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APPLICATION OF THE INFINITE MATRIX THEORY
TO THE SOLVABILITY OF CERTAIN SEQUENCE SPACES
EQUATIONS WITH OPERATORS

Bruno de Malafosse

Abstract. In this paper we deal with special sequence spaces equations (SSE) with oper-
ators, which are determined by an identity whose each term is a sum or a sum of products of
sets of the form xa(T) and xf()(T) where f maps UT to itself, and x is any of the symbols

s, 89, or s(¢). We solve the equation Xz (A) = xp where x is any of the symbols s, s0, or s

and determine the solutions of (SSE) with operators of the form (x4 * Xz + x»)(A) = x5 and

[xa * (X2)2% + Xb * Xz ](A) = Xn and Xa + Xz (A) = xo where x is any of the symbols s, or s0.

1. Introduction

In the book entitled Summability through Functional Analysis [15], Wilansky
introduced sets of the form 1/a* E where E is a BK space, where a = (ay,)n>1 1S a
sequence satisfying a, # 0 for all n. Recall that £ = (§,,)n,>1 belongs to 1/a * E if
af € E. In [12, 3] the sets s,., s” and s\ were defined by ((1/r),) "t E with r > 0,
where E is ls, o and ¢ respectively and the sets sq, sO and s% by (1/a)~! « E
with a, > 0 for all n and F is ¢, ¢y and c respectively. The aim was to study
an infinite linear system represented by the matriz equation M& = (3 where & was
the unknown and £, 3 were column matrices, and M = (lnm )n,m>1 Was an infinite
matrix mapping from (1/a)™! * E to itself, (cf. [12]). In [4, 13] the sum x, + X}
and the product x, * x} were defined, where x, X" are any of the symbols s, s, or
s(©) among other things characterizations of matrix transformations mapping in
the sets s, +s)(A?) and sa—l—slgc)(Aq) were given, where A is the operator of the first
difference. In [7] characterizations of the sets (s,(A%),F) can be found, where F
is any of the sets ¢p, ¢ and £. In [13] characterizations of matrix transformations
mapping were given in the set s, 5 = sO((A — AXI)") + s(ﬁc)((A — uI)Y), in some
cases the set (5q4,3,5,) that can be reduced to a set of the form S, . Also cite
Hardy’s results [9] extended by Méricz and Rhoades, (cf. [10, 11]), de Malafosse and
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Rakocevi¢ (cf. [8]) and formulated as follows. In [9] it is said that a series >~ ym
is summable (C,1) if n~1 Z;;Zl S$m — 1, where s, = Zf;lgol It was shown
by Hardy that if a series >~ | 4y, is summable (C,1) then >~ (> .7, y;/i) is
convergent. On the other hand cite Hardy’s Tauberian theorem for Cesaro means
where it was shown that if the sequence (y,), satisfies sup, {n|y, — yn—1|} < o0,
then

1
—8$p — L implies y,, — L for some L € C.
n

In this paper we are led to solve special sequence spaces equations (SSE) with
operators, which are determined by an identity whose each term is a sum or a sum
of products of sets of the form xo(T) and Xy (T), where f mapa U™ to itself,
and y is any of the symbols s, or s°, the sequence z is the unknown and T is a
given triangle. Then we determine the set of all sequences x € U™ such that

un, = O(ay) and vy, —vp—1 = O(xy) (1)

implies u, + v, = O(x,) (n — o0) for all u, v € s. Conversely, what are the
sequences z for which y, = O(x,) (n — o0) implies there are sequences v and v
such that y = u + v and (1) holds. This problem leads to the solvability of the
equation s, + $,(A) = s,. We also determine the set of all sequences y € s such
that (yn — yn—1)/a, — 1 if and only if y, /b, — I'. This statement can be written
in the form s((lc)(A) = sl()c).

This paper is organized as follows. In Section 2 we recall some results on matrix
transformations between sets of the form y¢ where y is any of the symbols s, s,
or s(© and on the sum and the product of the previous sets. In Section 3 we recall
characterizations of x,(A) = x» and determine the solutions of sequence spaces
equations of the form [xq * Xz + X5](A) = X, and [xa * (xz)? + Xo * X2](A) = Xy,
and Xq + X2 (A) = X, where x is any of the symbols s, or s°.

