ORE TYPE CONDITION AND HAMILTONIAN GRAPHS

Kewen Zhao

Abstract

In 1960, Ore proved that if G is a graph of order $n \geq 3$ such that $d(x)+d(y) \geq n$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian. In 1985, Ainouche and Christofides proved that if G is a 2-connected graph of order $n \geq 3$ such that $d(x)+d(y) \geq n-1$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or G belongs to two classes of exceptional graphs. In this paper, we prove that if G is a connected graph of order $n \geq 3$ such that $d(x)+d(y) \geq n-2$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or G belongs to one of several classes of well-structured graphs.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph G, let $V(G)$ be the vertex set of G and $E(G)$ the edge set of G. Let K_{n} denote the complete graph of order n and K_{n}^{-}the empty graph of order n. For two vertices u and v, let $d(u, v)$ be the length of a shortest path between vertices u and v in G, that is, $d(u, v)$ is the distance between u and v. We denote by $d(x)$ the degree of vertex x in G and the minimum degree of a graph G is denoted by $\delta(G)$ and the independent number of G is denoted by $\alpha(G)$. For a subgraph H of a graph G and a subset S of $V(G)$, let $N_{H}(S)$ be the set of vertices in H that are adjacent to some vertex in S, the cardinality of $N_{H}(S)$ is denoted by $d_{H}(S)$. In particular, if $H=G$ and $S=\{u\}$, then $N_{H}(S)=N_{G}(u)$, which is the neighborhood of u in G. Furthermore, let $G-H$ and $G[S]$ denote the subgraphs of G induced by $V(G)-V(H)$ and S, respectively. For each integer $m \geq 3$, let $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ denote a cycle of order m and define

$$
N_{C_{m}}^{+}(u)=\left\{x_{i+1}: x_{i} \in N_{C_{m}}(u)\right\}, \quad N_{C_{m}}^{-}(u)=\left\{x_{i-1}: x_{i} \in N_{C_{m}}(u)\right\}
$$

$N_{C_{m}}^{ \pm}(u)=N_{C_{m}}^{+}(u) \cup N_{C_{m}}^{-}(u)$, where subscripts are taken by modulo m.
If no ambiguity can arise we sometimes write $N(u)$ instead of $N_{G}(u), V$ instead of $V(G)$, etc. We refer to the book [2] for graph theory notation and terminology not described in this paper.

[^0]If a graph G has a Hamiltonian cycle (a cycle containing every vertex of G), then G is called Hamiltonian.

In 1952, Dirac established the well-known degree type condition for Hamiltonian graphs.

THEOREM 1.1. [3] If the minimum degree of graph G of order n is at least $n / 2$, then G is Hamiltonian.

In 1960, Ore obtained the following Ore type condition:
THEOREM 1.2. [4] If G is a graph of order $n \geq 3$ such that $d(x)+d(y) \geq n$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian.

In 1985, Ainouche and Christofides proved the following result.
THEOREM 1.3. [1] If G is a connected graph of order $n \geq 3$ such that $d(x)+$ $d(y) \geq n-1$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or $G \in\left\{G_{1} \vee\left(K_{h} \cup K_{t}\right), G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right\}$.
G_{h} denotes all graphs of order h, h is a positive integer. For graphs A and B the join operator $A \vee B$ of A and B is the graph constructed from A and B by adding all edges joining the vertices of A and the vertices of B. The union operator $A \cup B$ of A and B is the graph of $V(A \cup B)=V(A) \cup V(B)$ and $E(A \cup B)=E(A) \cup E(B)$.

Recently, in [5], [6], some generalized Fan type conditions for Hamiltonian graphs were introduced as follows.

Theorem 1.4. If G is a k-connected graph of order n, and if $\max \{d(v): v \in$ $S\} \geq n / 2$ for every independent set S of G with $|S|=k$ which has two distinct vertices $x, y \in S$ satisfying $1 \leq|N(x) \cap N(y)| \leq \alpha(G)-1$, then G is Hamiltonian.

In this paper, we present the following two results, which improve the above results.

