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THE TOTAL GRAPH OF A MODULE

Zoran Pucanović

Abstract. A generalization of the total graph of a ring is presented. Various properties are
proved and some relations to the total graph of a ring as well as to the zero-divisor graph are
established.

1. Introduction

The idea of associating a graph to a ring first appears in [5]. For the vertices of
the graph, Beck takes all elements of a commutative ring R. Two distinct vertices
x, y ∈ R are adjacent if xy = 0. This paper primarily deals with the questions
of coloring and the computation of the chromatic number for some rings. Other
authors have been motivated by the results of this article to research the interre-
lations between properties of graphs and rings, the question of the connectivity of
the graph, its diameter, radius and other interesting invariants of graphs. Their
interpretations in the theory of commutative rings, make Beck’s paper the founding
paper of a new and interesting field of algebra.

Of course, there are many ways to associate a graph to a given ring R. The
most well-known is certainly the zero-divisor graph Γ(R) introduced in [3]. In this
paper, the set of vertices consists only of non-zero zero-divisors. The authors show
that Γ(R) is always connected, of diameter at most 3. Some other investigations
into properties of this graph may be found in [1, 4, 7–10].

In [2], the notion of the total graph of a commutative ring T (Γ(R)) is intro-
duced. We use the notation TΓ(R). The vertices of this graph are all elements of
the ring R. Two vertices are adjacent if their sum is a zero-divisor. This graph,
unlike the zero-divisor graph, need not be connected. Even in the case when the
total graph is connected, its diameter may have arbitrary value n, for n ≥ 1. The
structure and the properties of the total graph are thoroughly examined in [2].

We define the total graph of a module in an analogous way. Let R be a
commutative ring with identity, R∗ = R\{0}, Z(R) the set of its zero-divisors, and
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Z(R)∗ = Z(R)\{0}. Let M be an R-module, M∗ = M\{0}, and T (M) = {m ∈
M | rm = 0 for some r ∈ R∗} the set of its torsion elements. We define the total
graph of a module TΓ(M) as follows:

V (TΓ(M)) = M, E(TΓ(M)) = {{m1,m2} : m1 + m2 ∈ T(M)},
where V (Γ) (E(Γ)) denote the set of vertices (edges) of the graph Γ. In the case
M = R, i.e., when we look at R as an R-module, T (M) = Z(R); therefore we
arrive at the total graph of a ring TΓ(R) introduced in [2].

By a graph Γ, we mean a simple unoriented graph without loops. Two vertices
x and y of the graph Γ are connected if there is a path in Γ connecting them.
If every two vertices are connected, we say that the graph Γ is connected. For
vertices x and y in Γ, one defines the distance d(x, y) as the length of a shortest
path between x and y, if these vertices are connected, and d(x, y) = ∞ if there is
no such a path. The diameter of the graph Γ is diam (Γ) = sup{d(x, y) | x, y ∈ Γ}.
A graph is complete if any two distinct vertices are adjacent. If the vertices of the
graph Γ are partitioned into two disjoint sets A and B of cardinality |A| = m and
|B| = n, and two vertices are adjacent if and only if are not in the same set, then
Γ is a complete bipartite graph. For complete and complete bipartite graphs, we
use the standard notation Kn and Km,n, where we allow m and n to be infinite
cardinals.

2. T (M) is a submodule of M

The structure of the total graph TΓ(M)may be completely described in those
cases when torsion elements form a submodule. Let us start with the extreme cases
T (M) = M and T (M) = {0}.

Theorem 2.1. The total graph TΓ(M) is complete iff T (M) = M .

Proof. If T (M) = M , then for any two vertices m1,m2 ∈ M , one has m1+m2 ∈
T (M). Therefore, they are adjacent in TΓ(M). On the other hand, if TΓ(M) is
complete, then every vertex is adjacent to 0. Thus m = m+0 ∈ T (M), from which
the claim follows.

Remark. The condition of the previous theorem is necessarily fulfilled if
Ann(M) 6= 0. Let us illustrate this with the following examples.

Example 2.2. Let R = Zn×Zm and M = Zn an R-module, where the module
structure is given by (a, b) ·m = am. Then Ann(M) 6= (0, 0) since (0, b) ∈ Ann(M)
for every b ∈ Zm, and thus TΓ(M) is complete.

Example 2.3. Every finite Abelian group M is a torsion Z-module. In par-
ticular, if R = Z and M = Zn, an R-module with the usual multiplication, then
TΓ(M)∼= Kn. Therefore, all finite complete graphs may be realized as total graphs
of modules.

Let us look at the other extreme case, when the graph is totally disconnected.
If T (M) = {0}, then the vertices m1 and m2 are adjacent iff m2 = −m1. If, in
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addition to that, M 6= 0, then TΓ(M) is a disconnected graph and its only edges
are those that connect vertices mi and −mi.

