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GLUING AND PIUNIKHIN-SALAMON-SCHWARZ ISOMORPHISM
FOR LAGRANGIAN FLOER HOMOLOGY

Jelena Katić

Abstract. We prove Floer gluing theorem in the case of objects of mixed type, that in-
corporate both Morse gradient trajectories and holomorphic discs with Lagrangian boundary
conditions.

1. Introduction

Let M be a smooth compact manifold of dimension n and f : M → R a
Morse function. Let P = T ∗M be a cotangent bundle over M, L0 = OM a zero
section, H : T ∗M → R compactly supported Hamiltonian and L1 = φH

1 (L0) a
Hamiltonian deformation of OM . Denote by CM∗(f) Morse chain groups generated
by the critical points of f and by CF∗(H) Floer chain groups generated by the set
L0∩L1 (both with Z2-coefficients). Let HM∗(f) and HF∗(H) be the corresponding
Morse and Floer homology groups (the latter are well defined in this situation).
The isomorphism between HM∗(f) and HF∗(H) was constructed in [9], following
Piunikhin, Salamon and Schwarz’s construction for the case of periodical orbits [16].
The purpose of [9] was to prove that isomorphisms in Floer homology for Lagrangian
intersections naturally intertwine with analogous isomorphisms in Morse homology.
The isomorphism constructed there was based on counting the objects of mixed
type. More precisely, we are interested in the following three moduli spaces. For
p and q two critical points of Morse function f , denote by M(p, q, f) the set of
negative gradient flows of f , i.e. solutions of equation:

{ dγ
ds +∇f(γ) = 0
γ(−∞) = p, γ(+∞) = q.

(1)

For two Hamiltonian paths x and y that begin and end at OM , let M(x, y, H) be
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the set of solutions of: 



∂u
∂s + J(∂u

∂t −XH(u)) = 0
u(s, i) ∈ L0, i ∈ {0, 1}
u(−∞, t) = x(t),
u(+∞, t) = y(t).

(2)

The equation (2) is the negative gradient flow of the action functional

AH : Ω0 → R, AH(α) :=
∫ 1

0

α∗θ −Ht(α(t)) dt

(where θ is the Liouville 1− form on T ∗M) defined on

Ω0 : = {α : [0, 1] → T ∗M | α(0), α(1) ∈ OM}.
Denote by M̂(p, q, f) and M̂(x, y,H) these sets modulo R− actions γ(·) 7→ γ(·+τ),
and u(·, ·) 7→ u(·+ τ, ·).

Now consider the space of pairs (γ, u)

γ : (−∞, 0] → M, u : [0, +∞)× [0, 1] → T ∗M

that satisfy 



dγ
ds = −∇f(γ(s)),
∂u
∂s + J(∂u

∂t −XρRH(u)) = 0
u(0, t), u(s, 0), u(s, 1) ∈ OM ,

γ(−∞) = p, u(+∞, t) = x(t),
γ(0) = u(0, 1

2 ).

(3)

Here ρR : [0,+∞) → R is a smooth function such that, for a fixed R,

ρR(s) =
{

1, s ≥ R + 1
0, s ≤ R.

Denote by M(p, f ; x,H) the set of solutions of (3) (see Fig. 1).

Fig. 1. Mixed object from M(p, f ; x, H)

If mf (p) is the Morse index of critical point p and µH(x) the Maslov index
of Hamiltonian path x (see[2, 17, 18]) for definition of Maslov index, [14] for its
application to grading of Floer homology groups and [12] for generalizations), then
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dimM(p, q, f) = mf (p) −mf (q) and dimM(x, y, H) = µH(x) − µH(y). In [9] we
derived the following Proposition by relying upon the convergence results given
in [8] and gluing results that are the subject of this paper.

Proposition 1. [9] For generic f and H, M(p, f ; x,H) is a smooth manifold
of dimension mf (p) − (µH(x) + n

2 ). When mf (p) = (µH(x) + n
2 ), it is compact,

hence a finite set. When mf (p) = (µH(x) + n
2 ) + 1 then we have the following

identification for the boundary of one-dimensional manifold M(p, f ; x,H):

∂M(p, f ;x,H) =
⋃

mf (q)=mf (p)−1

M̂(p, q, f)×M(q, f ;x, H) ∪

∪
⋃

µH(y)=µH(x)+1

M(p, f ; y, H)× M̂(y, x, H).
(4)

A sketch of the proof of Proposition 1 is the following: let Wu(p, f) be the
unstable manifold of the critical point p of a Morse function f and let W s(x,H)
be the set of solutions of 




u : [0,+∞)× [0, 1] → T ∗M
∂u
∂s + J(∂u

∂t −XρRH(u)) = 0
u(0, t), u(s, 0), u(s, 1) ∈ OM ,

u(+∞, t) = x(t),

(5)

Then dim Wu(p, f) = mf (p) (see [13]) and dimW s(x,H) = −µH(x) + n
2 (see

Appendix in [15]). For generic f , H the evaluation map

ev : Wu(p, f)×W s(x,H) → M ×M, (γ, u) 7→
(

γ(0), u(0,
1
2
)
)

is transversal to the diagonal ∆ and therefore M(p, f ; x,H) = ev−1(∆) is a smooth
manifold of codimension n in Wu(p, f) × W s(x,H), so we obtain the dimension
formula.