1.1. The sets s,, s° and s for a € U+

For a given infinite matrix M = (fnm)n,m>1 we define the operators A, for
any integer n > 1, by

Mn(§) = ii:l HnmEm (2)

where & = (§,)m>1, and the series are assumed convergent for all n. So we are led
to the study of the operator M defined by M¢ = (M,,(€))n>1 mapping between
sequence spaces.

A Banach space E of complex sequences with the norm ||||g is a BK space if
each projection P, : £ — P, = &, is continuous. A BK space FE is said to have
AK if every sequence ¢ = (£,)n>1 € E has a unique representation ¢ = Zzo:l Enen
where e, is the sequence with 1 in the n-th position and 0 otherwise.

We will denote by s the sets of all sequences. By ¢g, ¢, £o we denote the subsets
of s that converge to zero, that are convergent and that are bounded respectively.
We shall use the set UT = {(up)n>1 € s : uy, > 0 for all n}. Using Wilansky’s
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notations [15], we define for any sequence a = (ay)n>1 € U™ and for any set of
sequences F, the set

(1/@)_1 * B ={(u)n>1€5: (§n/an)n € E}.
To simplify, we use the diagonal infinite matrix D, defined by [Dy]n, = a,, for all
n and write D, * E = (1/a)™! x E and define s, = Dy * lo, 80 = D, * o and
s((f) = D, * ¢, see [1, 3, 4-6, 10, 13, 14]. Each of the previous spaces D, x E is a
BK space normed by [|¢]|s, = sup,,>;(|én]/an) and s has AK, see [6].
Now let @ = (an)n>1, b = (by)n>1 € UT. By S, we denote the set of infinite
matrices M = (ftnm)n,m>1 such that

1 =
Ml =sup( i 55 nnlen ) <.

n>1 n m=1
The set S, 5 is a Banach space with the norm || M]|s, ,. Let £ and F' be any subsets
of s. When M maps E into F we write M € (E, F), see [2]. So for every & € E,
we have M¢ € F, (M € F will mean that for each n > 1 the series defined by
M, (€) = Y071 fnm&m is convergent and (M, (€))n>1 € F). It can easily be seen
that (sq,sp) = Sab-

When s, = s, we obtain the Banach algebra with identity S, = S,, (see for
instance [1, 5, 6]) normed by [|M||s, = ||M||s, .- We also have M € (s4, s,) if and
only if M € S,,. '

If a = (r"),>1, we denote by s,., s and sgc) the sets s,, s and s,(f) respectively.
When 7 = 1, we obtain s; = /o, 80 = ¢y and sgc) = ¢, and putting e = (1,1,...)
we have S; = S.. Recall that ({00, l0) = (c0,l00) = (¢,€o0) = S1. We have
M € (eg,cp) if and only if M € S; and lim,— oo pinm = 0 for all m > 1; and
M € (c,c) if and only if M € Sy and lim,,—.oc My, (e) = and limy,— o0 tinm = by, for
all m > 1 and for some scalars [ and [,,. Finally for any given subset F of s, we
define the domain of M by

Fy=FM)={{€s: M{€ F}.
1.2. Sum of sets of the form s¢, or sg

In this subsection among other things we recall some properties of the sum
E + F of sets of the form s¢, or 7.

Let E, F C s be two linear vector spaces, we write E + F' for the set of all
sequences w = u + v where u € E and v € F. From [4, Proposition 1, p. 244] and
[5, Theorem 4, p. 293] we deduce the next results.

PROPOSITION 1. Let a, b € UT and let x be either of the symbols s, or s°.
Then we have
(i) Xa C Xb if and only if there is K > 0 such that
an < Kb, for all n.
(i) &) xa = Xb of and only if there are K1, Ko > 0 such that

K < Z—" < K5 for all n.

n
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0) s = s,(f) if and only if there is | # 0 such that Z—n — 1 (n— 00).

