Univalence conditions of general integral operator


B. A. Frasin, D. Breaz




In this paper, we obtain new univalence conditions for the integral operator $$ I_{\xi}^{lpha_{i},\beta_{i}}(f_{1},\dots,f_{n})(z)=eft[\xiıt_{0}^{z}t^{\xi-1}(f_{1}^{rime}(t))^{lpha_{1}} (\frac{f_{1}(t)}{t})^{\beta_{1}}\cdots(f_{n}^{rime}(t))^{lpha_{n}}(\frac{f_{n}(t)}{t})^{\beta_{n}}\,dt\right]^{\frac{1}{\xi}} $$ of analytic functions defined in the open unit disc.