prove the required auxiliary results to construct a
Boehmian space in Section 3 and extend the Gabor transform in Section 4.
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2. Preliminaries

We denote the space of all infinitely differentiable functions on the set R of all
reals with compact supports and the Hilbert space of all square integrable functions
on Ω, respectively by, D(R) and L2(Ω), where Ω = R or R2. Throughout the article,
we fix 0 6= g ∈ L2(R).

Definition 2.1. [4] For f ∈ L2(R), the Gabor transform Ggf of f is defined
by

(Ggf)(b, ξ) =
∫ ∞

−∞
f(x)g(x− b)e−2πixξ dx, ∀(b, ξ) ∈ R2. (1)

It is known from the literature [4, 11] that the Gabor transform has the fol-
lowing properties.

Lemma 2.2. If f ∈ L2(R), then ‖f‖2 = 1
‖g‖2 |||Ggf |||2, where ‖ · ‖2 and ||| · |||2

are the norms on L2(R) and L2(R2), respectively.

Theorem 2.3. The Gabor transform Gg is a continuous mapping from L2(R)
into L2(R2).

Theorem 2.4. The Gabor transform Gg : L2(R) → L2(R2) is linear.

Theorem 2.5. The Gabor transform Gg : L2(R) → L2(R2) is one-to-one.
Indeed, the inversion formula of Gg is given by

f(x) =
1

‖g‖2

∫

R2
(Ggf)(b, ξ)g(x− b)e2πixξ d(b, ξ), ∀x ∈ R. (2)

Theorem 2.6. The range of Gabor transform Gg : L2(R) → L2(R2) is charac-
terized by the subspace of all functions h ∈ L2(R2) satisfying the following condition.

h(b′, ξ′) =
∫

R2
h(b, ξ)

∫ ∞

−∞
e−2πi(ξ′−ξ)xg(x− b′)g(x− b) dx d(b, ξ), (3)

for every (b′, ξ′) ∈ R2.

Theorem 2.7. Let f ∈ L2(R) and let a ∈ R. If (τaf)(x) = f(x − a), and
(eaf)(x) = eiaxf(x), ∀x ∈ R, then (Gg(τaf))(b, ξ) = e2πiξa(Ggf)(b − a, ξ), and
(Gg(e2πaf))(b, ξ) = (Ggf)(b, ξ − a), ∀(b, ξ) ∈ R2.

Next, we recall the abstract construction of Boehmian space and two notions of
convergence on Boehmians from [13, 16]. Let Γ be a topological vector space, (S,¯)
be a commutative semi-group and ⊗ : Γ× S → Γ with the following conditions.
(1) If f, g ∈ Γ and ψ ∈ S, then (f + g)⊗ ψ = (f ⊗ ψ) + (g ⊗ ψ),
(2) If f ∈ Γ, φ ∈ S and α ∈ C, then (αf)⊗ φ = α(f ⊗ φ),
(3) If f ∈ Γ and ϕ,ψ ∈ S, then (f ⊗ ϕ)⊗ ψ = f ⊗ (ψ ¯ ϕ).

Let ∆ be a collection of sequences from S with the following properties.
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(1) If fn → f as n →∞ in Γ and (ϕn) ∈ ∆, fn ⊗ ϕn → f as n →∞,
(2) If (ϕn), (ψn) ∈ ∆, then (ϕn ¯ ψn) ∈ ∆.

Let an equivalence relation ∼ on the collection of all quotients

A = {((fn), (ϕn)) : fn ∈ Γ, ∀n ∈ N, (ϕn) ∈ ∆, fn ⊗ ϕm = fm ⊗ ϕn, ∀ n,m ∈ N}
be defined by

((fn), (ϕn)) ∼ ((gn), (ψn)) if fn ⊗ ψm = gm ⊗ ϕn, ∀ n,m ∈ N
and the collection of all equivalence classes induced by ∼ on A is called the Boehmi-
an space B = B(Γ, (S,¯),⊗, ∆) and a typical element of B is denoted by X =[

(fn)
(ϕn)

]
. We identify Γ as a subset of B, through the identification f 7→

[
(f⊗ϕn)

(ϕn)

]
,

where (φn) ∈ ∆ is arbitrary. We also extend addition, scalar multiplication and
the operation ⊗ to the context of Boehmians by X + Y =

[
(fn⊗ψn+gn⊗ϕn)

(ϕn¯ψn)

]
,

aX =
[

(afn)
(ϕn)

]
and X ⊗ η =

[
(fn⊗η)
(ϕn)

]
, where X =

[
(fn)
(ϕn)

]
, Y =

[
(gn)
(ψn)

]
∈ B,

a ∈ C and η ∈ S.