(iii) Xa + Xb = Xa-+b-
(iv) Xa + Xb = Xa if and only if b/a € lo.

We immediately deduce the next corollary that will be useful in the following.

LEMMA 2. The next statements are equivalent.
i) a € sp,

i) $q C Sp,

i) 89 C 5P,

i) an, < Kby, for all n and for some K > 0.

In the following our aim is to determine the set of all sequences x = (,)n>1 €
U™ such that
= 0(1) (n — o)
if and only if there are u, v € s such that y = u + v and
un, = O(ay) and v, = O(zy,) (n — 00).

We have the next result.

THEOREM 3. Let a = (an)n>1, b = (bp)n>1 € U and let x be any of the
symbols s, or s°. Consider the equation
Xa + Xz = Xb> (3)
where x = (zy)n>1 € U is the unknown. Then
(i) if a/b € co then equation (3) holds if and only if there are Ky, Ky > 0
depending on x, such that
Kb, <z, < Kby, for alln,

that is s, = sp;
(i1) if a/b, bja € Lo then equation (3) holds if and only if there is K > 0
depending on x such that
0 <z, < Kby, for alln,

that is x € sp;
(iii) if a/b ¢ Lo then equation (3) has no solution in U™ .

Proof. The proof in the case when y = s was given in [1]. When x = s°
the proof follows exactly the same lines as in the previous case since we have the
equivalence of (ii) and (iii) in Lemma 2 and by Proposition 1 we have s = s, if
and only if sg =s)for&,neUt. m

We deduce the next corollary.
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COROLLARY 4. Letr, u > 0 and let x be any of the symbols s, or s°. Consider
the equation
Xr + Xz = Xu (4)
where © = (Tp)n>1 15 the unknown. Then we have
i) If r < u equation (4) is equivalent to
K" <, < Kyu" for alln

for some K1, Ky > 0;
it) if ¥ = u equation (4) is equivalent to
Tn < Ku™ for alln

for some K > 0;

iii) if v > u equation (4) has no solution.

1.3. Product of sequence spaces

In this subsection we will deal with some properties of the product E x F of
particular subsets F and F' of s. For any sequences £ € E and n € F we put
&n = (€aMn)n>1. Most of the next results were shown in [4]. For any sets of
sequences F and F', we put

ExF=|J1/)"'«F={¢nes: ¢cEandneF}.
EEE

We immediately have the following results, where we put
S={sq:acU}and S* ={s":a c UT}.

PROPOSITION 5. The set S, (resp. 8°) with multiplication  is a commutative
group and lw,, (resp. co) is the unit element for S, (resp. SY).

Proof. We only deal with the set S the case of the set S° can be treated
similarly. By [4, Proposition 1, p. 244] we have x4 * X» = Xab. We deduce that the
map 9 : UT +— S defined by v (a) = s, is a surjective homomorphism and since
U™ with the multiplication of sequences is a group it is the same for S. Then the
unit element of S is Y(e) =51 =lo. W

REMARK 6. Note that the inverse of x, is X1/, Where x be any of the symbols
s, or s°.

As a direct consequence of Proposition 5 we deduce the next corollary.

COROLLARY 7. Leta, b, b’ € U and let x be any of the symbols s, or s°. We
successively have

(i) Xa * Xb = Xab-

(%) Xa * Xo = Xa * X if and only if sp = spr.

(iii) The sequence © = (x,)n>1 € UT satisfies the equation

Xa * Xz = Sb (5)
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if and only if
b, bn
K — <z, <Ky— foralln (6)
a

n n

for some K1, Ky > 0 depending only on x.
2. On some sequence spaces equations with operators

In this section we consider among other things the equations sgf)(A) = sl()c),
Saztb(D) = 8y, Saz21be (D) = 55 and s+, (A) = s, for given sequences a, b € UT.
The resolution of the equation s4444(A) = s, is equivalent to determine the set of
all sequences x € U™ such that

Yn — Yn—1 = O(anzn + bn)

if and only if y, = O(n,,) (n — o0) for all y € s. Solving the equation s, + s, (A) =
s, leads to know the set of all sequences z € U™ such that for each sequence y we
have

Yn = O(xy,) (7)

if and only if there are sequences u, v such that y = v+ v and
up, = O(ay) and vy, —v,—1 = O(zy) (N — 00).