ThEOREM 1.5. If G is a connected graph of order $n \geq 3$ such that $d(x)+$ $d(y) \geq n-2$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or $G \in\left\{\left(G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right)-e, G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}, G_{(n-2) / 2} \vee\left(K_{(n-2) / 2}^{-} \cup\right.\right.$ $\left.\left.K_{2}\right), G_{(n-2) / 2} \vee K_{(n+2) / 2}^{-}, G_{2} \vee 3 K_{2}, G_{2} \vee\left(2 K_{2} \cup K_{1}\right), K_{1}: C_{6}^{\prime}, K_{h}: w: K_{t}^{\prime}, K_{1,3}\right\}$.
$3 K_{2}=K_{2} \cup K_{2} \cup K_{2} . K_{t}^{\prime}$ is the graph obtained from complete graph K_{t} by removing a matching of size $k \leq t / 2,\left(G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right)-e$ is the graphs obtained from graph $G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}$by removing an edge connected some vertex of $G_{(n-1) / 2}$ and some vertex of $K_{(n+1) / 2}^{-}$, graph $K_{1,3}$ is a claw. The two graphs $K_{1}: C_{6}^{\prime}$ and $K_{h}: w: K_{t}^{\prime}$ can be found in the proofs of Subcase 1.2 and Subcase 2.2 of Theorem 1.5, respectively.

Since Hamiltonian graph is 2-connected, by Theorem 1.5, we have

Corollary 1.6. If G is a 2-connected graph of order $n \geq 9$ such that $d(x)+$ $d(y) \geq n-2$ for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or $G \in\left\{\left(G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right)-e,\left(G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right), G_{(n-2) / 2} \vee\left(K_{(n-2) / 2}^{-} \cup\right.\right.$ $\left.\left.K_{2}\right), G_{(n-2) / 2} \vee K_{(n+2) / 2}^{-}\right\}$.

2. The proof of main result

In order to prove Theorem 1.5, we need the following lemma.
LEMMA 2.1. Let G be a 2-connected graph of order $n \geq 3$ such that $d(x)+$ $d(y) \geq n-2$ for each pair of nonadjacent vertices x, y in G. If G is not Hamiltonian and $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ is a longest cycle of G and H is a component of $G-C_{m}$ with $|V(H)|=|\{u\}|=1$, than $(n-2) / 2 \leq d(u) \leq(n-1) / 2$ or $G \in\left\{G_{2} \vee\left(2 K_{2} \cup\right.\right.$ $\left.\left.K_{1}\right), K_{1}: C_{6}^{\prime}\right\}$.

Proof. Since G is 2-connected, let $x_{i+1}, x_{j+1} \in N_{C_{m}}^{+}(u)$. We denote the path $x_{i+1} x_{i+2} \cdots x_{j} \backslash\left\{x_{j}\right\}$ on C_{m} by P_{1} and the path $x_{j+1} x_{j+2} \cdots x_{i}$ by P_{2}. Since C_{m} is a longest cycle of G, so we have the following,
(i) Each of $N_{P_{1}}^{+}\left(x_{j+1}\right)$ is not adjacent to x_{i+1} (Otherwise, if $x_{k} \in N_{P_{1}}^{+}\left(x_{j+1}\right)$ is adjacent to x_{i+1}. Let $P(H)$ be a path in H which two end-vertices adjacent to x_{i}, x_{j}, respectively, then cycle $x_{i} P(H) x_{j} x_{j-1} \cdots x_{k} x_{i+1} x_{i+2} \cdots x_{k-1} x_{j+1} x_{j+2} \cdots x_{i}$ is longer than C_{m}, a contradiction).
(ii) Each of $N_{P_{2}}^{-}\left(x_{j+1}\right)$ is not adjacent to x_{i+1} (Otherwise, if $x_{k} \in N_{P_{2}}^{-}\left(x_{j+1}\right)$ is adjacent to x_{i+1}. Let $P(H)$ be a path in H which two end-vertices adjacent to x_{i}, x_{j}, respectively, then cycle $x_{i} P(H) x_{j} x_{j-1} \cdots x_{i+1} x_{k} x_{k-1} \cdots x_{j+1} x_{k+1} x_{k+2} \cdots x_{i}$ is longer than C_{m}, a contradiction). Since $x_{j} \notin V\left(P_{1}\right)$, so we can see that $N_{P_{1}}^{+}\left(x_{j+1}\right) \cap$ $N_{P_{2}}^{-}\left(x_{j+1}\right)=\phi$, and clearly $\left|N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}\right| \geq\left|N_{C_{m}}\left(x_{j+1}\right)\right|$.