Theorem 2.4. Let R be a commutative ring and M an R-module. Then
TΓ(M) is totally disconnected iff R has characteristic 2 and M is torsion-free.

Proof. If TΓ(M) is totally disconnected, then 0 is not adjacent to any vertex,
i.e., 0 + m = m /∈ T (M) for every m ∈ M∗. So T (M) = {0}, and therefore M is
torsion-free. Further, since m + (−m) = 0, from the total disconnectedness of the
graph it follows that m = −m, i.e., 2m = 0 for every m ∈ M . Since T (M) = {0},
it follows that 2 = 0, i.e., char (R) = 2. The reverse implication is obvious.

Lemma 2.5. Let T (M) be a submodule of an R-module M and x ∈ M\T (M).
Then 2x ∈ T (M) iff 2 ∈ Z(R).

Proof. First suppose that 2 ∈ Z(R), i.e., there exists an r ∈ R∗ such that
2r = 0. Then 2x ∈ T (M) for all x since r(2x) = (2r)x = 0.

Let us now assume that 2x ∈ T (M). Since x /∈ T (M), we have that x 6= 0
and for all r ∈ R: rx = 0 ⇒ r = 0. Since 2x ∈ T (M), there exists a ∈ R∗ such
that a(2x) = 0. So (2a)x = 0, and since x /∈ T (M), one must have 2a = 0, i.e.,
2 ∈ Z(R).

Theorem 2.6. Let M be an R-module such that T (M) is a proper submodule
of M . Then TΓ(M) is disconnected.

Proof. If T (M) = {0}, then the vertex 0 evidently is not adjacent to any other
vertex. If T (M) 6= {0}, then the subgraphs with vertices from T (M) and M \T (M)
are disjoint. For, if x ∈ T (M) and y ∈ M \T (M) were adjacent, then x+y ∈ T (M);
so this, since T (M) is a submodule, would lead to the contradiction y ∈ T (M).

The description of the structure of the graph TΓ(M)when T (M) 6= M is a
submodule is almost identical to the description of the graph TΓ(R) when Z(R) is
an ideal in R [2, Theorem 2.2]. Therefore, we present a proof without giving all
the details.

Let us look at the quotient module M/T (M). Let |T (M)| = α and |M/T (M)|
= β. Let x, y ∈ M \T (M) be such that x+T (M) 6= y+T (M). The elements x+m1,
x + m2 from the same coset x + T (M) are adjacent iff 2x ∈ T (M); so 2 ∈ Z(R),
according to Lemma 2.5. Then x + m1 and y + m2 are not adjacent—otherwise
we would have x− y = x + y − 2y ∈ T (M), and therefore x + T (M) = y + T (M).
Since every coset has cardinality α, we arrive at the conclusion that TΓ(M) is the
disjoint union of β complete graphs Kα when 2 ∈ Z(R).

If 2 /∈ Z(R), then the elements x + m1, x + m2 from x + T (M) are obviously
not adjacent. The elements x + m1, y + m2 from different cosets are adjacent iff
x + y ∈ T (M), or y + T (M) = −x + T (M). In this way, we conclude that the
subgraph spanned by the vertices from M \ T (M) is a disjoint union of β−1

2 (= β
if β is infinite) disjoint bipartite graphs Kα,α. Therefore, the following theorem
holds.
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Theorem 2.7. Let R be a commutative ring and M an R-module such that
T (M) is a proper submodule of M . Suppose |T (M)| = α and |M/T (M)| = β.
1. If 2 ∈ Z(R), then TΓ(M) is a union of β disjoint complete graphs Kα.

2. If 2 /∈ Z(R), then TΓ(M) is a union of β−1
2 disjoint bipartite graphs Kα,α and

one complete Kα.

Example 2.8. Let R be a ring and M = R⊕R a module over R.
1. If R = Z4, then TΓ(M) is a union of 4 disjoint K4.
2. If R = Z9, then TΓ(M) is a disjoint union of one complete graph K9 and 4

bipartite K9,9.
Theorems 2.1 and 2.7 give a complete description of the structure of the total

graph TΓ(M) when T (M) is a submodule. The question under what conditions
T (M) is a submodule of M and how is this related to the condition that Z(R) is
an ideal in R naturally arises. When Z(R) = {0}, i.e., if R is a domain, then T (M)
is obviously a submodule. We prove that a more general result holds.

Theorem 2.9. If Z(R) = (z) is a principal ideal of R and z ∈ Nil(R), then
T (M) is a submodule of M .