Lemma 2.8. If X =
[

(fn)
(ϕn)

]
∈ B, then X ⊗ ϕk = fk ∈ Γ for all k ∈ N.

Definition 2.9. A sequence (Xn) of Boehmians is said to δ-converge to X

in B, (denoted by Xn
δ→ X as n →∞) if there exists (δn) ∈ ∆ such that Xn ⊗ δk,

X ⊗ δk ∈ Γ, ∀n, k ∈ N and for each k ∈ N, Xn ⊗ δk → X ⊗ δk as n →∞ in Γ.

Theorem 2.10. Xn
δ→ X as n → ∞ if and only if there exist fn,k, fk ∈ Γ

and (δn) ∈ ∆ such that Xn =
[

(fn,k)
(δk)

]
, X =

[
(fk)
(δk)

]
and fn,k → fk as n →∞ in Γ,

∀k ∈ N.

Definition 2.11. A sequence (Xn) of Boehmians is said to ∆-converge to
X in B (denoted by Xn

∆→ X as n → ∞) if there exists (δn) ∈ ∆ such that
(Xn −X)⊗ δn ∈ Γ, ∀n ∈ N and (Xn −X)⊗ δn → 0 as n →∞ in Γ.

We recall the Boehmian space B(L2(R), (D(R), ∗), ∗,∆0) from [5], where ∗ is
the usual convolution defined by

(φ ∗ ψ)(x) =
∫ ∞

−∞
φ(x− t)ψ(t)dt, x ∈ R

and ∆0 is the set of all sequences (φn) from D(R) satisfying
(1)

∫∞
−∞ φn(x)dx = 1, ∀n ∈ N,

(2)
∫∞
−∞ |φn(x)|dx ≤ M, ∀n ∈ N, for some M > 0,

(3) supp (φn) → 0 as n →∞, where supp (φn) = {x : x ∈ R, φn(x) 6= 0}.
We denote the Boehmian space B(L2(R), (D(R), ∗), ∗, ∆0) by B2

R. It is well
known that B2

R contains the following spaces: L2(R), the space E ′(R) of compactly
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supported distributions and D′L2(R) [17]. Since the Boehmian not representing any
distribution, introduced in [13], is obviously a member of B2

R, we obtain that B2
R is

properly larger than all of these spaces.
We recall the translation of a Boehmian and multiplication of a Boehmian by

the function ea, from [15].

Definition 2.12. Let X =
[

(fn)
(φn)

]
and let a ∈ R. Using the notations τa and

ea introduced in Theorem 2.7, we define

τaX =
[
(τafn)
(φn)

]
and eaX =

[
(λneafn)
(λneaφn)

]
where λn =

(∫ ∞

−∞
ea(t)φn(t) dt

)−1

.

We point out that though the above operations are defined on C∞-Boehmians
in [15], it is easy to observe that these two operations can also be defined on
Boehmians in B2

R.

3. Auxiliary results

In this section, we prove the auxiliary results required to construct the Boehmi-
an space B2

R2 = B(L2(R2), ?, (D(R), ∗),∆0), where ? is defined as follows.

Definition 3.1. For F ∈ L2(R2) and φ ∈ D(R), define

(F ? φ)(b, ξ) =
∫ ∞

−∞
F (b− y, ξ)φ(y)e−2πiyξ dy, ∀(b, ξ) ∈ R2.

Lemma 3.2. If F ∈ L2(R2) and φ ∈ D(R), then |||F ? φ|||2 ≤ C|||F |||2, where
C =

∫∞
−∞ |φ(y)| dy and hence F ? φ ∈ L2(R2).

Proof. The proof follows immediately, if φ = 0. Hence, we assume that φ 6= 0.
Using Jensen’s inequality and Fubini’s theorem, we get

|||F ? φ|||22 ≤
∫

R2

(∫ ∞

−∞
|F (b− y, ξ)φ(y)| dy

)2

d(b, ξ)

≤ C2

∫

R2

(∫ ∞

−∞
|F (b− y, ξ)|2 |φ(y)| dy

C

)
d(b, ξ)

( since |φ(y)|dy

C
is a probability measure on R.)