2.1. On the identities x,(A) = x, where x € {s°,5() s}

To solve the next equations we need additional definitions and properties. The
infinite matrix T = (¢5m)n,m>1 is said to be a triangle if ¢, = 0 for m > n and
tnn # 0 for all n. Now let U be the set of all sequences (up)n>1 € s with w, # 0
for all n. The infinite matrix C(a) with a = (an)n>1 € U is defined by

()] :{ 1/an, if m<mn,

0, otherwise.
It can be shown that the matrix A(a) defined by

A, if m =n,
[A(a)]pm = —an-1, fm=n—1andn>2,
0, otherwise,

is the inverse of C(a), that is C(a)(A(a)é) = A(a)(C(a)é) for all £ € s. If a = e we
get the well known operator of the first difference represented by A(e) = A. We
then have A, = &, — &,_1 for all n > 1, with the convention £, = 0. It is usually
written

1

11 0

Y=Ce) = 111

Note that A = ¥~ and A, ¥ € Sk for any R > 1. Consider the sets where

[C’(a)a]n = (ZZ=1 am)/an,
C) = {acUt: Cla)a € ls},
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C={acU": [C(a)a), — I for some | € C},
I'={acU*t: lim (anfl) <1},

n—oo a"L

F={acU": limsup(anfl) <1}

n— oo (79

and
Gy ={xc€U" :x, > ky" for all n and for some k > 0 and v > 1}.
By [3, Proposition 2.1, p. 1786] and [6] we obtain the next lemma.
LEMMA 8. We have
(i)T =C.
(i) T C 6\1 C Gi.
SincefCFwededucef:@CFCaCGI.

Here among other things we study the equivalence

Yn Z Y=l 1if and only if Z—n — 1" (n — o0) for all y € s and for some [, I’ € C.
(7% n
This statement can written in the form sgc)(A) = sgc). We will use the next

elementary lemma.

LEMMA 9. Let Ty, Ts be triangles and E, F be sequence spaces. Then for any
triangles T we have T € (E(Ty), F(Ts)) if and only if ToyTT; " € (E, F).

The proof is based on the fact that T;, 75 and T being triangles we have
E(Ty) = Ty 'E and for every & € E we have
BIT(T'€)] = (TT e

Let us state the next results.

THEOREM 10. Let a, b€ UT. We have

(i) The following statements are equivalent
a) sqa(A) = sy,

b) sq(A) = sp,

) Sq = Sp andbea.

(ii) Assume (bp—1/bn)n € c. Then

s(8) =57 (8)
if and only if
Z—n—>l;«é0forsomel€(c and b e T.

n

Proof. The statement (i) was shown in [5, Proposition 9, p. 300]. It remains
to show (ii). The first identity (8) means that A is bijective from s& to sl(f).
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Since A is a triangle and its inverse is equal to ¥, by Lemma 9 equality (8) is
equivalent to ¥ € (sff),sl(f)) and to A € (sl(f),sgf)). Then also by Lemma 9 we
have Dy,,XD, € (c,c) and Dy;,ADy € (c,c). From the characterization of (c,c)

we deduce

[C(b)al], = @ — L for some L, 9)
n
and I
Pt Ol K for all m, (10)
an

Conditions (9) and (10) imply there is K’ such that
n bn
’;L < K’ and 2% < K for all n (11)
n a?’l
that is s, = s;. Then we have a € 6’\1 since (11) implies
by, 1
n-_ § T
a, — K’
Then b, 1 /b, cannot tend to 1. Indeed we have

[CO)al,  Sr am +anbp1
CO)aln-1 S Lam  ba (1+ m) b

m=1
Then L # 0 since

[C(a)a], = [C(b)a] [C(b)a], for all n.