Proof. Let Z(R) = (z) and assume that T (M) is not a submodule of M . Then
there exist m1,m2 ∈ T (M) such that m1 + m2 /∈ T (M). Let r1, r2 ∈ R∗ be such
that r1m1 = r2m2 = 0. Then r1r2(m1 + m2) = 0 and m1 + m2 /∈ T (M); so we
must have r1r2 = 0, and thus r1, r2 ∈ Z(R). Therefore, as z ∈ Nil(R), we have
that r1 = azk and r2 = bzm, for some a, b /∈ Z(R). Without loss of generality, we
may assume that k ≥ m. Then for the element br1 ∈ R∗ we have br1(m1 +m2) = 0
which is contrary to the assumption that m1 + m2 is not torsion.

Remark. By the assumption of the previous theorem, it follows that Z(R) =
Nil(R). Let R be the polynomial ring Z[X]. If we define a nonstandard multipli-
cation in R by p(X) ∗ q(X) = p(0)q(0), then Z(R) = Nil(R) = (X). Thus the
conditions of Theorem 2.9 are fulfilled. It is also true in the rings Zpn for any
integer n ≥ 2 and prime p. Here Z(R) = Nil(R) = (p).

When the zero-divisors form an ideal which is not principal, T (M) need not
be a submodule even if Z(R) = Nil(R). Let us look at an example.

Example 2.10. Let R be the local ring Z4[X]/(2X,X2). Then Z(R) =
Nil(R) = (2, x), where x is the corresponding class. Let M = R/2R ⊕ R/xR
and take m1 = (1 + 2R, xR), m2 = (2R, 1 + xR). Then m1,m2 ∈ T (M) since
2m1 = xm2 = 0, while m1 + m2 = (1 + 2R, 1 + xR) /∈ T (M).

3. T (M) is not a submodule of M

We begin this section with an interesting result linking the total graph of a
module to the zero-divisor graph.

Theorem 3.1. Let R be a commutative ring with diam (Γ(R)) = 3. Then
T (R⊕R) is not a submodule of the R-module R⊕R.
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Proof. Since diam (Γ(R)) = 3, there exist r1, r2 ∈ Z(R)∗ such that d(r1, r2) =
3. Let r1 — s — t — r2 be a path in Γ(R). The elements m1 = (r1, 0) and m2 =
(0, r2) belong to T (R⊕R) since sm1 = tm2 = 0, while m1 +m2 = (r1, r2) /∈ T (M).
Namely, if (r1, r2) ∈ T (M), there exists r ∈ Z(R)∗ such that rr1 = rr2 = 0; so we
get the contradiction d(r1, r2) ≤ 2.

Let M be an R-module. In the previous section, we have seen that the case
when Z(R) is an ideal of R may, but it need not imply that T (M) is a submodule
of M . The same holds if Z(R) is not an ideal of R. For example, if we consider
M = Z6 as the Z6-module, then clearly T (M)(= Z(R)) is not a submodule of M
(Z(R) is not an ideal of R). On the other hand, if we consider M = Z6 as a module
over R = Z6 × Z6, with the module operation given by (a, b) ·m = am, then Z(R)
is not an ideal, but T (M) is a submodule since Ann(M) = {(0, r) | r ∈ Z6}. In
[2], it has been proved that in the case when Z(R) is not an ideal of R, TΓ(R) is
connected if and only if (Z(R)) = R. If the ring R is additively generated by
its zero-divisors, connectedness of the graph TΓ(R) has the essential role in the
connectedness of the graph TΓ(M) . We therefore discuss in this section the case
when the torsion elements do not form a submodule of the R-module M nor do the
zero-divisors form an ideal of R.

Lemma 3.2. Suppose that M is an R-module. If the identity of the ring R
is a sum of n zero-divisors, then every element of the module M is the sum of at
most n torsion elements.

Proof. Evidently, if a ∈ Z(R) and x ∈ M , then ax ∈ T (M); so for all m ∈ M :

1 = z1 + · · ·+ zn ⇒ m = z1m + · · ·+ znm .

Lemma 3.2 may be formulated in a slightly more general form: if R is gener-
ated (additively) by zero-divisors, then every R-module is generated by its torsion
elements.

Theorem 3.3. Let M be an R-module such that T (M) is not a submodule.
Then TΓ(M) is connected if and only if M is generated by its torsion elements.

Proof. Let us first prove that the connectedness of the graph TΓ(M) implies
that the module M is generated by its torsion elements. Suppose that this is
not true. Then there exists m ∈ M which does not have a representation of
the form m = m1 + · · · + mn, where mi ∈ T (M). Naturally, m 6= 0 since 0 ∈
T (M). We prove that there does not exist a path from 0 to m in TΓ(M) . If
0— s1 — s2 — · · · — sk — m is a path in TΓ(M) , then s1, s1 + s2, . . . , sk−1 + sk,
sk +m are torsion elements and m may be represented as: m = (sk +m)− (sk−1 +
sk) + · · ·+ (−1)k−1(s1 + s2) + (−1)ks1 . This contradicts the assumption that m is
not a sum of torsion elements. The reverse implication may be proved in a similar
way as in [2, Theorem 3.3].