Let CMk(f) be the set of all critical points of Morse index k and CFk(H) the
set of all Hamiltonian paths with ends in zero section of Maslov index µH(x) + n

2 .
For mf (p) = µH(x) + n

2 we denote the cardinal number (mod 2) of M(p, f ; x,H)
by n(p, f ; x,H) and define homomorphism

Φ: CMk(f) → CFk(H) by p 7→
∑

µH(x)=mf (p)−n
2

n(p, f ; x,H)x (6)

on the generators. It follows from Proposition 1 that the homomorphism Φ is well
defined and that it is well defined also on HM∗(f) (see [16, 9]). By using the
analysis of the boundary of some auxiliary one-dimensional mixed moduli spaces
(see [9]), one can prove that Φ is an isomorphism and that the diagram

HF∗(Hα) Sαβ

−−−−→ HF∗(Hβ)

Φα

x
xΦβ

HM∗(fα) −−−−→
T αβ

HM∗(fβ)
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commutes (see [9]). Here Sαβ and Tαβ are the natural isomorphisms in, respec-
tively, Floer and Morse theory.

Piunikhin-Salamon-Schwarz morphisms in more general cases were investigated
by Albers in [1] where it was shown that it does not have to be an isomorphism in
general, Barraud and Cornea in [3], Leclercq in [11], Lalonde in [10] and others.

The crucial analytical tools used in the proof of Proposition 1 (and the similar
characterizations of the boundary of moduli spaces) are Gromov compactness and
gluing techniques. From Gromov compactness it follows that the sequence of mixed
objects fromM(p, f ;x,H) (if it does not converge to the object fromM(p, f ; x,H))
must converge to a broken object. It proves one inclusion in (4). Gluing gives the
opposite: it assigns to a broken object the sequence of non-broken mixed objects
that converges (in the Gromov weak sense) toward it.

In this paper we carry out the proof of gluing theorem for the case of the mixed
type objects. The natural idea that occurs is to reduce the gluing construction to
the Morse (or Floer) case, such that the holomorphic strip (or gradient trajecto-
ry) part in mixed object stays fixed. Indeed, this is the idea that we use in the
construction of the pre-glued objects. But then we confront the problem of the
attaching point: the exact solutions of combined (ordinary and partial differen-
tial) equation that converge to the previously given, broken one, do not have the
same fixed attaching point, but only the ends (Morse critical point at one end and
Hamiltonian path, at the other). Thus we choose the point of view that encircles
Morse and Floer trajectories, so first establish the analytical setting and construct
Banach manifolds of mixed-type mappings. The tangent spaces to these manifolds
will be Sobolev W 1,r and Lr spaces, for r > 2. Since we use some Hilbert space
techniques, it would be more convenient to take W 1,2 and L2, as it can be done
in Morse case (see [19]). But we deal with two-dimensional domains (such as for u
in (3), so these maps do not have to be continuous, which is the case for r > 2, due
to the Sobolev Embedding Theorem.

We would like to thank D. Milinković for several helpful discussions during the
preparation of this paper.

2. Notation and results

We state the main result in the following

Theorem 2. a) Let K be a compact subset of M(p, f ;x, H) × M̂(x, y, H).
Then there exists a lower parameter bound ρ0 = ρ0(K) and a smooth embedding

] : K × [ρ0,+∞) ↪→M(p, f ; y, H)

((γ, u), v, ρ) 7→ (γ, u)]ρv.

We call the map ] gluing of a mixed-type object (γ, u) and holomorphic strip v. For
an arbitrary sequence of gluing parameters ρn →∞, we have the weak convergence

(γ, u)]ρnv
C∞loc−→ ((γ, u), v).
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b) Let K be a compact subset of M̂(p, q, f)×M(q, f ; x,H). Then there exists
a lower parameter bound ρ0 = ρ0(K) and a smooth embedding

] : K × [ρ0, +∞) ↪→M(p, f ;x,H)

(α, (γ, u), ρ) 7→ α]ρ(γ, u).

The map ] is a gluing of a gradient trajectory α and mixed-type object (γ, u). For
an arbitrary sequence of gluing parameters ρn →∞, we have the weak convergence

α]ρn
(γ, u)

C∞loc−→ (α, (γ, u)).

Here we say that the sequence (γn, un) ∈ M(p, f ; y, H) weakly converges to

the broken trajectory ((γ, u), v) ∈M(p, f ; x,H)×M̂(x, y; H) if (γn, un)
C∞loc−→ (γ, u)

and there is a sequence τn ∈ R, such that

un(·+ τn, ·) C∞loc−→ v(·, ·).

Similarly, we say that the sequence (γn, un) ∈M(p, f ; y,H) weakly converges
to the broken trajectory (α, (γ, u)) ∈ M̂(p, q, f)×M(q, f ; x,H) if there is a sequence
τn ∈ R, such that

γn(·+ τn)
C∞loc−→ α(·)

and (γn, un)
C∞loc−→ (γ, u).

In order to abbreviate notations, we will assume w = (γ, u) through the rest
of the paper.

Fig. 2. Gluing of broken trajectories

We will prove Theorem 2 in the next section. Before doing that, we introduce
concepts and notation that we will use.

In order to analyze gluing of mixed objects, we need to equip the moduli spaces
M(x, y, H) and M(p, f ;x, H) with the smooth Banach manifold structure.
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The topology and Banach manifold structure of M(x, y, H) is induced by the
Sobolev norm in the following way. Let

D := R× [0, 1] ⊂ R2. (7)

For given Hamiltonian paths x(t) and y(t) with ends in OM , denote by C∞(x, y)
the set of all smooth maps u that satisfy

u : D → T ∗M

u(s, 0), u(s, 1) ∈ OM

u(−∞, t) = x(t), u(+∞, t) = y(t).
(8)

The tangent space space TuC∞(x, y) to C∞(x, y) at point u consists of all vector
fields ξ such that

ξ : D → u∗(TT ∗M),

ξ(s, t) ∈ Tu(s,t)T
∗M, ξ(s, 0), ξ(s, 1) ∈ TM,

ξ(−∞, t) = ξ(+∞, t) = 0.