[C(b)a], > K“Zn = Ki > 0 for all n
and nlin;o % = % = 1. So if b,,—1/b,, tend to 1 we should have
1+ # — 1 (n — o0)
2 m—10m

and .
(Cla)a], = Zn=1m

an
which is contradictory. So we have b,,_1 /b, — L’ # 1. Then

+1— 00 (n— o)

an 1 n n—1 bn71
==X am = X2 am) = [C(b)a]n = [C(b)a)n—1
bn bn m=1 m=1 bn
tends to L — LL' = L(1 — L’) # 0 and a,, /b, has a nonzero limit . We deduce
by, L
[C(a)aln = [C(b)a]ln— — — #0
an l
and a € C =T So 221 — x < 1(n — o0) and
an
bp_1 bp1 1 an_1 11
== Sox <1
bn anflbin (7% —>llx<
an l
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which implies b € T. This concludes the proof.
Conversely assume a,, /b, — { # 0 for some [ € C and lim,,—, o (b,—1/by) < 1.
Then s((f) = Sz(;C) andbeT implies s((f)(A) = s((f) = séc). (]

We can state the next result which is a direct consequence of Theorem 10
(i) b).

COROLLARY 11. (3) sgf)(A) = s\ if and only ifa € T.

(ii) c(A) # s for any a € U*.

(iii) Let r, uw > 0. Then sgc)(A) =5 if and only if r =u > 1.

qg+n—m-—1

Let us cite the next lemma where [%9],,, = ( ) with m < n.

n—m

COROLLARY 12. [5] Let ¢ > 1 be an integer. Then the following statements
are equivalent

(i) a € Cy,

(i) 5a(8) = 50,

(i) s2(A) = 50,

(iv) $q (A7) = s,

(0) $9(AT) = L,

(vi) 1 i <q+nm1

n m=1

>%Oﬂﬂnﬂaﬁ

n—m

2.2. On the (SSE) with operators (xq * Xz + Xb)(Q) = x,, and [x, *
(Xr)z + Xb * X:v](A) = Xn with X € {507 S}
As consequences of the preceding we can state the next results.

PROPOSITION 13. Let a, b, n € UT. Then
i) a) If b/n € co the (SSE) with operator
(Sa * 5z + sp)(A) = sy (12)
is equivalent to s, = s/, and n € 6'\1;
b) If sp = s, then (SSE) (12) is equivalent to x € s,,, and 1 € Ci;
c) If b/n & Lo then (SSE) (12) has no solution.

i1) Assume
aes (13)
and
be sg. (14)
Then the (SSE)
[5a * (52)% + sp % 5] (A) = s, (15)

is equivalent to n € 6'\1 and s, = S\/’%
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Proof. 1) We have $,%8;+5p = Saz+Sp = Saz+b. S0 (Sa*Sz+5)(A) = Saztb(A).
By Theorem 10 (ii) we have that (12) is equivalent to

Saz+b = Sn
{ (16)

neCh,

and Sag+b = Sy i equivalent to sy + Sqx = ;. For the study of the (SSE) it
is enough to apply Theorem 3. If b/n € ¢y then s, = s, and s, = s,/,. The
remainder of the proof can be shown similarly.

ii) First show the necessity. Since we have s, * (s:,c)2 + Sp * S5 = Sgz24pg, DY
Theorem 10 (iii) identity (15) is equivalent to

Sax2+bx = Sn
{ (17)

n e Ch.

Then 5,2 b, = sn. Let us show z,, — oo (n — 00). Since n € 6'\1 we have 7,, — oo
and by (17) there is K > 0 such that angci + bpxy, > Kn, and
b
UYn :mi—i——nxn an—n for all n
an anp

Then condition (13) implies 7, /a, — oo (n — o0) and y, — 00 (n — o00). Now by
the identity y,, = 22 + (b, /a,)z, we have

T, = 1(_277:1 + (2—:)2 -|—4yn) for all n,

and by (14) we deduce x,, — oo (n — 00). We then have

2
Ontn Hontn o0 Ly 0(1)o(1) = 14 0(1) (n — o),

anx? Qn T

2

anx; + bpx .