By (i) and $(i i)$, each of $N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}$ is not adjacent to x_{i+1}. Hence we can check $\left|N_{C_{m}}\left(x_{i+1}\right)\right| \leq\left|V\left(C_{m}\right)\right|-\left|N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}\right| \leq$ $\left|V\left(C_{m}\right)\right|-\left|N_{C_{m}}\left(x_{j+1}\right)\right|$, this implies

$$
\begin{equation*}
\left|N_{C_{m}}\left(x_{i+1}\right)\right|+\left|N_{C_{m}}\left(x_{j+1}\right)\right| \leq\left|V\left(C_{m}\right)\right| \tag{i}
\end{equation*}
$$

Also, both x_{i+1}, x_{j+1} do not have any common neighbor in $G-C_{m}-H$ and both x_{i+1}, x_{j+1} are not adjacent to any vertex of H. Hence we also have

$$
\begin{equation*}
\left|N_{G-C_{m}}\left(x_{i+1}\right)\right|+\left|N_{G-C_{m}}\left(x_{j+1}\right)\right| \leq\left|V\left(G-C_{m}-H\right)\right| \tag{ii}
\end{equation*}
$$

Combining inequalities (i) and (ii), we have

$$
\begin{equation*}
\left|N\left(x_{i+1}\right)\right|+\left|N\left(x_{j+1}\right)\right| \leq\left|V\left(C_{m}\right)\right|+\left|V\left(G-C_{m}-H\right)\right| \leq n-|V(H)|=n-1 \tag{iii}
\end{equation*}
$$

Then, we claim $d(u) \geq(n-3) / 2$. Otherwise, if $d(u)<(n-3) / 2$, by the assumption of Lemma that $d(u)+d\left(x_{i+1}\right) \geq n-2$ and $d(u)+d\left(x_{j+1}\right) \geq n-2, d\left(x_{i+1}\right)>(n-1) / 2$ and $d\left(x_{j+1}\right)>(n-1) / 2$, so $d\left(x_{i+1}\right)+d\left(x_{j+1}\right)>n-1$, this contradicts inequality (iii).

Thus, $d(u) \geq(n-3) / 2$ holds. Then consider two cases.
When n is even. Since $d(u) \geq(n-3) / 2$ and $d(u)$ is integer, so $d(u) \geq(n-2) / 2$.
When n is odd. Since $d(u)=(n-3) / 2$ and $d(u) \geq 2$, so $(n-3) / 2 \geq 2$, this implies $n \geq 7$. (i). When $n \geq 9$, by $d(u)=(n-3) / 2$, clearly there exist two vertices x_{i}, x_{i+2} of C_{m} that are adjacent to u, then since C_{m} is a longest cycle, so none of $N_{C_{m}}^{ \pm}(u)$ are adjacent to x_{i+1}. so at most $m-\left|N_{C_{m}}^{ \pm}(u)\right|$ vertices are adjacent to x_{i+1}, and clearly $\left|N_{C_{m}}^{ \pm}(u)\right| \geq N_{C_{m}}(u) \mid+2$, so we easily check $d(u)+d\left(x_{i+1}\right) \leq m-\left|N_{C_{m}}^{ \pm}(u)\right|-\left|N_{C_{m}}(u)\right|<n-2$, a contradiction. (ii). When $n=7,8$. Since n is odd, so $n \neq 8$, and we only consider $n=7$. In this case, $d(u)=(n-3) / 2=2$ and $m=6$. Let $C_{m}=x_{i} x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i+5} x_{i} . \quad(i i-1)$. When $d(u)=\left\{x_{i}, x_{i+2}\right\}$. By assumption of Lemma that $d(u)+d\left(x_{k}\right) \geq n-2$ for $k=i+1, i+3, i+4, i+5$ on $C_{m}=x_{i} x_{i+1} x_{i+2} x_{i+3} x_{i+4} x_{i+5} x_{i}$, so $d\left(x_{k}\right) \geq$ 3. Since C_{m} is a longest cycle, $x_{i+1} x_{i+4}, x_{i+3} x_{i}, x_{i+5} x_{i+2} \in E(G)$. We denote the graph by $K_{1}: C_{6}^{\prime}$, where $V\left(K_{1}: C_{6}^{\prime}\right)=V\left(K_{1}\right) \cup V\left(C_{6},\right), E\left(K_{1}: C_{6}^{\prime}\right)=$ $\left\{u x_{i}, u x_{i+2}, x_{i+1} x_{i+4}, x_{i+3} x_{i}, x_{i+5} x_{i+2}\right\} \cup E\left(C_{6}\right)$. (ii-2). When $d(u)=\left\{x_{i}, x_{i+3}\right\}$. Clearly, to satisfy the assumption of Lemma, each vertex of $G-\left\{x_{i}, x_{i+3}\right\}$ must be adjacent to x_{i}, x_{i+3}, this implies $G \in G_{2} \vee\left(2 K_{2} \cup K_{1}\right)$, where $V\left(G_{2}\right)=\left\{x_{i}, x_{i+3}\right\}$, $V\left(K_{1}\right)=(u), 2 K_{2}=G\left[\left\{x_{i+1} x_{i+2}\right\}\right] \cup G\left[\left\{x_{i+4} x_{i+5}\right\}\right]$.

