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PAIRWISE CLOSURE-PRESERVING COLLECTIONS
AND PAIRWISE PARACOMPACTNESS

M. K. Bose and Ajoy Mukharjee

Abstract. The notion of pairwise closure-preserving property of a collection of sets is
introduced. Then some characterizations of pairwise paracompactness are obtained.

1. Introduction

The notion of pairwise paracompactness in a bitopological space was intro-
duced and studied in Bose, Roy Choudhury and Mukharjee [1]. Some characteriza-
tions of pairwise paracompactness were obtained there. In this paper, we introduce
the notion of pairwise closure-preserving collection of sets. Then we obtain some
new characterizations of pairwise paracompactness which are analogous to the char-
acterizations of paracompactness obtained by Michael [6].

2. Preliminaries

A collection B of subsets of a topological space (X, T ) is called a (T )closure-
preserving collection if for any subcollection D of B, (T )cl

(⋃
D∈D D

)
=⋃

D∈D(T )clD.
Let P1 and P2 be two topologies on a set X. In the sequel, the bitopological

space (X,P1,P2) is denoted simply by X. The topology Pi is said to be regular
with respect to Pj , i 6= j, if for each x ∈ X and (Pi)closed set A with x /∈ A, there
exist U ∈ Pi and V ∈ Pj such that x ∈ U , A ⊂ V and U ∩ V = ∅. X is said to be
pairwise regular (Kelly [5]) if Pi is regular with respect to Pj for both i = 1 and
i = 2. X is said to be pairwise normal (Kelly [5]) if for any pair of a (Pi)closed set
A and a (Pj)closed set B with A ∩ B = ∅, i 6= j, there exist U ∈ Pj and V ∈ Pi

such that A ⊂ U , B ⊂ V and U ∩ V = ∅. X is said to be strongly pairwise regular
(Bose, Roy Choudhury and Mukharjee [1]) if it is pairwise regular, and if both
the topological spaces (X,P1) and (X,P2) are regular. A cover U of X is called a
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pairwise open cover (Fletcher, Hoyle III and Patty [4]) if U ⊂ P1 ∪P2 and for each
i = 1, 2, U ∩Pi contains a nonempty set. A pairwise open cover V of X is said to be
a parallel refinement (Datta [3]) of a pairwise open cover U of X if every (Pi)open
set of V is contained in some (Pi)open set of U . A subcollection C of a refinement V
of a pairwise open cover U of X is said to be U-locally finite (Bose, Roy Choudhury
and Mukharjee [1]) if for each x ∈ X, there exists a neighbourhood of x intersecting
a finite number of members of C, the neighbourhood being (Pi)open if x belongs
to a (Pi)open set of U .

The bitopological space X is said to be pairwise paracompact (Bose, Roy
Choudhury and Mukharjee [1]) if every pairwise open cover U of X has a U-locally
finite parallel refinement.

Throughout the paper, N and R denote the set of natural numbers and the
set of real numbers respectively.

We require the following theorem.

Theorem 2.1. [1] If the bitopological space X is strongly pairwise regular,
then the following statements are equivalent.
(a) X is pairwise paracompact.
(b) Each pairwise open cover U of X has a parallel refinement V =

⋃∞
n=1 Vn, where

each Vn is U-locally finite.
(c) Each pairwise open cover U of X has a U-locally finite refinement.
(d) Each pairwise open cover U of X has a U-locally finite refinement B such that

if B ⊂ U ∈ U , B ∈ B, then ((P1)clB) ∪ ((P2)clB) ⊂ U .

We introduce the following definitions:

Definition 2.2. X is said to be (∗)pairwise normal if X is pairwise normal
and if for every pair of a (Pj)closed set A and a (Pi)closed set B with i 6= j,
i, j = 1, 2 and A ∩B = ∅, there exist U, V ∈ Pi such that

A ⊂ U, B ⊂ V and U ∩ V = ∅,
and there exist G,H ∈ Pj such that

A ⊂ G, B ⊂ H and G ∩H = ∅.
It is easy to see that X is (∗)pairwise normal if and only if it satisfies the

following conditions:
For any (Pj)closed set A and (Pi)open set W with A ⊂ W ,

(1) there exist U ∈ Pi such that A ⊂ U ⊂ (Pi)clU ⊂ W ,
(2) there exist V ∈ Pj such that A ⊂ V ⊂ (Pj)clV ⊂ W ,
(3) there exist G ∈ Pi such that A ⊂ G ⊂ (Pj)clG ⊂ W .