and nniznn — 1 (n — 00), which shows $g.21ps = Saz2. By Corollary 7 iii)
anz?

we conclude s, = s

n/a
Sufficiency. Assume s, = S\ fula and 7 € 6’\1 Then Squ24p: = Sy. But (14)
implies s C s, and
Spy/Z C Svan
and by (13) we have /@, 1, /Mn = \/an/Mn = 0(1) (n — 00). We conclude Sqz2 14 =
sy and since n € C7 we have s4,244,(A) = s,. This concludes the proof of i). m

We deduce the next corollaries.
COROLLARY 14. Let u, p > 0 and R > 1. Consider the (SSE)
(Sunzn)n + Sy, ) (D) = sg with x € UT. (18)
Then
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(i) if R > u then the solutions x of (18) satisfy x, — 0o (n — o0) and for any

. n
a > 0 we have lim — = oo;
n—oo N

(i) if R = u then the solutions of (18) satisfy x, = O(1) (n — o0);
(iii) if R < u then for any given B > 0 the solutions of (18) satisfy

lim nﬁxn =0.
Proof. (i) We have a,, = u™, n,, = R" and b,, = nP. Since n? R™" — 0 (n — 00)
we have b/n € ¢y and (18) is equivalent to s, = sg/,,. Then putting R/u = r there

is K7 such that x,n™® > Kyr"n~% and since » > 1 we have r"n™% — oo and

Tpn~* — 00 (n — 00).

(ii) We have R = u and as we have seen above we have s, = s; which implies
xn = 0(1) (n — 00).
(iii) Here we have s, = sps, = s, with r < 1 so there is K> such that

2,nf < Kor™n® and since r"nf tends to naught we conclude it is the same for
B
nPx,. n

COROLLARY 15. Let x € U satisfy the (SSE) with operator
(S(nl’x%)n + S(zp lnn)n)(A) = SR (19)

with p > 0 and R > 1. Then for every a > 0 we have lim In _ .

n—oo N

Proof. Here we have a,, = nP, b, = lnn, 1, = R™ and conditions (13) and
(14) hold since trivially we have n?/R™ = o(1) and Inn/n? = O(1) (n — o0), since
R > 1 we also have n € 6'\1 Then the solutions of (19) satisfy x,, > K, R"?p~%
and z,/n® > K1 R"?/n%t® then R"/2?/n%t® — oo and z,/n® — oo (n — o).
This concludes the proof. m

Using similar arguments we immediately obtain the following result.

PROPOSITION 16. Let a, b, n € UT. Then
1) «) If b/n € ¢y then the (SSE)
Saz+b(D) = 5, (20)
is equivalent to s, = s/, and n € 6'\1
B) If sy = s, then (SSE) (20) is equivalent to x € s, and n € Ch:
v) If b/n ¢ Lo then (SSE) (20) has no solution.
it) Assume a € s) and b € s,. Then the (SSE)
sgaz2+bx(A) = 8707 (21)

is equivalent to n € 6’\1 and S, = S

n/a

We immediately deduce the following.
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COROLLARY 17. The (SSE) with operator
Xz24z(A) = s, with x = s, ors (22)
is equivalent to n € 6'\1 and S, = S m-
Proof. We only consider the (SSE) (22) where x = s, the other case can be

shown similarly. We have s,24,(A) = s, equivalent to s,2,, = s, and 1 € 6’\1
Soa=c¢c¢ 39] since 1/n € ¢y and b = e € s, = l, then by Proposition 12 we

conclude s; = s 5. Conversely. Assume s, = s 5 and 7 € 6'\1 Then 7, — oo,
so we have (0, + /1) /M — 1 (n — o0) and 8,24, = 5,1 7 = sy. We conclude
Sp240(A) = 55(A) = 5. m
2.3. On the (SSE) xuz244(A) = xz and x4+ x2(A) = x, with y € {s°, s}
Now we are interested in the study of sequence spaces equations with a second

member depending on z such as the (SSE) Xuz244(A) = s, and xq + X2(A) = Xa-

We will see that the last equation is equivalent to the equation s? + s2(A) = 0.