≤ C

∫ ∞

−∞
|φ(y)| dy

∫

R2
|F (b− y, ξ)|2d(b, ξ)

= C2|||F |||22.

Hence, F ? φ ∈ L2(R2).
Lemma 3.3. If F, F1, F2 ∈ L2(R2), φ ∈ D(R) and c ∈ C, then
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(1) (F1 + F2) ? φ = F1 ? φ + F2 ? φ,
(2) (cF ) ? φ = c(F ? φ).

Proof. Proof of this lemma is straightforward.

Lemma 3.4. If F ∈ L2(R2) and φ1, φ2 ∈ D(R), then F ? (φ1 ∗φ2) = (F ? φ1) ?
φ2.

Proof. Let (b, ξ) ∈ R2 be arbitrary. Then, by applying Fubini’s theorem, we
get

(F ? (φ1 ∗ φ2))(b, ξ)

=
∫ ∞

−∞
F (b− y, ξ)e−2πiyξ(φ1 ∗ φ2)(y) dy

=
∫ ∞

−∞
F (b− y, ξ)e−2πiyξ

∫ ∞

−∞
φ1(y − t)φ2(t) dt dy

=
∫ ∞

−∞

∫ ∞

−∞
F (b− y, ξ)e−2πiyξφ1(y − t) dyφ2(t) dt

(by using the change of variable z = y − t)

=
∫ ∞

−∞

∫ ∞

−∞
F (b− (z + t), ξ)e−2πi(z+t)ξφ1(z) dz φ2(t) dt

=
∫ ∞

−∞

∫ ∞

−∞
F ((b− t)− z), ξ)e−2πizξφ1(z) dz e−2πitξφ2(t) dt

=
∫ ∞

−∞
(F ? φ1)(b− t, ξ)e−2πitξφ2(t) dt

= ((F ? φ1) ? φ2)(b, ξ).

Hence, the lemma follows.

Lemma 3.5. If Fn → F as n →∞ in L2(R2) and φ ∈ D(R), then Fn?φ → F?φ
as n →∞ in L2(R2).

Proof. From Lemma 3.2, we have

|||Fn ? φ− F ? φ|||2 = |||(Fn − F ) ? φ|||2 ≤ C|||Fn − F |||2,
which tends to zero as n →∞, where C =

∫∞
−∞ |φ(y)| dy.

Lemma 3.6. If F ∈ L2(R2) and if (φn) ∈ ∆0, then F ? φn → F as n →∞ in
L2(R2).

Proof. Let ε > 0 be given. We choose Φ ∈ Cc(R2) such that |||F − Φ|||2 < ε,
by using the fact that the space Cc(R2) of all continuous functions on R2 with
compact supports is dense in L2(R2). For each fixed (b, ξ) ∈ R2, if we define
h(t) = Φ(b − t, ξ)e−2πitξ, ∀(t, ξ) ∈ R2, then h ∈ Cc(R) and hence h is uniformly
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continuous on R. Therefore, there exists δ > 0 such that |h(u)−h(v)| < ε, whenever
u, v ∈ R such that |u − v| ≤ δ. Since supp φn → 0 as n → ∞, there exists N ∈ N
such that supp φn is contained in the closed ball in R2 with center origin and radius
δ, ∀n ≥ N . Now we observe the following.

• If supp Φ ⊂ [p, q] × [r, s], then Φ(b − y, ξ) = 0, for every (b, ξ) 6∈ K and for
every y ∈ [−δ, δ], where K = [p− δ, q + δ]× [r, s].

• If Cn =
∫∞
−∞ |φn(x)| dx, then from property (2) of (φn) ∈ ∆0, we have Cn ≤ M ,

∀n ∈ N, for some M > 0.

Hence, applying Jensen’s inequality, for n ≥ N , we get

|||Φ ? φn − Φ|||22 =
∫

K

(∫ ∞

−∞
[Φ(b− y, ξ)e−2πiyξ − Φ(b, ξ)]φn(y) dy

)2

d(b, ξ)

=
∫

K

(∫ ∞

−∞
[h(y)− h(0)]φn(y) dy

)2

d(b, ξ),

≤ Cn

∫

K

∫ δ

−δ

|h(y)− h(0)|2 |φn(y)| dy d(b, ξ)

≤ M2ε2
∫

K

d(b, ξ) = M2m(K)ε2,

where m(K) is the Lebesgue measure of K. Using Lemma 3.2 and the estimate
obtained just above, we get

|||F ? φn − F |||2 ≤ |||(F − Φ) ? φn|||2 + |||Φ ? φn − Φ|||2 + |||Φ− F |||2
< ([1 +

√
m(K)]M + 1)ε.

