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Abstract. A family of harmonic starlike functions of complex order in the unit disc has been
introduced and investigated by S.A. Halim and A. Janteng [Harmonic functions starlike of complex
order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications,
(2008), 132-140]. In this paper we consider a subclass consisting of harmonic parabolic starlike
functions of complex order involving special functions and obtain coefficient conditions, extreme
points and a growth result.

1. Introduction

Let ‘H denote the family of harmonic functions f = h + g that are orientation
preserving and univalent in the open disc A = {z: |z] < 1} with h and g given by

oo oo

hz)=z4+ > anz™, g(z) = > bpz", |b1] < 1. (1.1)
n=2 n=1

We note that the family H of orientation preserving, normalized harmonic univalent

functions reduces to the well known class S of normalized univalent functions if the

co-analytic part of f is identically zero, i.e. ¢ = 0. Also, we denote by H the

subfamily of H consisting of harmonic functions f = h + g of the form

M) =2 = 3 Jaals", g() = 3 Ibals, [l <1, (1.2)

The seminal work of Clunie and Sheil-Small [2] on harmonic mappings gave rise
to many studies of subclasses of complex-valued harmonic univalent functions. In
particular, Silverman [18], Jahangiri [7] Rosy et al. [17], Halim and Janteng [6]
and others (see [10,11,12]) have investigated properties of various subclasses of H
related to harmonic starlike functions.
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The Hadamard product (or convolution) of two power series

6(z) = = + Z:z Bum (1.3)
and
W(z) = 2 + ni; Yn" (1.4)
in S is defined (as usual) by
(616)(2) = 0(2) * V(z) = 2+ 3 bt (L5)

For positive real values of ai,...,a; and Bi,...,0m (B; # 0,—1,...55 =
1,2,...,m) the generalized hypergeometric function ;Fp,(z) is defined by

1Fn(2) = 1 F(on, . .ca; By ooy By 2) 1= ni::O m %7: (1.6)

(<m+1; l,me Ny:=NU{0};z€A),

where N denotes the set of all positive integers and (a),, is the Pochhammer symbol

defined by
1, n=>0
a = 17
(@) {a(a+1)(a+2)...(a—|—n—1), n € N. (17)
The notation ; F,, is quite useful for representing many well-known functions such
as the exponential, the Binomial, the Bessel and Laguerre polynomial. Let

Hlog,...oq; 01, ,Bm] : S— S
be a linear operator defined by
Hlay, ... 01, ..., Bumlo(z) = H. [a1]d(2)
=2 Fp(ar, g, .00 81, B2 .o, B 2) * ¢(2)

=z+ > wplag;l;m) dpz™, (1.8)
n=2
where
(1)n—1---()n—1 1

Bt Bo)ns (m—1)1" (1.9)

wp(ag;lym) =

It follows from (1.8) that
H;[1¢(2) = ¢(2), Hy[2](2) = 24/ (2).

The linear operator H! [a1] is the Dziok-Srivastava operator (see [4]) which was
subsequently extended by Dziok and Raina [3] by using the Wright generalized
hypergeometric function. Recently Srivastava et al. [19] defined the linear operator
LY}, as follows:

E())\,al (b(z) = ¢(Z)7

EiTb(2) = (L= VAL IO ALY = o), 020,

1.10

L0 8(2) = LY, (L5, 6(2)) (1.11)
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and in general,
LY7,0(2) = £§\‘}l’m(£f\’_l;’f1¢(z)), (I <m+1; I,m € Ng= NU{0};z € A). (1.12)

If the function ¢(z) is given by (1.3), then we see from (1.8), (1.9), (1.10) and (1.12)
that

Ly7m®(2) =2+ 3 wiai Aslsm) ¢p 27, (1.13)
n=2
where

Wi(an; A lym) = ((al)n—1~-~(az)n_1 L4 A(n—1

Bi)n-1--(Bm)n-1 (n —1)!

)]>T,(n€N\{1}7TENO)

(1.14)
unless otherwise stated. We note that when 7 = 1 and A\ = 0 the linear operator
L7 would reduce to the familiar Dziok-Srivastava linear operator [4], includes (as

its special cases) various other linear operators introduced and studied by Carlson
and Shaffer [1], Owa [14] and Ruscheweyh [16].

In view of the relationship (1.14) and the linear operator (1.13) for the har-
monic function f = h+7g given by (1.1), Murugusundaramoorthy et al. [11,12] have
defined the operator

Limf(2) = L3705, 0(2) + £377,9(2), (1.15)
and studied the subclass of H in terms of this operator.

Goodman [5] introduced two interesting subclasses of S, namely uniformly
convex functions (CV) and uniformly starlike functions (UST ), and Ronning [15]
introduced a subclass of starlike functions S, corresponding to the class UCV. In
order to consider extension of the class S,, we study in this note the class of
harmonic starlike functions of complex order based on the earlier works of Nasr
and Aouf [13] and Halim and Janteng [6].