Thus, this proves that $d(u) \geq(n-2) / 2$ or $G \in\left\{G_{2} \vee\left(2 K_{2} \cup K_{1}\right), K_{1}: C_{6}^{\prime}\right\}$.
On the other hand, since C_{m} is a longest cycle of G, so u is not adjacent to consecutive two vertices on C_{m}. Hence it can be checked that $d(u) \leq(n-1) / 2$.

Therefore, this completes the proof of Lemma.
Proof of Theorem 1.5. Assume that G is not Hamiltonian with G satisfying the assumption of Theorem 5. Let $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ be a longest cycle of G and H be a component of $G-C_{m}$. Consider the following cases.
Case 1. The connectivity of G is at least 2 .
In this case, since the connectivity of G is at least 2 , so there must exist $u, v \in V(H)$ and $x_{i+1}, x_{j+1} \in V\left(C_{m}\right)$ such that $x_{i+1} \in N_{C_{m}}^{+}(u), x_{j+1} \in$ $N_{C_{m}}^{+}(v)$ (if $|V(H)|=1$, then $\left.u=v\right)$. We claim $d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \leq n-$ $|V(H)|$. Otherwise, if $d\left(x_{i+1}\right)+d\left(x_{j+1}\right)>n-|V(H)|$, then we denote the path $x_{i+1} x_{i+2} \cdots x_{j} \backslash\left\{x_{j}\right\}$ on C_{m} by P_{1} and the path $x_{j+1} x_{j+2} \cdots x_{i}$ by P_{2}. Since C_{m} is a longest cycle of G, so we have the following, (i). Each of $N_{P_{1}}^{+}\left(x_{j+1}\right)$ is not adjacent to x_{i+1} (Otherwise, if $x_{k} \in N_{P_{1}}^{+}\left(x_{j+1}\right)$ is adjacent to x_{i+1}. Let $P(H)$ be a path in H which two end-vertices adjacent to x_{i}, x_{j}, respectively, then cycle $x_{i} P(H) x_{j} x_{j-1} \cdots x_{k} x_{i+1} x_{i+2} \cdots x_{k-1} x_{j+1} x_{j+2} \cdots x_{i}$ is longer than C_{m}, a contradiction). (ii). Each of $N_{P_{2}}^{-}\left(x_{j+1}\right)$ is not adjacent to x_{i+1} (Otherwise, if $x_{k} \in N_{P_{2}}^{-}\left(x_{j+1}\right)$ is adjacent to x_{i+1}. Let $P(H)$ be a path in H which two end-vertices adjacent to x_{i}, x_{j}, respectively, then cycle $x_{i} P(H) x_{j} x_{j-1} \cdots x_{i+1} x_{k} x_{k-1} \cdots x_{j+1} x_{k+1} x_{k+2} \cdots x_{i}$ is longer than C_{m}, a contradiction). Since $x_{j} \notin V\left(P_{1}\right)$, so we can see that $N_{P_{1}}^{+}\left(x_{j+1}\right) \cap N_{P_{2}}^{-}\left(x_{j+1}\right)=\phi$, and clearly $\left|N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}\right| \geq\left|N_{C_{m}}\left(x_{j+1}\right)\right|$. By (i) and (ii), each of $N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}$ is not adjacent to x_{i+1}. Hence it can
be checked that $\left|N_{C_{m}}\left(x_{i+1}\right)\right| \leq\left|V\left(C_{m}\right)\right|-\left|N_{P_{1}}^{+}\left(x_{j+1}\right) \cup N_{P_{2}}^{-}\left(x_{j+1}\right) \cup\left\{x_{i+1}\right\}\right| \leq$ $\left|V\left(C_{m}\right)\right|-\left|N_{C_{m}}\left(x_{j+1}\right)\right|$, this implies