Example 2.3. Let P1 and P2 be two topologies on R defined by

P1 = {R, ∅, (−∞, a], (a,∞)},
P2 = {R, ∅, R− {a}, (−∞, a), (−∞, a], (a,∞)}.

where a ∈ R. The bitopological space (X,P1,P2) is (∗)pairwise normal.
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Now we show that there exists a pairwise normal space which is not (∗)pairwise
normal.

Example 2.4. Let X be any set with a, b ∈ X. Suppose

P1 = { ∅, X} ∪ {A ⊂ X | a ∈ A },
P2 = { ∅, X} ∪ {A ⊂ X | a /∈ A, b ∈ A }.

Then the bitopological space (X,P1,P2) is pairwise normal but it is not (∗)pairwise
normal.

Definition 2.5. A collection of subsets of X is said to be pairwise closure-
preserving if it is (Pi)closure-preserving for both i = 1 and i = 2.

Definition 2.6. [2] A collection A of subsets of X is hereditarily pairwise
closure-preserving if any collection B containing subsets of sets belonging to A
such that each set A ∈ A has one and only one subset belonging to B, is pairwise
closure-preserving.

Definition 2.7. Let U be a pairwise open cover of X. A collection C of
subsets of X is U-discrete (resp. U-locally finite) if for each x ∈ X there exists a
neighbourhood of x intersecting at most one set (resp. a finite number of sets) of
C, the neighbourhood being (Pi)open if x belongs to a (Pi)open set of U .

For a subcollection A of a refinement of a pairwise open cover U of X, we
denote by Ai, the collection of sets in A which are subsets of (Pi)open sets of U .
If a set A belonging to A is a subset of a (Pi)open set of U , then clA denotes the
(Pi)closure of A. The collection {clA | A ∈ A} is denoted by A.

Throughout Section 3, we assume that the bitopological space (X,P1,P2) sat-
isfies the following two conditions:
(∗) For any pairwise open cover U of X

A ⊂
⋃
{E | E ∈ Ui} ⇒ (Pi)clA ⊂

⋃
{E | E ∈ Ui}. (2.1)

(∗∗) If D is (Pi)closure-preserving, then D is (Pj)closure-preserving, when D is a
collection of subsets of a set belonging to P1 ∪ P2 − {X}.

3. Lemmas

To prove the desired characterizations as anticipated in introduction, we re-
quire the following lemmas.

Lemma 3.1. Suppose V is a refinement of a pairwise open cover U of the
bitopological space X. If a collection A ⊂ V is U-locally finite, then A is pairwise
closure-preserving.

Proof. Let B be a subcollection of A and let

x ∈ (Pi)cl
(⋃

B∈Bi

B
)
. (3.1)
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By the condition (∗), x belongs to a (Pi)open set of U . Therefore there exists
a (Pi)open neighbourhood of x, which intersects a finite number of sets in Bi,
say B1, B2, . . . , Bn. Again by (3.1), every (Pi)open neighbourhood of x intersects⋃

B∈Bi
B. Hence it follows that every (Pi)open neighbourhood of x intersects B1 ∪

B2 ∪ . . . ∪ Bn. So x ∈ (Pi)cl(B1 ∪ B2 ∪ . . . ∪ Bn) = ((Pi)clB1) ∪ ((Pi)clB2) . . . ∪
((Pi)clBn). Therefore x ∈ ⋃

B∈Bi
(Pi)clB. Hence

(Pi)cl
(⋃

B∈Bi

B
)
⊂

⋃
B∈Bi

(Pi)clB ⇒ (Pi)cl
(⋃

B∈Bi

B
)

=
⋃

B∈Bi

(Pi)clB.

(3.2)
Therefore by the condition (∗∗),

(Pj)cl
(⋃

B∈Bi

B
)

=
⋃

B∈Bi

(Pj)clB.