This completes the proof of the lemma.

Lemma 3.7. If Fn → F as n →∞ in L2(R2) and (φn) ∈ ∆0, then F ?φn → F
as n →∞ in L2(R2).

Proof. Let M > 0 be as in property (2) of (φn) ∈ ∆0. Applying Lemma 3.3,
we get

|||Fn ? φn − F |||2 ≤ |||(Fn − F ) ? φn|||2 + |||F ? φn − F |||2. (4)

In the right hand side of (4), from Lemma 3.2, the first term is dominated by
M |||Fn − F |||2, which tends to zero as n → ∞ and by applying Lemma 3.6, the
second term tends to zero. Hence the lemma follows.

Thus the Boehmian space B2
R2 is constructed. We denote a typical element of

B2
R2 by [(Fn)/(φn)].

4. Extended Gabor transform

In this section, we first prove a convolution theorem for Gabor transform, using
which, we shall define the extended Gabor transform.
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Theorem 4.1. [Convolution theorem for Gabor transform] If f ∈ L2(R) and
φ ∈ D(R), then Gg(f ∗ φ) = Ggf ? φ.

Proof. Let (b, ξ) ∈ R2 be arbitrary. By using Fubini’s theorem, we get

Gg(f ∗ φ)(b, ξ) =
∫ ∞

−∞
e−2πixξ(f ∗ φ)(x)g(x− b) dx

=
∫ ∞

−∞
e−2πixξ

∫ ∞

−∞
f(x− y)φ(y) dy g(x− b) dx

=
∫ ∞

−∞

∫ ∞

−∞
e−2πixξf(x− y)g(x− b) dxφ(y) dy

( by putting x− y = z)

=
∫ ∞

−∞

∫ ∞

−∞
e−2πi(y+z)ξf(z)g(y + z − b) dz φ(y) dy

=
∫ ∞

−∞

∫ ∞

−∞
e−2πizξf(z)g(z − (b− y)) dz e−2πiyξφ(y) dy

=
∫ ∞

−∞
(Ggf)(b− y, ξ)e−2πiyξφ(y) dy

= (Ggf ? φ)(b, ξ).

Thus the theorem follows.

Definition 4.2. The extended Gabor transform Gg : B2
R → B2

R2 is defined by

Gg

([
(fn)
(φn)

])
= [(Ggfn)/(φn)] .

Lemma 4.3. The above notion is well defined.

Proof. Let
[

(fn)
(φn)

]
∈ B2

R. Then fn ∈ L2(R) and (φn) ∈ ∆0. This implies that

Ggfn ∈ L2(R2) and
fn ∗ φm = fm ∗ φn, ∀m,n ∈ N.

Applying Theorem 4.1, we get

Ggfn ? φm = Gg(fn ∗ φm) = Gg(fm ∗ φn) = Ggfm ? φn, ∀m,n ∈ N.

Therefore, ((Ggfn)/(φn)) is a quotient in the context of B2
R and hence it represents

a Boehmian in B2
R. Next we show that the definition of Gg is independent of the

choice of the representatives of the Boehmians. If
[

(fn)
(φn)

]
=

[
(gn)
(ψn)

]
in B2

R. Then we
have

fn ∗ ψm = gm ∗ φn, ∀m,n ∈ N.

By applying Gabor transform and by using Theorem 4.1, we obtain

Ggfn ? ψm = Gggm ? φn, ∀m,n ∈ N.

Hence, Gg

([
(fn)
(φn)

])
= Gg

([
(gn)
(ψn)

])
in B2

R2 .
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Lemma 4.4. The extended Gabor transform Gg : B2
R → B2

R2 is consistent with
the classical Gabor transform Gg : L2(R) → L2(R2).

Proof. Let f ∈ L2(R). Then f is represented by the Boehmian
[

(f∗φn)
(φn)

]
in B2

R,

where (φn) ∈ ∆0. By definition, it is clear that Gg

[
(f∗φn)
(φn)

]
= [(Gg(f ∗ φn))/(φn)] =

[(Ggf ? φn)/(φn)], which is the Boehmian representing the function Ggf in B2
R2 .