$$
\begin{equation*}
\left|N_{C_{m}}\left(x_{i+1}\right)\right|+\left|N_{C_{m}}\left(x_{j+1}\right)\right| \leq\left|V\left(C_{m}\right)\right| \tag{1}
\end{equation*}
$$

Also, both x_{i+1}, x_{j+1} do not have any common neighbor in $G-C_{m}-H$ and both x_{i+1}, x_{j+1} are not adjacent to any vertex of H. Hence we also have

$$
\begin{equation*}
\left|N_{G-C_{m}}\left(x_{i+1}\right)\right|+\left|N_{G-C_{m}}\left(x_{j+1}\right)\right| \leq\left|V\left(G-C_{m}-H\right)\right| \tag{2}
\end{equation*}
$$

Combining inequalities (1) and (2), we have

$$
\begin{equation*}
\left|N\left(x_{i+1}\right)\right|+\left|N\left(x_{j+1}\right)\right| \leq\left|V\left(C_{m}\right)\right|+\left|V\left(G-C_{m}-H\right)\right| \leq n-|V(H)| \tag{3}
\end{equation*}
$$

Therefore, the above claim that $d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \leq n-|V(H)|$ holds.
Then, by the assumption of Theorem that $d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \geq n-2$, together with above claim, we have $|V(H)| \leq 2$.

Now, we consider the following subcases on $|V(H)| \leq 2$.
Subcase 1.1. When $|V(H)|=2$.
In this case let $V(H)=\{u, v\}$. Since C_{m} is a longest cycle of G, so clearly $\left|\left\{x_{i}, x_{i+1}, \cdots x_{j-1}\right\}\right| \geq 3$ for each pairs vertices x_{i}, x_{j} that $x_{i} \in N_{C_{m}}(u), x_{j} \in$ $N_{C_{m}}(v)$, thus we can check $d(u) \leq\left|V\left(C_{m}\right)\right| / 3+|V(H-u)| \leq(n-2) / 3+1$. Then by the assumption of Theorem that $d(u)+d\left(x_{i+1}\right) \geq n-2$, we have $d\left(x_{i+1}\right) \geq$ $(2 n-7) / 3$, Similarly, also $d\left(x_{j+1}\right) \geq(2 n-7) / 3$. Hence we have

$$
\begin{equation*}
d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \geq(4 n-14) / 3 \tag{4}
\end{equation*}
$$