For 0 < a < 1, b, a non-zero complex number with [b] < 1, we let
HLY T, (0,7, @) be the subclass of H consisting of harmonic functions f = h +g
where h and g are of the form (1.1), satisfying

RO T o)y 5

1 .
Rw)=R(1+=((1+e&7 BN UL
=) ( <( ) L5h(=) + L£17,9(2)

b
(1.16)

z € A, and for all real 7. We also let HL) 1, (b, 7, @) = HLY b (b, 7, 0) NH.
REMARK. With the above conditions, if we choose 7 = 0, we can define

the generalized class of harmonic starlike functions of complex order satisfying the
condition

R(w(z) = R(1+ %(

M —ETAC) )y,
LU 0(2) + L£397,9(2)
In this note we obtain sufficient coefficient conditions for harmonic functions

f = h+7 of the form (1.1) to be in HLY, (0,7, ). We also show that these



Harmonic starlike functions of complex order 319

conditions are necessary when f € ﬁﬁ;’:ﬁn(b, v, «). We also obtain extreme points
and growth results.

2. Main results

THEOREM 1. Let f = h+ g be given by (1.1). If

20— 24 (1 a)fb]
-

lan|w? (13 A;l;m)

2n 2 (1 )b
+ 2

where ay =1, 0 < a < 1 and b (|b| < 1) is a non-zero complex number, then f is
harmonic univalent and orientation-preserving in A\ and f € HLY (b, 7, o).

|bp|w? (g3 A lm) <1 (2.1)

Proof. First we establish that f is orientation preserving in A. This is seen as
follows, on using (2.1):

(LY h(2) =1 = 37 nwy (aa; A1 m)|ap [r™
T n=2
>1= > nwl(a; N l;m)|an]
n=2

> 1 3 [P | o X dsm)
n=

o

%
18

n=1

> Z nwy (s A; 1) by |

> 3 nw(ons Al m)|bu et > [(£X0m9(2))]-

n=1

To show that f is univalent in A, we show that f(z1) # f(z22) when 21 # z.
Suppose 21, 29 € A so that z; # z5. Since the unit disc A is simply connected and
convex, we then have z(t) = (1 —)z; + tz2 in D where 0 < ¢ < 1. Then we write

LU (22) = LU, f(21)
- / (22 — 1) (3 h(2(0)') + (22 — (g ()

Since zo — 21 # 0, dividing throughout by z3 — 2z; and taking only the real parts we
obtain
§]%(L";’,?,lm (22) = LY (21))

Z2 — 21

= [wesgrcon + = Emm eama

22 — 21

> / RICE (=) — (L350 g(=(0) 1 dt. (2.2)
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On the other hand,
RILY A1) = [(£X7]5,9(=1))|
> R(LYT (=) —

18

nwy, (s A; 1;m)| by |

Il
-

n

o0 o0
> 1= 3 nwl(a; A lsm)|an| — 32 nwf(ar; Asl;m)|by|

n=2 n=1

& n— —a)lb T
>1- nZ::Q [W] wi (a1; A lm)|ag|

&, n a)lb
= 3 [P o As Ty m) ol

n=1

>0 by (21).

Therefore this together with inequality (2.2) implies the univalence of f.

Next we show that f € Hﬁf\”zin(b, v, ). To do so, we need to show that when
(2.1) holds, then (1.16) also holds true. Using the fact that Rw(z) > « if and only
if|l—a+w|l >|1+a—w|for 0<a<1 it suffices to show that

|(2b— ab — e — 1)(£31,0(2) + £371,9(2)

() (L5 (2)) ~ (g )]~ | (1 abt ) (L35, h(2) + L ()
— (L4 M (L30A(2)) = 2(L555,9())] = 0

On substituting for (£37], h(z)) and (£]7},9(2)) we obtain

n=1

|(2b — ab — (14 €™)) {z + Z wh(a; A lim)agz™ + Y wh(ag; )\;l;m)bnz"}

+(14e) |2+ Z nwl (ag; A l;m)ag 2™ Z nw? (ag; A 1;m)b, 2" | |

n=2 n=1 i
— (1 + ab+e") {z + > wi(ag; A Lm)anz™ 4+ Y wi(ag; )\;l;m)bnz"}
n=2 n=1
—(14e) |2+ Z nwl (ag; Ay l;m)ag 2™ Z nw? (ar; A ;m)by 2™ | |
L n=2 n=1 i
> (2= a)bllz] = X 12— )b+ (1+e)(n = Dlwi(a; A lym)|an][2["
n=2