Thus the consistency follows.

Theorem 4.5. The extended Gabor transform Gg : B2
R → B2

R2 is linear.

Proof. Proof of this theorem is straight forward by using Theorem 4.1 and the
linearity of the Gabor transform Gg : L2(R) → L2(R2).

Theorem 4.6. The extended Gabor transform Gg : B2
R → B2

R2 is one-to-one.

Proof. Let β1, β2 ∈ B2
R be such that Ggβ1 = Ggβ2. If β1 =

[
(fn)
(φn)

]
and

β2 =
[

(gn)
(ψn)

]
, then by assumption, we have [(Ggfn)/(φn)] = [(Gggn)/(ψn)], and

hence
Ggfn ? ψm = Gggm ? φn, ∀m,n ∈ N. (5)

Then, by applying Theorem 4.1 in (5), we get

Gg(fn ∗ ψm) = Gg(gm ∗ φn), ∀m,n ∈ N.

Since Gg : L2(R) → L2(R2) is one-to-one, we get

fn ∗ ψm = gm ∗ φn, ∀m,n ∈ N.

So, β1 = β2. Thus the theorem follows.

Theorem 4.7. The range of extended Gabor transform Gg : B2
R → B2

R2 is

{γ ∈ B2
R2 : γ has a representation [(Fn)/(ψn)] with Fn ∈ Gg(L2(R)) , ∀n ∈ N}.

Proof. By definition, if γ ∈ Gg(B2
R), then there exists

[
(fn)
(φn)

]
∈ B2

R such that

Gg

([
(fn)
(φn)

])
= γ. Obviously, [(Ggfn)/(φn)] itself is a required representation of γ.

Conversely, let [(Fn)/(φn)] ∈ B2
R2 be such that Fn ∈ Gg(L2(R)), ∀n ∈ N. Then,

for each n ∈ N, there exists fn ∈ L2(R) such that Ggfn = Fn. We claim that
((fn), (φn)) is a quotient in the context of B2

R. From [(Fn)/(φn)] ∈ B2
R2 , we have

Fn ? φm = Fm ? φn, ∀m,n ∈ N.

This implies that

Gg(fn ∗ φm) = Gg(fm ∗ φn), ∀m,n ∈ N.

By invoking the injectivity of Gg : L2(R) → L2(R2), we obtain that our claim holds.

Then,
[

(fn)
(φn)

]
∈ B2

R and Gg

([
fn

φn

])
= [(Ggfn)/(φn)] = [(Fn)/(φn)].
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Theorem 4.8. If β ∈ B2
R and φ ∈ D(R), then Gg(β ∗ φ) = Gg(β) ? φ.

Proof. Let β =
[

(fn)
(φn)

]
. Then, applying Theorem 4.1, we obtain that Gg(β∗φ) =

Gg

([
(fn∗φ)
(φn)

])
= [(Gg(fn ∗ φ))/(φn)] = [(Ggfn ? φ)/(φn)] = [(Ggfn)/(φn)] ? φ =

Gg(β) ? φ.

Theorem 4.9.The extended Gabor transform Gg : B2
R → B2

R2 is continuous
with respect to δ-convergence as well as ∆-convergence.

Proof. Let βn
δ→ β as n →∞ in B2

R. Then by Lemma 2.4 of [13], there exists

fn,k, fk ∈ L2(R) and (φk) ∈ ∆0 such that βn =
[

(fn,k)
(φk)

]
, β =

[
(fk)
(φk)

]
and

for each k ∈ N, fn,k → fk as n →∞ in L2(R).

Using the continuity of Gg : L2(R) → L2(R2), we obtain that

Ggfn,k → Ggfk as n →∞ in L2(R2).

Since Ggβn = [(Ggfn,k)/(φk)] ,Ggβ = [(Ggfk)/(φk)], we get Ggβn
δ→ Ggβ as n →∞

in B2
R2 .