For r > 2, let ‖ξ‖Lr and ‖ξ‖W 1,r stand for standard Sobolev norms

‖ξ‖Lr =
(∫∫

D

|ξ|r ds dt

) 1
r

, ‖ξ‖W 1,r =
(∫∫

D

(|ξ|r + |∇sξ|r + |∇tξ|r) ds dt

) 1
r

.

(9)
Denote by W 1,r

u (x, y) and Lr
u(x, y) the completions of this tangent space in W 1,r-

and Lr-Sobolev norms. Finally, let P1,r(x, y) be the space of all u that satisfy (8)
such that the tangent space at u is given by

TuP1,r(x, y) = W 1,r
u (x, y).

The topology and Banach manifold structure of P1,r(x, y) (hence the topology
of M(x, y,H) ⊂ P1,r(x, y)) is induced by the topology of W 1,r

u (x, y) by means of
the exponential map

(expu ξ)(s, t) = expu(s,t) ξ(s, t)

(see [5] for details).
The set M(x, y,H) is a zero set of a smooth section:

K(u) = ∂H,J(u) =
∂u

∂s
+ J(u)

∂u

∂t
− J(u)XH(u) (10)

of a Banach bundle E(x, y) → P1,r(x, y) with a fibre Lr
u(x, y) over u ∈ P1,r(x, y)

(see [4, 5]).
Its linearization at u is a Fredholm operator defined on W 1,r

u (x, y) with values
in Lr

u(x, y). It has the form

DKu(ξ) = ∇sξ + J(u)∇tξ +∇ξJ(u)∂tu−∇ξ∇H(u) (11)

and its index is equal to the difference of Maslov indices at the ends µH(x)−µH(y).
In the local coordinates (10) is of the form

ζ(s, t) 7→ ∂ζ

∂s
(s, t) + J(s, t)

∂ζ

∂t
(s, t) + A(s, t)ζ(s, t).
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The situation with M(p, f ;x,H) is somewhat different. Although we initially
defined it as a transversal intersection set of two manifolds, we need to consider it
as the zero set of some Fredholm operator, in order to get one consistent picture in-
cluding all three moduli spaces (gradient trajectories, holomorphic discs and mixed
objects). Let p and x(t) be as before. For r > 2, denote by P1,r(p) the Sobolev
W 1,r-completion of the space of all smooth trajectories γ that satisfy:{

γ : (−∞, 0] → OM

γ(−∞) = p,

and by P1,r(x) the Sobolev W 1,r-completion of the space of all smooth maps u
that satisfy: 




u : [0,+∞)× [0, 1] → T ∗M

u(0, t), u(s, 0), u(s, 1) ∈ OM ,

u(+∞, t) = x(t).
By Sobolev W 1,r-completion we assume the previous discussion: the completion of
the tangent space and the topology induced by exponential map (for more details
about this construction is Morse theory see [19]. We denote tangent spaces by

W 1,r
γ (p) = TγP1,r(p), W 1,r

u (x) = TuP1,r(x).
Let ẽv be the following evaluation map:

ẽv : P1,r(p)×P1,r(x) → M ×M, ẽv(γ, u) =
(

γ(0), u
(

0,
1
2

))
.

For generic choices of a Morse function (or a Riemannian metric) ẽv is transversal
to the diagonal ∆ ⊂ M ×M and

P1,r(p, x) := ẽv−1(∆)
is infinite-dimensional smooth Banach submanifold of P1,r(p)×P1,r(x). As before,
denote by W 1,r

(γ,u)(p, x) = T(γ,u)P1,r(p, x) the corresponding tangent space. The
space M(p, f ;x,H) is the zero set of a restriction of a smooth section

F = F̃ |P1,r(p,x), F̃ = (F1, F2),

F1(γ) =
dγ

ds
+∇f(γ), F2(u) = ∂ρRH,J u

(12)

of a Banach bundle
E0,r(p, x) → P1,r(p)× P1,r(x) (13)

with a fibre Lr
γ(p)× Lr

u(x) over a point (γ, u) ∈ P1,r(p)×P1,r(x). Here as before,
by Lr

γ(p) we denote the space of all ξ that satisfy



ξ : (−∞, 0] → γ∗(TM),
ξ(s) ∈ Tγ(s)M, ξ(−∞) = 0,

‖ξ‖Lr < ∞
and by Lr

u(x) the space of all ξ such that



ξ : [0,+∞)× [0, 1] → u∗(TT ∗M), ξ(s, t) ∈ Tu(s,t)T
∗M,

ξ(0, t), ξ(s, 0), ξ(s, 1) ∈ TM, ξ(+∞, t) = 0,

‖ξ‖Lr < ∞.
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The linearization of (12) at the point (γ, u) is

(DF )(γ,u) : W 1,r
(γ,u)(p, x) → Lr

γ(p)× Lr
u(x), (DF )(γ,u) = ((DF1)γ , (DF2)u),

(DF1)γ : W 1,r(p) → Lr(p), (DF1)γη = ∇ dγ
ds

η +∇η∇f(γ),

(DF2)u : W 1,r(x) → Lr(x),

(DF2)uξ = ∇sξ + J(u)∇tξ +∇ξJ(u)∂tu−∇ξ∇(ρRH)(u).