Similarly, we get
(Pi)cl

(⋃
B∈Bj

B
)

=
⋃

B∈Bj

(Pi)clB. (3.3)

Now

(Pi)cl
(⋃

B∈B
B

)
= (Pi)cl

(⋃
B∈Bi

B
)
∪ (Pi)cl

(⋃
B∈Bj

B
)

=
(⋃

B∈Bi

(Pi)clB
)
∪

(⋃
B∈Bj

(Pi)clB
)

(by (3.2) and (3.3))

=
⋃

B∈B
(Pi)clB.

Lemma 3.2. Let V be a refinement of a pairwise open cover U of X. Then a
collection A ⊂ V is pairwise closure-preserving iff A is pairwise closure-preserving.

Proof. Straightforward.

Lemma 3.3. If the pairwise open cover U = {Uα | α ∈ A} of X has a pairwise
closure-preserving refinement B such that

((P2)cl((P1)clB)) ∪ ((P1)cl((P2)clB)) ⊂ Uα (3.4)

where B ⊂ Uα, B ∈ B, then there exists a pairwise closure-preserving refinement
E ={Eα | α ∈ A} of U such that

((P2)cl((P1)clEα)) ∪ ((P1)cl((P2)clEα)) ⊂ Uα for each α ∈ A.

Proof. For each α, we write Eα =
⋃{B ∈ B | B ⊂ Uα}. Then

((P2)cl((P1)clEα)) ∪ ((P1)cl((P2)clEα))

=
(
(P2)cl

(
(P1)cl

(⋃
B⊂Uα

B
)))

∪
(
(P1)cl

(
(P2)cl

(⋃
B⊂Uα

B
)))

=
(
(P2)cl

(⋃
B⊂Uα

(P1)clB
))

∪
(
(P1)cl

(⋃
B⊂Uα

(P2)clB
))

(since B is pairwise closure-preserving).
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Again we have for i = 1, 2,

(Pi)cl
(⋃

B⊂Uα

(Pi)clB
)

=
⋃

B⊂Uα

(Pi)cl ((Pi)clB) .

Therefore by the condition (∗∗), we get

(Pj)cl
(⋃

B⊂Uα

(Pi)clB
)

=
⋃

B⊂Uα

(Pj)cl ((Pi)clB) .

Hence

((P2)cl ((P1)clEα)) ∪ ((P1)cl ((P2)clEα))

=
(⋃

B⊂Uα

(P2)cl
(
(P1)clB

))
∪

(⋃
B⊂Uα

(P1)cl
(
(P2)clB

))

⊂ Uα (by (3.4)).

Let us now consider a subcollection D of E = {Eα | α ∈ A}. For D ∈ D, there
exists an α(D) ∈ A such that D = Eα(D). We write CD = {B ∈ B | B ⊂ Uα(D)}.
Then C =

⋃
D∈DCD is a subcollection of B, and

⋃
C∈C

C =
⋃

D∈D

(⋃
C∈CD

C
)

=
⋃

D∈D
D. (3.5)

Now

(Pi)cl
(⋃

D∈D
D

)
= (Pi)cl

(⋃
C∈C

C
)

(by (3.5))

=
⋃

C∈C
(Pi)clC (since B is (Pi)closure-preserving)

=
⋃

D∈D

(⋃
C∈CD

(Pi)clC
)

=
⋃

D∈D
(Pi)cl

(⋃
C∈CD

C
)

=
⋃

D∈D
(Pi)clD.

Lemma 3.4. If any pairwise open cover U of X has a pairwise closure-
preserving refinement B satisfying (3.4), then X is (∗)pairwise normal.

Proof. Let A be a (Pi)closed set and B be a (Pj)closed set with A ∩ B = ∅,
i 6= j. Then {X − A,X − B} is a pairwise open cover of X. So by Lemma 3.3,
there exists a refinement {C, D} of {X −A, X −B} such that

((P1)clC) ∪ ((P2)clC) ⊂ X −A

and ((P1)clD) ∪ ((P2)clD) ⊂ X −B.