When $n \geq 9$, clearly, inequality (4) contradicts inequality (3).
When $n \leq 8$, we consider the following two cases. (i).If $n \leq 7$. In this case, since $|V(H)|=2$, then $m \leq 5$, so there must exist two consecutive vertices x_{i}, x_{i+1} or two vertices x_{i}, x_{i+2} on C_{m} that are adjacent to u, v, respectively. Hence we easily obtain a cycle longer than C_{m}, a contradiction. (ii). If $n=8$. Then clearly $m=6$. By $\left|\left\{x_{i}, x_{i+1}, \cdots x_{j-1}\right\}\right| \geq 3$ for each pairs $x_{i} \in N_{C_{m}}(u), x_{j} \in N_{C_{m}}(v)$. When u is adjacent to vertex x_{i} on C_{m}, then since C_{m} is a longest cycle, so v is at most adjacent to both x_{i}, x_{i+3}. Again then, clearly u is also at most adjacent to both x_{i} and x_{i+3}. Since C_{m} is a longest cycle, so each vertex of $\left\{x_{i+1}, x_{i+2}\right\}$ is not adjacent to any of $\left\{x_{i+4}, x_{i+5}\right\}$, this implies $G \in G_{2} \vee 3 K_{2}$, where $3 K_{2}=$ $H \cup G\left[\left\{x_{i+1}, x_{i+2}\right\}\right] \cup G\left[\left\{x_{i+4}, x_{i+5}\right\}\right], G_{2}=G\left[\left\{x_{i}, x_{i+3}\right\}\right]$.
Subcase 1.2. When $|V(H)|=1$.
In this case, let $V(H)=\{u\}$. By Lemma 2.1, $(n-2) / 2 \leq d(u) \leq(n-1) / 2$ or $G \in\left\{G_{2} \vee\left(2 K_{2} \cup K_{1}\right), K_{1}: C_{6}^{\prime}\right\}$. Thus, we only consider $(n-2) / 2 \leq d(u) \leq$ $(n-1) / 2$.
Subcase 1.2.1. $d(u)=(n-2) / 2$.
When $\left|V\left(G-C_{m}\right)\right|=1$. In this case since G has not Hamiltonian cycle C_{n} and $d(u)=(n-2) / 2$, so we easy to obtain $N(u)=\left\{x_{i}, x_{i+3}, x_{i+5}, x_{i+7}, \cdots, x_{i-2}\right\}$
on C_{m}, i.e., in $\left\{x_{i}, x_{i+3}, x_{i+5}, x_{i+7}, \cdots, x_{i-2}\right\}$ the first two vertices are x_{i}, x_{i+3} and all other vertices are $x_{i+5}, x_{i+7}, \cdots, x_{i-2}$.

In this case since G has not Hamiltonian cycle C_{n}, clearly $\left\{x_{i+4}, x_{i+6}, \cdots\right.$, $\left.x_{i-1}, u\right\}$ is a independent set and each of $\left\{x_{i+1}, x_{i+2}\right\}$ is not adjacent to any of $\left\{x_{i+4}, x_{i+6}, \cdots, x_{i-1}, u\right\}$, this implies $G \in G_{(n-2) / 2} \vee\left(K_{(n-2) / 2}^{-} \cup K_{2}\right)$, where $V\left(G_{(n-2) / 2}\right)=\left\{x_{i}, x_{i+3}, x_{i+5}, x_{i+7}, \cdots, x_{i-1}\right\}, V\left(K_{(n-2) / 2}^{-}\right)=\left\{x_{i+4}, x_{i+6}, \cdots\right.$, $\left.x_{i-1}, u\right\}, V\left(K_{2}\right)=\left\{x_{i+1}, x_{i+2}\right\}$.