(14)

Proposition 3. The operator (14) is Fredholm hence the map (12) is a Fred-
holm map.

Proof. We will omit the subscripts u, γ, (γ, u) in order to abbreviate notations.
First we observe that the manifold P1,r(p, x) is of finite codimension in P1,r(p) ×
P1,r(x). Indeed, the tangent space W 1,r(p, x) of P1,r(p, x) is the kernel of the
differential Dẽv of the evaluation map. It holds:

W 1,r(p)×W 1,r(x)/ Ker(Dẽv) ∼= Im(Dẽv).

The image Im(Dẽv) is of finite dimension since the target space of Dẽv is so.
It follows that W 1,r(p, x) is of finite codimension and from Hahn-Banach theorem
that it can be complemented in W 1,r(p)×W 1,r(x) by some finite-dimensional space,
denote it by X. Since codimM×M (∆) = n it holds dim X = n.

We consider the auxiliary operator

DF̃ : W 1,r(p)×W 1,r(x) → Lr(p)× Lr(x)

DF̃ := (DF1, DF2)

defined on the product W 1,r(p) × W 1,r(x) in order to compute the index of the
operator DF in the terms of the indices of DF1 and DF2. Since the operators DF1

and DF2 are Fredholm (see [19, 15]) and it holds

KerDF̃ = Ker DF1 ×KerDF2, CokerDF̃ = CokerDF1 × CokerDF2

we conclude that DF̃ is also Fredholm with the Fredholm index Ind(DF̃ ) =
Ind(DF1) + Ind(DF2). The operator DF is a restriction of DF̃ to the space
W 1,r(p, x). Consider the following (disjoint) decompositions of the spaces W 1,r(p)×
W 1,r(x) and Lr(p)× Lr(x):

W 1,r(p)×W 1,r(x) = X1 ⊕X2 ⊕X3 ⊕X4, Lr(p)× Lr(x) = Y1 ⊕ Y2 ⊕ Y

where the subspaces Xi, Yi and Y are defined in the following way:

X3 := W 1,r(p, x) ∩Ker(DF̃ ), X1 := W 1,r(p, x)ªX3

X4 := X ∩Ker(DF̃ ), X2 := X ªX4

Yi := DF̃ (Xi), for i = 1, 2, Y := Lr(p)× Lr(x)ª (Y1 ⊕ Y2) .

(15)

The sign A ª B stands for the complement of B in A and all the spaces in (15)
are well defined due to the Hahn-Banach theorem. All the spaces except X1 and
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Y1 are of finite dimension: X3 and X4 are subspaces of Ker DF̃—which is of finite
dimension; X2 is the subspace of X—which is of finite dimension; Y2 is the isomor-
phic image of X2; finally Y is of finite dimension since it is a co-kernel of Fredholm
operator DF̃ . Set

m2 := dim(X2) = dim(Y2), m3 := dim(X3), m4 := dim(X4), m := dim(Y ).

We see that
Ker(DF̃ ) = X3 ⊕X4, Coker(DF̃ ) = Y

and, since DF = DF̃ |X1⊕X3 : X1 ⊕X3 → Y1 ⊕ Y2 ⊕ Y ,

Ker(DF ) = X3, Coker(DF ) = Y2 ⊕ Y.

We conclude that DF is also Fredholm, and moreover, we compute its index:

Ind(DF ) = dim(Ker(DF ))− dim(Coker(DF )) = dim(X3)− dim(Y2 ⊕ Y )

= m3 − (m2 + m) = (m3 + m4)−m− (m2 + m4)

= dim(Ker(DF̃ ))− dim(Coker(DF̃ ))− dim(X2 ⊕X4)

= Ind(DF̃ )− dim(X) = Ind(DF1) + Ind(DF2)− n

= mf (p)− µH(x)− n

2
.

3. Proof of Theorem 2

3.1. Pre-gluing. We first define a pre-gluing map, i.e. an approximate so-
lution. Let w = (γ, u) ∈ M(p, f ; x,H), i.e. γ ∈ Wu(p, f), u ∈ W s(x,H) and
v ∈M(x, y, H). Denote by

β+ : R → [0, 1] (16)

a smooth non-decreasing cut-off function, equal to 0 for s ≤ 0 and to 1 for s ≥ 1.
Let u(s, t) = expx(t)(ξ(s, t)) for all t and s ≥ s0, and v(s, t) = expx(t)(ζ(s, t)) for all
t and s ≤ −s0. For ρ ≥ max{2s0, s0 + 1}, define

u ] 0
ρv(s, t) :=





u(s, t), 0 ≤ s ≤ ρ
2 ,

expx(t)(β+(−s + ρ
2 + 1)ξ(s, t)), ρ

2 ≤ s ≤ ρ
2 + 1,

x(t), ρ
2 + 1 ≤ s ≤ ρ

expx(t)(β+(s− ρ)ζ(s− 2ρ, t)), ρ ≤ s ≤ ρ + 1,

v(s− 2ρ, t), s ≥ ρ + 1.