Then A ⊂ X − (Pi)clC, B ⊂ X − (Pi)clD, X − (Pi)clC, X − (Pi)clD ∈ Pi

and (X − (Pi)clC) ∩ (X − (Pi)clD) = ∅.
Also A ⊂ X − (Pj)clC, B ⊂ X − (Pj)clD, X − (Pj)clC, X − (Pj)clD ∈ Pj

and (X − (Pj)clC) ∩ (X − (Pj)clD) = ∅.
Moreover, A ⊂ X − (Pj)clC, B ⊂ X − (Pi)clD and

(X − (Pj)clC) ∩ (X − (Pi)clD) = ∅.
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Lemma 3.5. Let the space X be (∗)pairwise normal, U be a pairwise open
cover of X and V = {Vγ | γ ∈ Γ} be a disjoint collection of sets belonging to
P1 ∪ P2 such that if Vγ is (Pi)open, then it is a subset of a (Pi)open set of U and
let D = {Dγ | γ ∈ Γ} be a collection of subsets of X, which is pairwise closure-
preserving and

((P1)clDγ) ∪ ((P2)clDγ) ⊂ Vγ . (3.6)

Then there exists a U-discrete collection {Wγ | γ ∈ Γ} of subsets of X such that
Dγ ⊂ Wγ ⊂ Vγ and Wγ is (Pi)open if Vγ is (Pi)open.

Proof. We write Ui =
⋃

U∈Ui
U . Let Si = {x ∈ Ui | some (Pi)open neighbour-

hood of x intersects at most one Vγ}. Then Si is (Pi)open and contains all V ∈ Vi.
By (3.6), we get

⋃
D∈Di

(Pj)clD ⊂ Si =⇒ (Pj)cl
(⋃

D∈Di

D
)
⊂ Si.

Therefore by the (∗)pairwise normality of X, there exist sets G1
i , G

2
i ∈ Pi such that

(Pj)cl
(⋃

D∈Di

D
)
⊂ G1

i ⊂ (Pi)clG1
i ⊂ Si,

(Pj)cl
(⋃

D∈Di

D
)
⊂ G2

i ⊂ (Pj)clG2
i ⊂ Si,

and there exist sets H1
j ,H2

j ∈ Pj such that

(Pi)cl
(⋃

D∈Dj

D
)
⊂ H1

j ⊂ (Pi)clH1
j ⊂ Sj ,

(Pi)cl
(⋃

D∈Dj

D
)
⊂ H2

j ⊂ (Pj)clH2
j ⊂ Sj .

We now have

(Pi)cl
(
G1

i ∪H1
j

) ∪ (Pj)cl
(
G2

i ∪H2
j

) ⊂ Si ∪ Sj . (3.7)

We write Gi = G1
i ∩G2

i ,Hj = H1
j ∩H2

j and,

Wγ = Vγ ∩Gi if Vγ ∈ Pi,

= Vγ ∩Hj if Vγ ∈ Pj .

Then Dγ ⊂ Wγ ⊂ Vγ . Next we show that {Wγ | γ ∈ Γ} is U-discrete. Let x belongs
to some (Pi)open set of U i.e. x ∈ Ui. If x ∈ Si, then there exists a (Pi)open
neighbourhood of x, intersecting at most one Vγ and hence intersecting at most
one Wγ . If x /∈ Si ∪ Sj , then by (3.7), x /∈ (Pi)cl

(
G1

i ∪H1
j

)
. Again since Gi ⊂ G1

i

and Hj ⊂ H1
j , we have

⋃
γWγ ⊂ G1

i ∪ H1
j . Therefore there exists a (Pi)open

neighbourhood of x intersecting none of {Wγ | γ ∈ Γ}. Also we have Gi ⊂ G2
i

and Hj ⊂ H2
j , and so

⋃
γ Wγ ⊂ G2

i ∪ H2
j . Thus if x ∈ Ui ∩ Uj , and x /∈ Si ∪ Sj ,

then considering x /∈ (Pj)cl
(
G2

i ∪H2
j

)
, we also get a (Pj)open neighbourhood of x

intersecting none of {Wγ | γ ∈ Γ}.
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Lemma 3.6. Suppose U is a pairwise open cover of the space X and {Kα | α ∈
A} is a U-locally finite collection of subsets of X and suppose for each α ∈ A, Bα

is a pairwise closure-preserving collection of subsets of Kα such that each member
of Bα is a subset of some set in U . Then B =

⋃{Bα | α ∈ A} is also pairwise
closure-preserving.

Proof. Straightforward.