= 2 @ +eM)(n+1) = (2 = a)plwf (e A lym)[bal [2]"

n=1

—albllz] = 32 [(n = 1)(1+e™) — ablw] (13 A lym)|an| |2]

n=2

— 2 I+ 1)1 +e™) + ablwf (ar; A lym)|b| 2]
n=1

=201 = a)pllel{1 = X | #H gt e (an A m)lanl |}
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—2(1 - a)[blz z [22n 2=l o7 g 2503 ) |

>0, by (21). =
The function
(1-a)lb| S L T
fz)=z+ Z {M}xnz%r ) [m}ynz

where Y0, |z, | + Zn 1 lyn] =1, shows that the coefficient bound given by (2.1)
is sharp.
T,001

The next theorem shows that condition (2.1) is necessary for f € HL; (b, 7, a).

T,1

THEOREM 2. Let f = h+g be given by (1.2). Then f € HLy (b, y,) if
and only if

2n -2+ (1 —«)|b|]
=5 — )

(alv >‘a lam)‘an|

2n+2—(1—a)bl]
+ Z = wh(a; A lm)|by] <2 (2.3)

where a1 =1, 0 < a < 1, b is a non-zero complex number such that |b| < 1.

Proof. Since ﬂﬁ:’j;(b,%a) C HLY (0,7, a), the if part of the Theorem 2
follows from Theorem 1. To prove the only if part, we show that when (2.3) does
not hold then f is not in ﬁﬁ;’ﬁn(b, v, @).

T,01

First, if f € HLy;,,(b,7,a) then

) LT b I (LT / )
R (1 I 1 <(1 —l—eW)Z( ,\,lT,1Z1 (2)) Z(Ta,\llmg( z)) e+ 1)>> a
b LL7h(2) + L£397,9(2)

o0

(1—a)bz— Y [(1—a)b+ (n—1)(1+ eM)]wl (ar; X [;m)|an|2"
— §R 71:2
b (z = Y wi(a; N lim)|ap]z™ 4+ > w;(al;)\;l;m)|bn|z")
n=2 n=1
Yol +1)(1+e7) = (1 = a)blwy (ar; A;1;m)|ba[Z"
n=1

b (z = 3 whag; A l;m)|an|z™ + > w;(al;)\;l;m)|bn|z”)
n=2 n=1

(1—a)|b]? - io: [(1—a)b+ (n—1)(1+ )bl (ag; X;l;m)|a, |zt

_ % n=2
6|2 (1 — 3" wi(ag; A l;m)|ay, |zt +§ > w;(a1;/\;l;m)|bn|z”_1>
n=2 n=1
+Z2 3 [+ 1)(1+€7) = (1= a)bJbw] (an; A ;m)[bu 27"
— %R n=1 Z 0.

B2 (1= 3 whan Al m)lanl=" 1+ 2 35 wi(ars A lim)[ba[z7 )
n=1

n=2
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The above condition need hold for all values of v, |z| = r < 1 and any b such that
0 < |b] < 1. Choose v = 0, b real and positive so that [b| = b and z = r < 1 on

positive real axis. Thus the above condition becomes
(1= a)b? = > [(2n —2) + (1 — a)b]blw] (ar; As lym)|an|r™

n=2

|b|? (1 — S wilap; N lm)|ag|rt+ Y w;(al;)\;l;m)|bn|rn_1>
n=1

n=2

S (20 4+ 2) — (1 — a)b] bl (s As 1 m) b=

- - - >0. (24)
|b]2 (1 — S wilap; A lm)|ag|r™t+ Y wg(al;)\;l;m)|bn|r"_1>
n=2 n=1

We need to show that the numerator is positive since the denominator is positive.

The numerator is
oo

(1 —a)lpf* — o] {Z [(2n = 2) + (1 — @) b[] |an Wy (a1; As iy m)r"

_ i::l (20 4 2) — (1 — Q) [B[] [bn]o (s A s m)rnl}

which is negative if condition (2.3) does not hold. Thus, there exist some point
20 = 1o in (0,1) and some real positive b for which the quotient in the above
inequalities are negative, which contradicts the condition that f € ﬁﬁ;ﬁ;n(h v, @).

Hence the proof is complete. m
Next, extreme points of the closed convex hull clco ﬁﬁ;’ﬁn(b, v, ) of

T,01

HLY | (b, 7y, @) are determined.

THEOREM 3. f € clcoﬁﬁz’ﬁn(b,% a) if and only if

£ = 5 (Xuh+ Yags) (25)
where
_ _ (L —a)b| no, .
hi(z) = z,hn(2) = 2z — Bn—2+ (- a)|b|]wg(a1;)\;l;m)z , n=2,3,...;
(1—a)lb| n

zZ' n=12,...;

9() = B = (= abller(ar N Gm)

Sl (Xn+Y,) =1, X, >0 and Y, > 0. In particular, the extreme points of
HLYG (b7, @) are {hy} and {gn}.