(17)

Now set
$ := w ] 0

ρv := (γ, u ] 0
ρv). (18)

The linearization of the pre-gluing map (17), for ξ ∈ Ker(DF2)u = TuW s(x, H),
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ζ ∈ Ker(DK)v = TvM(x, y, H), is given by

ξ]̂ζ := D]0ρ(u, v)(ξ, ζ) =





ξ(s, t), 0 ≤ s ≤ ρ
2 ,

∇2 exp(β+(−s + ρ
2 + 1)∇2 exp−1 ξ(s, t)), ρ

2 ≤ s ≤ ρ
2 + 1,

0, ρ
2 + 1 ≤ s ≤ ρ

∇2 exp(β+(s− ρ)∇2 exp−1 ζ(s− 2ρ, t)), ρ ≤ s ≤ ρ + 1,

ζ(s− 2ρ, t), s ≥ ρ + 1.
(19)

Here ∇2 exp is a fibre linearization of exponential map. More precisely, for P =
T ∗M , let

K : T (TP ) → TP, π : TP → P

denote the unique Levi-Civita connection with respect to the given Riemannian
metric g and the canonical projection. For ξ ∈ TP in the injectivity neighborhood
associated to exp, denote by:

∇1 exp(ξ) : = D exp(ξ) ◦ (
Dπ|Ker(K(ξ))

)−1 : Tπ(ξ)P
∼=−→ Texp(ξ)P

∇2 exp(ξ) : = D exp(ξ) ◦ (
K|Ker(Dπ(ξ))

)−1 : Tπ(ξ)P
∼=−→ Texp(ξ)P

(see Appendix A.2 in [19] for details).
The linearization of (18) is, when ς = (η, ξ) ∈ TwM(p, f ; x,H), i.e. η ∈

KerDγ = TγWu(p, f),
ς]̂ζ = (η, ξ)]̂ζ = (η, ξ]̂ζ).

We will use the abbreviation χ for the triple (w, u, ρ) and (in the case when we
want to emphasize the relation between $ and χ) the notation $χ for $ as in (18).

The local representation of the operator F from (12) with respect to $ gives
rise to the bundle mapping

F$ : ∇2 exp−1
$ ◦F ◦ exp$ : E1,r ⊃ O$ → E0,r (20)

where E1,r and E0,r are vector bundles over K × [ρ0,∞) with a fibres W 1,r
$ (p, x)

and Lr
γ(p)× Lr

u ]0ρ v(x) respectively. The fibre derivative

DF$χ(0) : W 1,r
$ (p, x) → Lr

γ(p)× Lr
u ]0ρ v(x)

is exactly the linearization (DF )$ at the point $ of a map F from (12).
We will use the abbreviation Dχ for DF$χ(0). Similarly, we use the notation

Ku for the local representation of the operator K from (10) and Du for DKu(0) =
(DK)u.

The exact solution of combined equation of type (3) will exist due to the
Banach contraction principle (more precisely, its existence is the content of the
abstract Lemma 5. The proof of the Theorem 2 is long and we will divide it in
several steps. The first step is to prove that the linearized operator Dχ is onto for
ρ large enough. This will imply the existence of the right inverse needed for the
application of the abstract Lemma 5. It is done in the auxiliary Proposition 4. The
second step is to prove that the mentioned right inverse is bounded and to check
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the other conditions required in Lemma 5—this is done in the Lemma 6 and in the
rest of the Subsection 3.2. The last step is the proof of the embedding property
which is given in the Subsection 3.3.

We will use the following notations. If 〈·, ·〉L2 stands for standard scalar prod-
uct:

〈ξ, ζ〉L2 :=
∫
〈ξ(τ), ζ(τ)〉g dτ

where g is Riemannian metric appearing in (9), then the following sets are well
defined:

L̃⊥w := {η ∈ W 1,r
w (p, x) | 〈η, ξ〉L2 = 0 for all ξ ∈ KerDw}

L̃⊥v := {η ∈ W 1,r
v (x, y) | 〈η, ζ〉L2 = 0 for all ζ ∈ Ker Dv}

L⊥χ := {η ∈ W 1,r
$ (p, y) | 〈η, ξ ]̂ ζ〉L2 = 0 for all (ξ, ζ) ∈ KerDw ×KerDv}.

Indeed, from the standard fact that the solutions of Morse gradient and Floer
perturbed Cauchy-Riemann equations of types (1) and (2) have the exponential
decay it follows that ξ ∈ Lq(p, x), ζ ∈ Lq(x, y) and ξ ] ζ ∈ Lq(p, y), where 1

r + 1
q = 1.

First we prove the following auxiliary Proposition.

Proposition 4. There is a lower parameter bound ρ1 such that for all gluing
parameters ρ ≥ ρ1 and (w, v) ∈ K the Fredholm operator Dχ : W 1,r

$ (p, y) → Lr
γ(p)×

Lr
u ]0ρ v(y) of the type (14) is onto. Since KerDχ is of finite dimension, there is a

complement Z of KerDχ in W 1,r
$ (p, y) and the projection onto Ker Dχ, denote it

by ProjKer Dχ
. Then the following composition induces an isomorphism:

ϕχ := ProjKer Dχ
◦ ]̂ : Ker Dw ×KerDv

∼=→ Ker Dχ.