Next, let βn
∆→ β as n →∞ in B2

R. Then, by definition, there exists (φn) ∈ ∆0

such that (βn−β)∗φn ∈ L2(R), ∀n ∈ N and (βn−β)∗φn → 0 as n →∞ in L2(R).
This means that there exist hn ∈ L2(R) such that (βn−β)∗φn =

[
(hn∗φk)

(φk)

]
,∀n ∈ N

and hn → 0 as n → 0 in L2(R). Since the Gabor transform Gg : L2(R) → L2(R2) is
continuous, Gghn → 0 as n → 0 in L2(R2). Using Theorem 4.5 and Theorem 4.8,
we get

(Ggβn − Ggβ) ? φn = Gg(βn − β) ? φn = Gg((βn − β) ∗ φn)

= Gg

[
(hn ∗ φk)

(φk)

]
= [(Gg(hn ∗ φk))/(φk)]

= [(Gghn ? φk)/(φk)] , ∀n ∈ N.

Therefore, it follows that Ggβn
∆→ Ggβ as n → ∞ in B2

R2 . Hence, the theorem
follows.

Now, we define three operations on B2
R2 to discuss the properties of the ex-

tended Gabor transform.

Definition 4.10. For γ = [(Fn)/(φn)] ∈ B2
R2 and a ∈ R, we define

• T1,aγ = [(T1,aFn)/(φn)], where (T1,aFn)(b, ξ) = Fn(b− a, ξ), ∀(b, ξ) ∈ R2.
• T2,aγ = [(λnT2,aFn)/(λne2πaφn)], where (T2,aFn)(b, ξ) = Fn(b, ξ−a), ∀(b, ξ) ∈
R2 and λn =

(∫∞
−∞ e2πa(t)φn(t) dt

)−1

.

• E2πa ·γ = [(E2πa · Fn)/(φn)], where (E2πa ·Fn)(b, ξ) = e2πiaξFn(b, ξ), ∀(b, ξ) ∈
R2.
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Lemma 4.11. The operations given in the previous definition are well defined.

Proof. First, we prove the following identities, which will be required to prove
the lemma. If F ∈ L2(R2) and φ ∈ D(R), then

T1,a(F ? φ) = (T1,aF ) ? φ, (6a)

T2,a(F ? φ) = (T2,aF ) ? (e2πaφ), (6b)

E2πa · (F ? φ) = (E2πa · F ) ? φ. (6c)

(T1,a(F ? φ))(b, ξ) = (F ? φ)(b− a, ξ)

=
∫ ∞

−∞
F (b− a− y, ξ)φ(y)e−2πiyξ dy

= ((T1,aF ) ? φ)(b, ξ).

(T2,a(F ? φ))(b, ξ) = (F ? φ)(b, ξ − a)

=
∫ ∞

−∞
F (b− y, (ξ − a))φ(y)e−2πiy(ξ−a) dy

=
∫ ∞

−∞
F (b− y, (ξ − a))(e2πiayφ(y))e−2πiyξ dy

= ((T2,aF ) ? (e2πaφ))(b, ξ).

(E2πa · (F ? φ))(b, ξ) = e2πiaξ

∫ ∞

−∞
F (b− y, ξ)φ(y)e−2πiyξ dy

=
∫ ∞

−∞
(e2πiaξF (b− y, ξ))φ(y)e−2πiyξ dy

= ((E2πa · F ) ? φ)(b, ξ).

If γ = [(Fn)/(φn)] ∈ B2
R2 , then we have

Fn ? φm = Fm ? φn, ∀m,n ∈ N. (7)

Since T1,a satisfies (6a), applying T1,a on both sides of (7), we get

(T1,aFn) ? φm = (T1,aFm) ? φn, ∀m,n ∈ N.

Since, T1,aFn ∈ L2(R2), ∀n ∈ N, [(T1,aFn)/(φn)] ∈ B2
R2 .

First, we note that T2,aFn ∈ L2(R2), ∀n ∈ N and (λne2πaφn) ∈ ∆0. Then,
applying the operator T2,a and multiplying by λnλm on both sides of (7), we get

(λnT2,aFn) ? (λme2πaφm) = (λmT2,aFm) ? (λne2πaφn), ∀m,n ∈ N.

Hence, [(λnT2,aFn)/(λne2πaφn)] ∈ B2
R2 .

Finally, using (6c) in (7), we get

(E2πaFn) ? φm = (E2πaFm) ? φn, ∀m,n ∈ N,
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and hence, [(Ea · Fn)/(φn)] ∈ B2
R2 . Further, by applying the same technique (as in

the proof of Lemma 4.3, we can easily prove that these definitions are independent
of the representatives of γ.