4. The characterizations of pairwise paracompactness

Theorem 4.1. If the bitopological space X is strongly pairwise regular and
satisfies the conditions (∗) and (∗∗), then the following statements are equivalent.
(a) X is pairwise paracompact.
(b) Each pairwise open cover U of X has a hereditarily pairwise closure-preserving

parallel refinement.
(c) Each pairwise open cover U of X has a parallel refinement V =

⋃∞
n=1Vn, where

each Vn is hereditarily pairwise closure-preserving.
(d) Each pairwise open cover U of X has a pairwise closure-preserving refinement.
(e) Each pairwise open cover U of X has a pairwise closure-preserving refinement

B such that if B ⊂ U ∈ U , B ∈ B, then

((P2)cl ((P1)clB)) ∪ ((P1)cl ((P2)clB)) ⊂ U.

Proof. (a) ⇒ (b): Follows from Lemma 3.1 and Theorem 2.1.
(b) ⇒ (c): Obvious.
(c) ⇒ (d): Let U be a pairwise open cover of X. By (c), U has a parallel

refinement V =
⋃∞

n=1Vn, where each Vn is hereditarily pairwise closure-preserving.
Let

Vn =
⋃
{V | V ∈ Vn}, n ∈ N,

K1 = X,

Kn = X −
⋃n−1

m=1
Vm, n = 2, 3, . . . .

Then the class {Kn | n ∈ N} is U-locally finite.
We write Bn = {V ∩Kn | V ∈ Vn}, and B =

⋃∞
n=1Bn. Then B is a refinement of

U . Since Vn is hereditarily pairwise closure-preserving, each Bn is pairwise closure-
preserving. Since {Kn | n ∈ N} is U -locally finite, from Lemma 3.6, it follows that
B is pairwise closure-preserving.

(d) ⇒ (e): By strong pairwise regularity, there is a parallel refinement V of U
such that for V ∈ V, there exists a U ∈ U with

((P2)cl ((P1)clV )) ∪ ((P1)cl ((P2)clV )) ⊂ U. (4.1)
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By (d), there is a pairwise closure-preserving refinement B of V, and hence of U . If
B ∈ B, then for some V ∈ V and U ∈ U satisfying (4.1), we have B ⊂ V and so

((P2)cl ((P1)clB)) ∪ ((P1)cl ((P2)clB)) ⊂ U.

(e) ⇒ (a): Let U = {Uα | α ∈ A} be a pairwise open cover of X and let the
index set A be well-ordered. For each positive integer n, we construct a family
Bn = {Bα,n | α ∈ A} of subsets of X satisfying the following conditions for all n:
(I) Bn = {Bα,n | α ∈ A} is a pairwise closure-preserving cover of X, and

((P2)cl ((P1)clBα,n)) ∪ ((P1)cl ((P2)clBα,n)) ⊂ Uα for all α.

(II) ((Pi)cl(clBα,n+1)) ∩ ((Pi)cl(clBβ,n)) = ∅ for all α > β if Uα ∈ Pi.
For n = 1, the cover can be obtained from Lemma 3.3.
Suppose for n = 1, 2, . . . , m, the covers Bn have been constructed. For Uα ∈

Pi, we write
Kα,m =

⋃
β<α

{(Pi)cl(clBβ,m)} .

Since Bm is pairwise closure-preserving, by Lemma 3.2, it follows that the set Kα,m

is (Pi)closed. So the set Uα,m+1 = Uα − Kα,m is (Pi)open. If x ∈ X, then
x ∈ Uα,m+1 for the first α for which x ∈ Uα. Therefore the collection Um+1 =
{Uα,m+1 | α ∈ A} forms a refinement of U . By Lemma 3.3, it has a pairwise
closure-preserving refinement {Bα,m+1 | α ∈ A} such that

((P2)cl ((P1)clBα,m+1)) ∪ ((P1)cl ((P2)clBα,m+1)) ⊂ Uα,m+1 for all α. (4.2)

Therefore the condition (I) is satisfied for n = m+1. From (4.2) and the definition
of Uα,m+1, it follows that (II) is satisfied for n = m. If Uα ∈ Pi, we define

Vα,n = X −
⋃

β 6=α
{(Pi)cl(clBβ,n)} .