Proof. From indices formulae

Ind(Dw) = mf (p)−
(
µH(x) +

n

2

)

Ind(Dv) = µH(x)− µH(y)

Ind(Dχ) = mf (p)−
(
µH(x) +

n

2

)

and the fact that Dw and Dv are onto, so

IndDw = dim Ker Dw, IndDv = dim KerDv

it follows

dimKer Dχ ≥ Ind(Dχ) = Ind Dw + Ind Dv = dim Ker Dw + dim Ker Dv. (21)

It is sufficient to prove that, for fixed w, v ∈ K there exists a lower parameter
bound ρ(w, v), such that, for ρ ≥ ρ(w, v) the map ϕχ is onto (since K is compact,
this would imply the existence of the uniform lower bound ρK such that ϕχ is onto
for any (w, v) ∈ K, ρ ≥ ρK). Indeed, if we suppose ϕχ is onto, then

dim Ker Dw + dim Ker Dv ≥ dimKer Dχ. (22)
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From (21) and (22) we have

IndDχ = Ind Dw + Ind Dv = dim Ker Dw + dim Ker Dv = dimKer Dχ

so the proof of the Proposition follows.
So we need to prove that ϕχ is onto. It is enough to show that for some C > 0

and ρ large enough it holds

‖Dχς‖Lr ≥ C‖ς‖W 1,r (23)

for all ς ∈ L⊥χ . Indeed, if ϕχ is not surjective, it follows from the decomposition
W 1,r

$ (p, y) = L⊥χ ⊕Ker Dw ]̂Ker Du that there exists ς ∈ Ker Dχ such that ς ∈ L⊥χ .
But from (23) it follows that ς must be the zero vector. Suppose (23) is not true.
Then there exist sequences ρn →∞, ςn ∈ L⊥χn

such that

‖ςn‖W 1,r = 1 and ‖Dχn
ςn‖Lr → 0. (24)

Here ςn = (w, v, ρn) χn = (w, v, ρn) and $n = $χn
, i.e w and v are fixed, and

ρn →∞.
We can assume we are working with trivial case R2n instead of T ∗M . Indeed,

let Θ stands for the domain of w, i.e.

Θ := (−∞, 0] ∪ ([0,+∞)× [0, 1]) . (25)

We start from a trivialization φx : TT ∗M |N(x) → N(x) ×R2n where N(x) is the
normal neighborhood of the path x(t) and trivializations φw of w∗TT ∗M , φv of
w∗TT ∗M such that φx(s, t), φw(s, t), φv(s, t) are bounded uniformly in (s, t) in the
operator norm. For ρ ≥ ρ0 we define a trivialization φρ of (w]0ρv)∗TT ∗M such that

φρ|[ ρ
2 ,ρ+1] ≡ φx|[ ρ

2 ,ρ+1],

φρ|(−∞, ρ
2 ] ≡ φ1 ◦ φw|(−∞, ρ

2 ],

φρ|[ρ+1,+∞) ≡ φ2 ◦ φv|[ρ+1,+∞)

where

φ1(s, t) := φx

(ρ

2
, t

)
◦ φ−1

w (
ρ

2
, t), φ2(s, t) := φx(ρ + 1, t) ◦ φ−1

v (ρ + 1, t)

are uniformly bounded in (s, t). Thus we obtain the trivialization

φ :
⋃

ρ≥ρ0

(w]0ρv)∗TT ∗M → [ρ0, +∞)×Θ×R2n

which is uniformly bounded in the operator norm. So the estimates we want to
prove stay unchanged when we transfer the settings into trivial framework.

The strategy is the following: near the breaking Hamiltonian x(t) we use the
fact that the asymptotic linearized operators are isomorphisms and away from x(t)
we use that the pre-glued objects are equal (up to the shifting) to the fixed ones w
and u. More precisely, let β : → [0, 1] be a smooth cut-off function equal to 0 for
s ∈ (−∞, 1

2 − ε]∪ [1 + ε,∞) and equal to 1 for s ∈ [ 12 − ε
2 , 1 + ε

2 ] for fixed, suitably
chosen ε > 0. Let βn(s) := β( s

ρn
). From the construction of the pre-gluing map

one can obtain

‖Dχnςn‖Lr → 0 ⇒ ‖ ∂

∂s
(βnςn) + J(∞, ·)∂βnςn

∂t
+ A(∞, ·)βnςn‖Lr → 0
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(see [4, 6] or [19] for the details). Since ∂
∂s + J(∞) ∂

∂t + A(∞) is an isomorphism

we see that βnςn
W 1,r

−→ 0, so

‖ςn|[ ρn
2 ,ρn+1]‖W 1,r → 0. (26)

Denote by β−(s) := β+(−s), where β+ is given in (16) and by β±τ (s) := β±(s+ τ),
ςτ (s, t) := ς(τ + s, t). Now it follows from (24) and (26) that

‖Dw(β−− ρn
2 −1

ςn)‖Lr → 0 and ‖Dv(β+
ρn

(ςn)2ρn
)‖Lr → 0. (27)

But β−− ρn
2 −1

ςn ∈ L̃⊥w and β+
ρn

(ςn)2ρn
∈ L̃⊥u and for such vectors it holds:

‖Dw(β−− ρn
2 −1

ςn)‖Lr ≥ c1‖β−− ρn
2 −1

ςn‖W 1,r

‖Dv(β+
ρn

(ςn)2ρn
)‖Lr ≥ c2‖β+

ρn
(ςn)2ρn

‖W 1,r

(28)

since Dw|L̃⊥w and Dv|L̃⊥u are isomorphisms.

We now conclude:

1 = lim
n→∞

‖ςn‖W 1,r
$n

= lim
n→∞

‖β+
−ρn

ςn + β−− ρn
2 −1

ςn + (1− β+
−ρn

− β−− ρn
2 −1

)ςn‖W 1,r

≤ lim
n→∞

(
‖β+
−ρn

ςn‖W 1,r + ‖β−− ρn
2 −1

ςn‖W 1,r + ‖(1− β+
ρn
− β−− ρn

2 −1
)ςn‖W 1,r

)

(i)
= lim

n→∞

(
‖β+

ρn
(ςn)2ρn‖W 1,r + ‖β−− ρn

2 −1
ςn‖W 1,r

)

(ii)

≤ lim
n→∞

(
1
c1
‖Dw(β−− ρn

2 −1
ςn)‖Lr +

1
c2
‖Dv(β+

ρn
(ςn)2ρn)‖Lr

)

(iii)
= 0.

