Cauchy operator on Bergman space of harmonic functions on unit disk


Milutin R. Dostanić




We find the exact asymptotic behaviour of singular values of the operator $CP_h$, where $C$ is the integral Cauchy's operator and $P_h$ integral operator with the kernel $$ Keft( z,\zeta\right) =\frac{eft( 1-ěrt zěrt^2ěrt\zetaěrt^2\right)^2} {iěrt 1-zverline{\zeta }ěrt^4}-\frac{2}{i } \frac{ěrt zěrt^2ěrt\zetaěrt^2} {ěrt 1-zverline{\zeta }ěrt^2}. $$