We show that
(III) {Vα,n | α ∈ A,n ∈ N} is a pairwise open cover of X such that for all α ∈ A

and n ∈ N , Vα,n ⊂ Uα and Vα,n is (Pi)open if Uα is (Pi)open.
(IV) Vα,n ∩ Vβ,n = ∅ whenever α 6= β.

Since Bn is pairwise closure-preserving, it follows that Vα,n is (Pi)open. Also
we have Vα,n ⊂ Bα,n ⊂ Uα for all α ∈ A and n ∈ N . Therefore from the definition
of Vα,n, (IV) follows. We consider a point x ∈ X. If x ∈ U ∩ Pi, we define

αn = min{α ∈ A | x ∈ (Pi)cl(clBα,n), n ∈ N},
and αl = min{αn | n ∈ N}. If α > αl, from (II) we get

((Pi)cl(clBα,l+1)) ∩ ((Pi)cl(clBαl,l)) = ∅,
and therefore x /∈ (Pi)cl(clBα,l+1), since x ∈ (Pi)cl(clBαl,l). Also by the definition
of αl, x /∈ (Pi)cl(clBα,l+1) for α < αl. Therefore x ∈ Vαl,l+1. Thus the collection
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V = {Vα,n | α ∈ A,n ∈ N} forms a pairwise open cover of X. By Lemma 3.3, we
get a pairwise closure-preserving cover D = {Dα,n | α ∈ A,n ∈ N} of X such that

((P1)clDα,n) ∪ ((P2)clDα,n) ⊂ Vα,n

for all α and n. By Lemma 3.4, X is (∗)pairwise normal and so applying Lemma
3.5, for each n, we get a U -discrete collection Wn = {Wα,n | α ∈ A} such that Wα,n

is (Pi)open if Vα,n is (Pi)open and

Dα,n ⊂ Wα,n ⊂ Vα,n

for all α. Then the collection W =
⋃∞

n=1Wn is a parallel refinement of U where
each Wn is U-discrete and hence U-locally finite. Therefore by Theorem 2.1, X is
pairwise paracompact.

5. Some examples

In this section, T denotes the usual topology on R, and for a set A ⊂ R, TA

denotes the subspace topology on A in (R, T ). Firstly we give an example of a
strongly pairwise regular pairwise paracompact space.

Example 5.1. Let Q be the set of rational numbers. If E1 is the collection of
the singleton sets {r}, r ∈ Q and E2 is the collection of the singleton sets {r}, r ∈
R − Q, then for i = 1, 2, we define Pi to be the topology generated by the base
T ∪ E i. Then the topological spaces (R,Pi) are regular (Steen and Seebach [7, p.
90]). We now consider the bitopological space (R,P1,P2). Let F be a (Pi)closed
set and x ∈ R − F ∈ Pi. If x belongs to some (T )open set, then there exist a
(T )open set U and a (T )open set V such that x ∈ U,F ⊂ V and U ∩ V = ∅. If
x ∈ {r} = U ∈ E i, then F ⊂ R − {r} = V . So in any case x ∈ U ∈ Pi and
F ⊂ V ∈ Pj and U ∩ V = ∅. Thus (R,P1,P2) is pairwise regular and hence
strongly pairwise regular. Now let U be a pairwise open cover of R. Then there
exists a parallel refinement V containing sets belonging to T and sets belonging to
E1 ∪ E2. We may assume that no element of V ∩ (E1 ∪ E2) belongs to any element
of V ∩ T , since otherwise we can delete the corresponding singleton sets from V.
Let V =

⋃{G ∈ V ∩ T }. The (TV )open cover {G ∈ V ∩ T } of the subspace (V, TV )
has a (TV )locally finite (TV )open refinement W. Let E i

V = {{r} ∈ E i ∩ V}. If
x /∈ V , then x ∈ ⋃{{r} ∈ E1

V∪ E2
V} and {x} can intersect only {x} ∈ V. Again no

element of W can intersect any element of E1
V∪ E2

V . Thus it follows that W∪ E1
V∪

E2
V is a U-locally finite parallel refinement of U . Therefore (R,P1,P2) is pairwise

paracompact.
Now we give an example of a bitopological space satisfying both the conditions

(∗) and (∗∗).
Example 5.2. For each i = 1, 2, let {ai

n}∞n=1 be a strictly decreasing sequence
of real numbers with lim ai

n = −∞ and {bi
n}∞n=1 be a strictly increasing sequence

of real numbers with lim bi
n = ∞ such that ai

1 < bi
1. Let Pi be the topology on R

generated by the base

Bi = {∅} ∪ {(ai
1, b

i
1)} ∪ { (ai

n+1, a
i
n), (bi

n, bi
n+1) | n ∈ N } ∪ { {ai

n}, {bi
n} | n ∈ N }.