When $\left|V\left(G-C_{m}\right)\right|=2$. In this case let $v \in V\left(G-C_{m}-u\right)$. Since G has not Hamiltonian cycle C_{n} and $d(u)=(n-2) / 2$, so we easily obtain $N(u)=$ $\left\{x_{i+1}, x_{i+3}, \cdots, x_{i-1}\right\}$, this implies $G \in G_{(n-2) / 2} \vee K_{(n+2) / 2}^{-}$, where $V\left(G_{(n-2) / 2}\right)=$ $\left\{x_{i+1}, x_{i+3}, \cdots, x_{i-1}\right\}, V\left(K_{(n+2) / 2}^{-}\right)=\left\{x_{i+2}, x_{i+4}, \cdots, x_{i}, u, v\right\}$.
Subcase 1.2.2. When $d(u)=(n-1) / 2$.
In this case, since C_{m} is a longest cycle of G, we easily obtain $G \in G_{(n-1) / 2} \vee$ $K_{(n+1) / 2}^{-}$or $G \in\left(G_{(n-1) / 2} \vee K_{(n+1) / 2}^{-}\right)-e$, where e is an edge connected by some two vertices u and v with u in $G_{(n-1) / 2}$ and v in $K_{(n+1) 2}^{-}$.
Case 2. The connectivity of G is 1 .
In this case, let w be a cut vertex of G and let $H^{\prime}, H^{\prime \prime}$ be two components of $G-w$.
Subcase 2.1. $\left|V\left(G-H^{\prime}-H^{\prime \prime}\right)\right|>|\{w\}|$.
In this case, let $H^{\prime \prime \prime}$ be a component of $(G-w)-H^{\prime}-H^{\prime \prime}$, and let $x \in$ $V\left(H^{\prime}\right), y \in V\left(H^{\prime \prime}\right)$ and $z \in V\left(H^{\prime \prime \prime}\right)$. Without loss of generality, assume $\left|V\left(H^{\prime}\right)\right|=$ $\max \left\{\left|V\left(H^{\prime}\right)\right|,\left|V\left(H^{\prime \prime}\right)\right|,\left|V\left(H^{\prime \prime \prime}\right)\right|\right\}$, then clearly $\left|V\left(H^{\prime \prime}\right)\right|+\left|V\left(H^{\prime \prime \prime}\right)\right| \leq 2(n-1) / 3$, so we can check that $d(y)+d(z) \leq 2(n-1) / 3+2|\{w\}|-|\{y\}|-|\{z\}|=(2 n-2) / 3$, by $n \geq 7$, so $(2 n-2) / 3 \leq n-3$, a contradiction.
Subcase 2.2. $\left|V\left(G-H^{\prime}-H^{\prime \prime}\right)\right|=|\{w\}|=1$.
When $n \geq 7$. In this case, without loss of generality, assume $\left|V\left(H^{\prime}\right)\right| \geq$ $\left|V\left(H^{\prime \prime}\right)\right|$, then $H^{\prime \prime}$ is a complete (Otherwise, if there exist two nonadjacent vertices u, v in $H^{\prime \prime}$, we can check $d(u)+d(v) \leq n-3$, a contradiction). Let $u \in V\left(H^{\prime \prime}\right)$, by $d(x)+d(u) \geq n-2$ for each vertex x in H^{\prime}, x is at most not adjacent to a vertex of $H^{\prime} \backslash\{x\}$, thus, $G \in H^{\prime}: w: H^{\prime \prime}=K_{h}: w: K_{t}^{\prime}$, where K_{h} is complete graph of order h and K_{t}^{\prime} can be obtained from a complete graph K_{t} by removing a matching of size $0 \leq k \leq t / 2$ (i.e., K_{t}^{\prime} is the graph by removing some vertex disjoint edges of $\left.K_{t}\right)$, with $1 \leq h \leq(n-1) / 2, t=n-h-1$. In particular, if $h=(n-1) / 2$, then $G \in K_{(n-1) / 2}: w: K_{(n-1) / 2}$.

When $n=6$. in this case we easily obtain $G \in K_{h}: w: K_{t}^{\prime}$, where $h+t=5$.
When $n=5$, similarly, we have $G \in K_{h}: w: K_{t}^{\prime}$, where $h+t=4$.
When $n=4$, we easily obtain $G \in K_{h}: w: K_{t}^{\prime}$, where $h+t=3$ or $G-w$ consists of three components, so in this case G is a claw-free graph $K_{1,3}$.

When $n=3$, clearly, $G \in K_{h}: w: K_{t}^{\prime}=K_{1,2}$.
Therefore, this completes the proof of Theorem.

Acknowledgement. The author is very grateful to the anonymous reviewer for his very helpful remarks and comments.

REFERENCES

[1] A. Ainouche, N. Christofides, Conditions for the existence of Hamiltonian circuits in graphs based on vertex degrees, J. London Math. Soc. (2) 32 (1985), 385-391.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
[4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
[5] K.W. Zhao, H.J. Lai, Y.H. Shao, New sufficient condition for Hamiltonian graphs, Appl. Math. Letters 20 (2007), 166-122.
[6] K.W. Zhao, R.J. Gould, A note on the Song-Zhang theorem for Hamiltonian graphs, Colloq. Math. 120 (2010), 63-75.
(received 09.09.2011; in revised form 18.06.2012; available online 10.09.2012)
Department of Mathematics, Qiongzhou University, Sanya, 572022, China
E-mail: kwzqzu@yahoo.cn

[^0]: 2010 Mathematics Subject Classification: 05C38, 05C45
 Keywords and phrases: Ore type condition; Hamiltonian graphs.