Lemma 4.12. The operations defined in Definition 6 are consistent with the
corresponding operations on L2(R2).

Proof. Let F ∈ L2(R2) and a ∈ R be arbitrary. Then the Boehmian represent-
ing F in B2

R2 is [(F ? φn)/(φn)], where (φn) ∈ ∆ is arbitrary. Now

T1,a[(F ? φn)/(φn)] = [(T1,a(F ? φn))/(φn)] = [((T1,aF ) ? φn))/(φn)],

which is the Boehmian representing T1,aF in B2
R2 . Hence, the operation T1,a on

B2
R2 is consistent with T1,a on L2(R2). Similarly, we can prove that the other

two operations on B2
R2 are also consistent with the corresponding operations on

L2(R2).
Now we are ready to present the properties of extended Gabor transform in

the context of Boehmians.

Theorem 4.13. If β ∈ B2
R and a ∈ R, then

(1) Gg (τaβ) = E2πa (T1,a(Ggβ)).
(2) Gg (e2πaβ) = T2,a(Ggβ).

Proof. Let β =
[

(fn)
(φn)

]
. By using Theorem 2.7, we get

Gg (τaβ) = Gg

([
(τafn)
(φn)

])
= [(Gg(τafn))/(φn)]

= [(E2πa(T1,a(Ggfn)))/(φn)] = E2πa (T1,a ([(Ggfn)/(φn)]))

= E2πa (T1,a(Ggβ))

and

Gg (e2πaβ) = Gg

([
(λne2πafn)
(λne2πaφn)

])
= [(Gg(λne2πafn))/(λne2πaφn)]

= [(λnT2,a(Ggfn))/(λne2πaφn)] = T2,a ([(Ggfn)/(φn)])

= T2,a(Ggβ).

Hence, the theorem follows.

5. Flaws in the work [1]

In this section, we use the notations as used in [1]. We first point out that the
title of the article [1] and the definition of wavelet transform recalled in equation
(2.1) are misleading in the sense that the wavelet transform defined in [1, (2.1)] is
going to be extended in [1]. Actually, the article deals with the windowed Fourier
transform G[f ](ν, t) = 1√

2π

∫∞
−∞ f(τ)ḡ(τ − t)eiνtdτ (see [1, (2.6)]). Further, wavelet
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transform and windowed Fourier transform are treated as identical in [1] by quoting
the reference [10, p. 688]. However, from the same reference, one can see that these
transforms are not identical.

Next, we discuss the major conceptual errors in the article [1]. We find the
following statement in [1, p. 476]. “The windowed Fourier transform of an inte-
grable F = [(ft)n/δn] can be defined as the limit of (f̂n) in the space of continuous
functions on R.”. The mistakes in this statement are:

• In the notation of the integrable Boehmian, it is not clear what t is. It might
be a typographical error. So, [(ft)n/δn] should be replaced by [fn/δn].

• In the article [1], the notation f̂n is used to denote the Fourier transform of
fn. If we assume the definition as it is, then the limit of (f̂n) is the Fourier
transform of F = [fn/δn], which is already dealt in [14].

• If we replace it by “limit of windowed Fourier transform G(fn) of fn”, then the
limit must be a function on R2 (if it exists). But, according to [1], windowed
Fourier transform of an integrable Boehmian is defined as a continuous function
on R.

• Since windowed Fourier transform of a function is a function on R2 and win-
dowed Fourier transform of the Boehmian representing the same function is a
function on R, consistency does not follow.

To justify the existence of the limit, [1, Lemma 1] is used, as follows.

“If [fn/δn] ∈ BL1 , then [f̂t]n(ν) =
∫∞
−∞ fn(τ)ḡ(τ−t)eiνtdτ converges uniformly

on each compact subset in R.”, where [f̂t]n(ν) is the windowed Fourier trans-
form of fn evaluated at (ν, t) (according to [1]). The objections to the lemma
are:

• The notation [f̂t]n is misleading because fn is the nth term of a sequence of
functions. To be reasonable, it is better to replace [f̂t]n by (̂fn)t.

• For [fn/δn] ∈ BL1 , it is not possible to find (̂fn)t (windowed Fourier transform
of fn), because it is well known that if [fn/δn] ∈ BL1 , then fn ∈ L1, ∀n ∈ N
but L1 6⊆ L2 and windowed Fourier transform is defined on L2 (see [1, pp.
475-476]).