308 M. K. Bose, Ajoy Mukharjee

Then each (Pi)open set is (Pi)closed. Therefore the bitopological space (R,P1,P2)
satisfies both the conditions (∗) and (∗∗). Obviously the space (R,P1,P2) is pair-
wise paracompact.

In the space considered above, for i = 1, 2, any collection of subsets of
R is (Pi)closure-preserving. Next we give an example of a bitopological space
(X,P1,P2) in which for i = 1, 2, there are collections of sets which are not
(Pi)closure-preserving, but if a collection is (P1)closure-preserving, then it is
(P2)closure-preserving, and conversely.

Example 5.3. Let a ∈ R and let us consider the infinite intervals (−∞, a]
and (a,∞). We write A = (−∞, a]. Suppose {b1

n}∞n=1 and {b2
n}∞n=1 are two strictly

increasing sequences of real numbers with a = bi
1 and lim bi

n = ∞ for i = 1, 2. Let
Pi be the topology on R generated by the base

Bi = TA ∪ { (bi
n, bi

n+1] | n ∈ N }.
We now consider a (Pi)closure-preserving collection A of subsets of R. Let D be a
subcollection of A. We write

D1 = {D ∈ D | D ⊂ (−∞, a]},
D2 = {D ∈ D | D ⊂ (a,∞)},
Da = {D ∈ D | D ∩ (−∞, a] 6= ∅, D ∩ (a,∞) 6= ∅},
Da

1 = {D ∩ (−∞, a] | D ∈ Da},
Da

2 = {D ∩ (a,∞) | D ∈ Da}.
Then

(Pj)cl
(⋃

{D ∈ D}
)

= (Pj)cl
(⋃

{D ∈ D1}
)
∪ (Pj)cl

(⋃
{D ∈ D2}

)
∪ (Pj)cl

(⋃
{D ∈ Da}

)

= (Pj)cl
(⋃

{D ∈ D1}
)
∪ (Pj)cl

(⋃
{D ∈ D2}

)
∪ (Pj)cl

(⋃
{D ∈ Da

1}
)

∪ (Pj)cl
(⋃

{D ∈ Da
2}

)
. (5.1)

The (Pj)closure of any set contained in (−∞, a], is identical with its (Pi)closure, and
any collection of sets contained in (a,∞) are both (P1) and (P2)closure-preserving.
Since A is (Pi)closure-preserving, it follows from (5.1) that A is (Pj)closure-
preserving. Thus the bitopological space (R,P1,P2) satisfies the condition (∗∗).
It is also clear that the bitopological space (R,P1,P2) is pairwise paracompact.

Note 5.4. The space (R,P1,P2) of Example 5.3, does not satisfy the condition
(∗) but satisfies a slightly weaker condition. To explain this, let us consider a
pairwise open cover U of R containing only one (P1)open set and suppose it is of
the form (α, β) ∪ (b1

n, b1
n+1] such that (α1, α2) ∪ (b1

m, b1
m+1] is the only (P2)open

set belonging to U with α1 < α < α2 ≤ a. Then U does not satisfy (2.1). Hence
the space (R,P1,P2) does not satisfy the condition (∗). But replacing the sets of
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type G ∪ (
⋃

n∈N0
(bi

n, bi
n+1]) by the sets G and

⋃
n∈N0

(bi
n, bi

n+1], where G ∈ TA and
N0 ⊂ N , we can have a parallel refinement U0 of U such that U0 satisfies (2.1).
It is clear from the context that it is sufficient to have (2.1) satisfied by a parallel
refinement of U . So we can relax the condition (∗) in this manner. In that case the
Lemma 3.1 is required to change slightly according to our requirements.
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