The equality (i) follows from (26), the fact that

supp(1− β+
−ρn

− β−− ρn
2 −1

) ⊂ [
ρn

2
, ρn + 1]

and the equality ‖β+
−ρn

ςn‖W 1,r = ‖β+
ρn

(ςn)2ρn‖W 1,r ; (ii) follows from (28) and (iii)
follows from (27). We obtain the contradiction so the proof follows.

3.2. The existence of the exact solution. Reducing the problem of
finding an exact solution to the following abstract Lemma is standard ingredient
in all gluing problems.

Lemma 5. [7, 19] Assume that a smooth map f : E → F between Banach
spaces E and G has an expansion

f(ς) = f(0) + Df(0)ς + N(ς)

so that Df(0) has a finite dimensional kernel and a right inverse G and so that for
ς, ζ ∈ E it holds:

‖GN(ς)−GN(ζ)‖E ≤ C (‖ς‖E + ‖ζ‖E) ‖ς − ζ‖E
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for some constant C. Set ε = 1
5C . If ‖Gf(0)‖E ≤ ε

2 , then there exist the unique
zero point of the map f

x0 ∈ Bε(0) ∩G(F )

such that ‖x0‖E ≤ 2‖Gf(0)‖E.

The proof of Lemma 5 is based on Banach contraction mapping principle and
can be found in [19].

From Proposition 4 it follows that there exists a vector bundle isomorphism

D|L⊥ : L⊥
∼=→ E0,r

where
L⊥ :=

⋃

χ∈K×[ρ0,+∞)

L⊥χ

and E0,r is defined below the formula (20). Its fibre-wise restriction is

Dχ|L⊥χ : L⊥χ
∼=→ Lr

γ(p)× Lr
u ]0ρ v(y).

Let Gχ be the inverse map Gχ := (Dχ|L⊥χ )−1. In order to apply Lemma 5 to
our case, we need the estimate of the right inverse. We prove the following

Lemma 6. There exist constant C and a lower parameter bound ρ2 ≥ ρ0 such
that G satisfies the estimate

‖Gχη‖W 1,r ≤ C‖η‖Lr (29)

for all χ ∈ K × [ρ2,+∞), η ∈ Lr
γ(p)× Lr

u ]0ρ v(y).

Proof. The estimate (29) is equivalent to

‖ς‖W 1,r ≤ C‖Dχς‖Lr . (30)

Suppose (30) does not hold, then there exist sequences ρn →∞, (un, vn) ∈ K and
ςn ∈ L⊥χn

(where χn = (wn, vn, ρn)) such that

‖ςn‖W 1,r = 1, ‖Dχnςn‖Lr → 0. (31)

The rest of the proof can be reduced to the arguments similar to the ones from
the proof of Proposition 4. The main difference is the fact that here we have the
sequence (wn, vn) of the broken trajectories and the sequence ρn → ∞, instead of
the fixed one (w, v) and the sequence ρn → ∞ as it was there. This difficulty can

be solved by assuming, due to the compactness of K that (wn, vn) W 1,r

−→ (w, v) ∈ K.
Denote by

χm,n := (wn, vn, ρm), χn := (w, v, ρn)

$m,n := wn ]0ρm
vn, $n := w ]0ρn

v.

Let U ⊂ T ∗M be the open neighborhood of w(Θ) ∪ u(D) (see (25) and (7) and

Φ: TT ∗M |U ≈→ U ×R2n (32)
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such that $χm,n
(Θ) ⊂ U for m,n ≥ n0. Define

Φm,n : ξ 7→ Φ−1(w ]0ρm
v, Proj2 ◦Φ(ξ))

where Proj2 denotes the projection to the second component in the right side
of (32). We see that Φn,n establishes the isomorphism between W 1,r

$n,n
and W 1,r

$n
as

well as between Lr
γn
× Lr

un ]0ρn
vn

and Lr
γ × Lr

u ]0ρn
v such that (due to the condition

(wn, vn) W 1,r

−→ (w, v)) φn,n → IdW 1,r
$n

when n →∞. So, for given ε > 0 we transform
the condition (31) to

1− ε ≤ ‖(ProjL⊥χn
◦Φn,n)ςn‖W 1,r ≤ 1 + ε, ‖Dχn

ςn‖Lr → 0

for n ≥ n0. The map ProjL⊥χn
is well defined due to the fact that L⊥χn

complement-
ed in W 1,r

$n
(p, y) (since its complement is Ker Dχ hence finite-dimensional). But

(ProjL⊥χn
◦Φn,n)ςn is the sequence of vectors in L⊥χn

so we are in the situation from
Proposition 4. The rest of the proof is as there (see [19] for more details).

Now we apply Lemma 5 to our situation. The map f from Lemma 5 is, in our
case, the fibre-wise restriction

Fχ : W 1,r
$χ

(p, y) → Lr
γ(p)× Lr

u ]0ρ v(y)

of a bundle map (20). The maps Df and N from Lemma 5 are the corresponding
derivation terms in the expansion of Fχ. So Df is Dχ. The map G from Lemma 5
is the map Gχ from Lemma 6. The only assumption from Lemma 5 left to check is
the assumption about the non-linear term N . From the following three expansions:

Fχ(ξ) = Fχ(0) + Dχ(0)ξ + Nχ(0, ξ)

Fχ(η) = Fχ(0) + Dχ(0)η + Nχ(0, η)

Fχ(ξ) = Fχ(η) + Dχ(η)(ξ − η) + Nχ(η, ξ − η)

we compute

Nχ(ξ)−Nχ(η) = Fχ(ξ)− Fχ(η)−Dχ(0)(ξ − η)

= (Dχ(η)−Dχ(0)) (ξ − η) + Nχ(η, ξ − η).