Proof. For functions f having the form (2.5), we have

f(Z) = il (thn + Yngn)
o = (1-a)lt i
= ) e T - blertan ) "

s (1—a)lt

Y, z".
2 2n+2— (1 —a)plleg(an Nm) "
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Thus

X [2n—24 (1 — o) |blJwy (as; A ;m) (1 —a)[bl

nX::Q (1—a)lb) ([Qn — 24 (1 — a)|blJwr (a1 s L m))X"
X [2n+2— (1 — a)|blJwy(az; Asl;m) (1—a)[b|

+712::1 (1—a)lb| <[2n+2—(1—a)|b|]w,7;(a1;)\;l;m)>KL

=Y X+ YV =1-X; <1

n=2 n=1
Therefore, f € clco ﬂ[,;?in (b,7, ).
Conversely, suppose that f € clcoﬁﬁf\’j;n(b, v,a). Set
2n -2+ (1 —-a)

=T

b
| |\an\w7§(a1;/\;l;m)7n =23,...,

and

n+2—(1—a)b
(1 =)ol

where > °° (X, +Y,) = 1. Then

f(z):Z_ Eanzn+ Z bz"
n=2 n=1

Y, = [bp|w?! (e A l;m),n=1,2,...,

o = (1_a)|b| Py
o n=a[2n—2+(1 —a)|b\]w;(a1;)\;l;m)xn
i (1 B Oé)|b| =n
T o e 2 (- pleglan nbm)
=z-— Z::Q [(Xn(hn(z) — 2)] + ; [Yn(gn(2) — 2)]

= Z (thn + Yngn) :
n=1

From Theorem 2, we can deduce that 0 < X,, <1, (n > 2) and 0 < Y, < 1,
(n > 1). We define X; =1-5>",X, —> 2V, Again from Theorem 2,
X1 > 0. Therefore > 7 | (Xyhn + Yogn) = f(2) as required in the theorem. m

THEOREM 4. If f € HLY ), (b7, ), then for |z| = r < 1,
(1—a)lb|

1< 000+ (= agpeg e

T g
EERTEr T raAmial)

and
f(2)] = (1—b1)r—< (1—a)[b|

2+ (1 — @) b|Jwd (a1; X;1;m)

R g
EENTEr T raAmial)




324 G. Murugusundaramoorthy

T, 1

Proof. Let f(z) € HLY; ,,(b,7,a). On taking the absolute value of f, we have

[F()] < @+ [ba)r + i[lanl + o] wi(Qns Aslym))r™

<1+ bi))r + 72 S (lan] + [ba])w? (13 A 1 m)
n=2
(1 — a)|b|r?
=(1+1b
(ol 24 (1 — a)[blJws (a1; A;lsm)
& (24 (1= a)b| 24 (1 —a)lb| o
Xn§z< T—apl T T a—am on] )3 (e1: Xs1: m)
(1 —a)|blr?

< U+l + 5 S pler e Lm)

°°<2n—2+(1—a)|b| Mm+2—-(1-a)

1o |bn|>w;(a1;)\;l;m)

A S Ty N (T
(1—a)[b| [4—(1—a)b]] 2
< Ao+ G bt (e n ) (1- = a)b] o] )
< (L+[ba])r
(1—a)b| 4—(1—0a)b|

+( : - a2
2+ (1 —a)plwi(a; Alim) 24 (1= a)bl|wf(ai; A;l;m)
Similarly we can prove the other inequality. The result is sharp for the function

- _ (1—a)p|
f(z)=z+|bi|z+ ([2 + (1 — @) bljwd (ag; A; l;m)
4— (1= )| - (1 —a)b|
- [z+<1fa>|b|1w;<a1;x;z;m>"’1‘)2 S T

Concluding remarks. By choosing 7 = 1; A = 0 and specializing the param-
eters a, [, m, the various results presented in this paper would provide interesting
analogous results for the class of harmonic functions those considered earlier in
[7-10,12,17,18]. In fact, by appropriately selecting these arbitrary sequences, the
results presented in this paper would find further applications for the class of har-
monic functions which would incorporate a generalized form of the Dziok-Srivastava
linear operator [4] involving the Hadamard product (or convolution) of the func-
tion in (1.1) with the Fox-Wright generalization ;3,, (see [3]) of the hypergeometric
function ;F},. Theorems 1 to 4 would thus eventually lead us further to new results
for the class of functions (defined analogously to the class f € ﬂﬁ;”(l)ﬁn(b, v,)), by
associating instead the FoxWright generalized hypergeometric function ;,,. Fur-
ther, it is of interest to note that the results obtained in this paper yield various
results studied in the literature by taking v = 0 with 7 = 1; A = 0. We choose to
skip further details in this regard.
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