PROPOSITION 18. The (SSE)
XaxQ—Q—z(A) = Xz (23)

where x is any of the symbols s°, or s is equivalent to x € 6'\1 and to

K
T, < - for all n and for some K >0

n

Proof. We only show the proposition for y = s. The proof being similar for
the other case. We have that (23) is equivalent to

Saz242 = Sz,
€T € Cl.
Since we have S4,24 . = Sgq2 + S5 the identity sq.21, = S5 is equivalent to s,,.2 C sy

and to s, C 81/, by Proposition 11i). This concludes the proof of the proposition. m

Using similar arguments we deduce the following result.

REMARK 19. We immediately deduce that s,z ,(A) = s, has no solution since
we have x € Cy implies ,, — oo (n — o0) and we cannot have s; C 51/q = foo. It
is the same for the equation 5%, (A) = s).

In the following we will use the set s* = {x € Ut : a/z € {5 }. We can state
the next result.

PROPOSITION 20. Assume

lim (2) >0 for all r > 1. (24)
Then —
{2 €UT  xa+X2(A) = Xz} = C4 (25)

where x is either s, or s°.
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Proof. First show identity (25) with x = s. Let A, be the set
Ao ={z €UT 15, + 5,(A) = 5, }.
Show that A, = C; N sk. First let € A,. Then s,(A) C s, and I € (s,(A), s2),
by Lemma 9 we have ¥ € (s, s,) that is
1
—(z1+ -+ z,) =0(1) (n — 0). (26)

n

We conclude A, C 6’\1 . Then show A, C s. We have z € A, also implies
Sa C Sq + Sz (A) = 8,

we deduce a € s, C s, and x € s). We conclude A, C 6'\1 N sh. Now show the
inclusion a Ns: C A, Letx e a Nsk. First o € 61 implies s,(A) = s,, then
x € s& implies s, C s, and s, + s = s,. We conclude s, + s,(A) = s, and
z € A,. This shows C; N s* C A,. Now show C; C s*. Since by Lemma 8 (i) we
have a C (G4, the condition = € 6’1 implies there are £ > 0 and ~ > 1 such that
r, > ky". Since we have lim _ _ (r"/ay,) > 0 then inf, (r"/a,) > 0 for all r > 1
and there is 79 €]1, [ such that

In >k <,yn> > kinf <7’6‘> > 0 for all n

an QA n [07%
and z € s%. So we have shown 6\1 C stand A, = 6’\1 . This completes the first part
of the proof.
Now show identity (25) holds with y = s°. Let A% be the set

A ={z e U":s)+s2(A)=s2}).

Show that A% = C; N s*. First let # € A%. Again by Lemma 9 we have s2(A) C
s9 and ¥ € (s2,5Y). So we have

in(x1+.--+xn) — 0(1) and i — o(1) (n — ). (27)

But since we have z € C; implies 1/x,, — 0, conditions given by (27) are equivalent
to # € C1. So we have shown A% c Cy. Then show A% C si. We have z € AY
implies s C s% + s2(A) = sY and s? C sU. By Lemma 2 we deduce s, C s, and
a € 84 C 8z, this means that z € s. We conclude A% C Ci N sk. The proof
of the inclusion 6’\1 N sk C A, follows exactly the same lines that in the proof of
Cin st C A% So AY = Cin s%. Finally reasoning as above condition (24) permits
us to conclude (25) holds with x = s". m

The next corollary can be easily deduced.
COROLLARY 21. We have

(i) Sq + $2(A) C sy if and only if x € Ci N sk
(i) if v € Ch then sy C sq + sz(A).
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EXAMPLE 22. Let a > 0. Then the set of all sequences o € U™ such that
u, = 0(n®) and v, — vp—1 = O(xy,)

implies
Up + vp, = O(zy) (n — 00) for all u, v € s,

is equal to Cy. Indeed for any r > 1 we have lim, . (r"/n®) > 0and s, +s,(A) C
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