Theorem 3.4. Let R be a commutative ring and M an R-module. If TΓ(R) is
connected, then TΓ(M) is connected as well.
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Proof. Suppose that TΓ(R) is connected and let m ∈ M . Then there exists a
path from from 0 to m in TΓ(M). Let

(A) : 0— r1 — r2 — · · · — rk —1

be a path from 0 to 1 in TΓ(R) . Then r1, r1 + r2, . . . , rk + 1 ∈ Z(R). Since for
r ∈ Z(R) and m ∈ M , one has: rm ∈ T (M). “Multiplying” the path (A) by m we
obtain that

(B) : 0 — r1m — r2m — · · · — rkm— m

is a path from 0 to m in TΓ(M) . Since all vertices may be connected via 0,
TΓ(M) is connected.

Remark. Let us observe that, according to the previous proof, the following
property holds: if d(0, 1) = n in TΓ(R) , then d(0,m) ≤ n in TΓ(M) for every
m ∈ M .

Theorem 3.5. If every element of a module M is a sum of at most n tor-
sion elements, then diam (TΓ(M)) ≤ n. If n is the smallest such number, then
diam (TΓ(M)) = n.

Proof. We first prove that, under the given conditions, the distance of any
element m from 0 is at most n. Suppose that m = m1+· · ·+mn, where mi ∈ T (M).
Then, for ai = (−1)i+n(m1 + · · ·+ mi),

0 — a1 — a2 — · · · — an

is a path from 0 to m of length n in TΓ(M) . Let x and y be arbitrary elements of
a module M . We prove that d(x, y) ≤ n. In the proof, we use the path (A) from 0
to x− y and the path (B) from 0 to x + y.

(A) (x− y)— s1 — s2 — · · · — sn−1 — 0

(B) (x + y)— t1 — t2 — · · · — tn−1 —0

From the previous discussion, the lengths of both paths are at most n. Depending
on the fact whether n is even or odd, we get the paths (A′) or (B′) from x to y of
length n.

(A′) x—(s1 − y)— (s2 + y)— · · · —(sn−1 − y)— y

(B′) x—(t1 + y) — (t2 − y)— · · · —(tn−1 − y)— y

Suppose now that n is the smallest such number, and let m = m1 + · · · + mn

be a shortest representation of the element m as a sum of torsion elements. We
prove that d(0,m) = n. From the previous results we have d(0,m) ≤ n. Sup-
pose that d(0,m) = k < n and let 0— s1 — s2 — · · · — sk−1— m be a path in
TΓ(M) . By using the same argument as in the proof of Theorem 3.3, we arrive
at a contradiction—a presentation of the element m as a sum of k < n torsion
elements. This concludes the proof of the theorem.
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Corollary 3.6. Let R be a commutative ring such that Z(R) is not an
ideal of R and (Z(R)) = R. Let M be an R-module. If diam (TΓ(R)) = n, then
diam (TΓ(M)) ≤ n. In particular, if R is finite, then diam (TΓ(M)) ≤ 2.

Proof. It follows directly from Lemma 3.2 and Theorem 3.5. In particu-
lar, if R is a finite commutative ring such that Z(R) is not an ideal of R, then
diam (TΓ(R)) = 2 [2, Theorem 3.4].

For every n ≥ 2, it is possible to construct a commutative ring Rn such that
Z(Rn) is not an ideal of Rn and diam (TΓ(Rn)) = n [2, Example 3.8]. This of
course means that TΓ(M)may have diameter n for every n, since we may look at
Rn as an Rn-module.

If the total graph TΓ(M) is connected and (Z(R)) = R, the diameter of
TΓ(M) need not depend on the number of generators from Z(R).

Example 3.7. Let z1, z2 ∈ Z(R) be such that z1 + z2 = 1. Let M = R/z1R⊕
R/z2R.

If z1z2 6= 0, then z1z2 ∈ Ann(M), and it follows that M is a torsion module;
so diam (TΓ(M)) = 1.

If z1z2 = 0, then by multiplying equality z1 + z2 = 1 by z1 one gets z2
1 = z1;

so z1 is an idempotent. Let m1 = (1 + z1R, 0) and m2 = (0, 1 + z2R) be elements
from T (M). We prove that m1 + m2 /∈ T (M). If r(1 + z1R, 1 + z2R) = 0, then
r ∈ z1R ∩ z2R, i.e., r = z1a = z2b. Multiplying the last equality by z1, one gets
z2
1a = 0. Thus, since z1 is an idempotent, r = z1a = 0. Therefore, T (M) is not a

submodule of M , and from Theorem 3.5 we conclude that diam (TΓ(M)) = 2.
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