• In the proof of Lemma 1, the following equation is presented (see [1, (2.11)]).

“[f̂t]n = (f̂t)n

(
δ̂k

δ̂k

)
= ((ft)n∗δ)̂

δ̂k
= (ft)k∗δ̂n

δ̂k
.” After correcting the typographical

errors in the equation, it would be “(̂fn)t = (̂fn)t

(
δ̂k

δ̂k

)
= ((fn)t∗δk̂)

δ̂k
= (̂fk)t·δ̂n

δ̂k
”.

Here, the last equality in the above equation, must be obtained by using (fn)t∗
δk = (fk)t ∗δn, ∀n, k ∈ N and convolution theorem for Fourier transform. But,
using [fn/δn] ∈ BL1 , one could obtain that fn ∗ δk = fk ∗ δn, ∀n, k ∈ N. From
this, (fn)t ∗ δk = (fk)t ∗ δn, ∀n, k ∈ N does not follow. (At this juncture,
we point out that the notation ft is introduced nowhere in this article. But
from the theory of windowed Fourier transform, we can observe that ft(τ) =
f(τ)g(τ − t), ∀τ ∈ R, where t ∈ R is arbitrarily fixed.)
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In Theorem 1, where properties of windowed Fourier transform of a Boehmian
are proposed, there are lots of inconsistencies and mistakes as follow.

• In Theorem 1, the notation F̂ is used, without introducing it earlier. For a
function f , the notation f̂ was used to denote its Fourier transform. Since it
is a paper on windowed Fourier transform, we have to assume that F̂ might
be used to denote the windowed Fourier transform of F . So, in Theorem 1, we
read F̂ by F̃g.

• The statement (ii) of Theorem 1 is (F ∗ G)̂ = F̂ Ĝ. It might be written as
(F ∗G)̃g = F̃gG̃g, but obviously it is not true.

• In the statements (iii) and (iv) of Theorem 1, the usage of lower case letter
f is also confusing. If we correct f by F , then the windowed transform of a
Boehmian is treated as a function on R2, in statement (iii). It is not consistent
with the definition of the windowed Fourier transform of a Boehmian in [1],
because, according to [1], windowed Fourier transform of a Boehmian is a
function on R.

• The statement (iv) of Theorem 1 is “fn(iτ) = (−iτ)n = f̂(τ)”, which is not
meaningful.

• The proofs of the statements (i), (ii), (iii), (iv) of Theorem 1 are not given.
The proof of the statement (v) of Theorem 1 is obtained from Theorem 2.
But Theorem 2 is also not carefully presented. (The reasons follow after a few
lines.)

• In the statement (vi) of Theorem 1, ∆-convergence is involved, but in its
proof, δ-convergence is involved. Moreover, proof of the statement (iv) uses the
identity “F̂n · δ̂k− F̂ −δk = ((Fn−F )∗δk )̂ . After correcting the typographical
errors in this identity, it will be “F̂n · δ̂k − F̂ · δ̂k = ((Fn − F ) ∗ δk )̂ ”, which
does not hold for windowed Fourier transform.
In [1, Lemma 2 and Theorem 2], inversion formulae for windowed Fourier

transform of a function and a Boehmian are respectively proposed.
• Both are not meaningful, because the left-hand sides are depending on n and

the right-hand sides are independent of n.
• Lemma 2 is neither proved nor justified by any reference.
• In the statement of Theorem 2, windowed Fourier transform F̃g(ν, t) of F ∈

BL1 is used as a function on R2, whereas according to article [1], definition of
windowed Fourier transform of a Boehmian is a function on R.

• In the proof of Theorem 2, there is a statement as follows. “by Lemma 1,
‖fn ∗ δk − F ∗ δn‖ → 0 as n → ∞”. Here, referring to Lemma 1 is irrelevant
and the proof of the statement is left in the air.
Thus, the work on windowed Fourier transform for integrable Boehmians pro-

posed in [1] is not meaningful.
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[16] P. Mikusiński, On flexibility of Boehmians, Integral transforms Spec. Funct. 4 (1996), 141–
146.

[17] R.S. Pathak, Integral Transform for Generalized functions and their Applications, Gordon
and Breach Science Publishers, Amsterdam, 1997.

(received 04.10.2011; available online 01.01.2012)

Department of Mathematics, Alagappa University, Karaikudi - 630 004, India

E-mail : roopkumarr@rediffmail.com