Since K is compact, the set ⋃

χ∈K×[ρ0,+∞)

$χ(Θ) (33)

is relatively compact in T ∗M so we have an estimate:

‖Nχ(ξ)−Nχ(η)‖ ≤ C1

(
‖ξ‖W 1,r

χ
+ ‖η‖W 1,r

χ

)
‖ξ − η‖W 1,r

$
(34)

where the constant C1 depends on the C2− norm of the ∇2 exp on a relatively
compact set (33). Now the required estimate for GN in Lemma 5 follows from (34)
and the fact that Gχ from Lemma 6 is bounded.

It follows from Lemma 5 that there exists the unique solution Γ(χ) ∈ Bε(0)∩L⊥χ
satisfying Fχ(Γ(χ)) = 0. If we set w ]ρ v := expw ]0ρ v Γ(χ) we obtain the exact
solution satisfying F (w ]ρ v) = 0. From the estimates

‖F ($χ)‖Lr ≤ αe−mρ (35)
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for some α > 0, m > 0 and

‖Γ(χ)‖W 1,r ≤ 2C‖F ($χ)‖Lr (36)

it follows that
‖Γ(χ)‖W 1,r ≤ C(K)e−mρ (37)

for some C(K) > 0 depending on K. The estimate (36) follows from Lemma 5 with
C depending on right inverse G. The estimate (35) can be easily obtained from the
construction of the pre-glued trajectory $ and the exponential convergence of w,
v toward x(t) when s → ±∞ (see [5] for details).

We deduce from (37) that the difference of the approximately glued trajectories
w ]0ρ v in (18) and the exact solution w ]ρ v tends to zero fast enough when ρ →∞.
Obviously the pre-glued trajectories w ]0ρ v already converge to the given broken
one in the weak sense.

The exact solution of (3) is smooth, this follows from elliptic regularity theory.
The only part in Theorem 2 left to prove is the embedding property.

3.3. Embedding property. To show that the gluing map ] is an embedding,
for ρ ≥ ρ(K) we need to prove that its linearization D] is an isomorphism at every
point (w, v̂, ρ) and that ] is injective.

In section 3.1 we defined pre-gluing for elements from M(p, f ; x,H) ×
M(x, y, H). Let a be fixed regular value of AH . There is an identification

Ma(x, y; H) ∼= M̂(x, y, H) (38)

where
Ma(x, y;H) = {v ∈M(x, y;H) | AH(v(0, ·)) = a}.

Using the inclusion
ι : Ma(x, y, H) ↪→M(x, y, H)

we can define gluing for (w, v̂) ∈M(p, f ; x,H)×M̂(x, y,H) as ]◦ (Id, ι) (assuming
the identification (38)).

Since K is compact, and regularity is open condition, it is enough to find ρ(w, v̂)
for a fixed pair (w, v̂) such that, for ρ ≥ ρ(w, v̂), D ](w, v̂, ρ) is an isomorphism.
Then we take ρ(K) := max(w,v̂)∈K ρ(w, v̂).

To prove that D ] (w, v̂, ρ) is an isomorphism, it is enough to prove that it is
injective, since, from indices formulae, we have:

dim (K × [ρ(K),∞)) = mf (p)−
(
µH(x) +

n

2

)
+ (µH(x)− µH(y)− 1) + 1

= mf (P )−
(
µH(y) +

n

2

)
= dimM(p, f ; y, H).

Assume it is not true, i.e. that there exists no ρ(w, v̂) such that D ] (w, v̂, ρ) is
injective for ρ ≥ ρ(w, v̂). Then, there exist sequences ξn ∈ TwM(p, f ;x,H), ζn ∈
Tv̂M̂(x, y,H), ρn →∞ and tn ∈ Tρn [ρ0,∞) such that

(ξn, ζn, tn) 6= (0, 0, 0), (ξn, ζn, tn) ∈ KerD ](u, v, ρn). (39)
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Assume, since kernel is a vector subspace, that

‖ξn‖+ ‖ζn‖+ |tn| = 1. (40)

We have

D ] (w, v̂, ρ)(ξ, ζ, t) = D ]ρ (w, v)(ξ, ζ) + D ] (w, v) · (ẇ,−v̇) · t,
where first D denotes derivative in (w, v) and the second D derivative in (w, v, ρ).
Further:

D ]ρ(w, v)(ξ, ζ) = ∇1 exp(Γ(χ))(ξ ]ρ ζ) +∇2 exp(Γ(χ)) (DΓ(χ)(ξ, ζ))

and
D ] (w, v)(ẇ,−v̇)t = ∇1 exp(Γ(χ))(ẇ ]ρ (−v̇)t)

so from (39) we conclude

0 = D ] (ξn, ζn, tn)

= ∇1 exp(Γ(χn))[(ξn ]ρn ζn) + ẇ ]ρn (−v̇)tn] +∇2 exp(Γ(χn)) (DΓ(χn)(ξn, ζn))

i.e.

∇1 exp(Γ(χn))[(ξn ]ρn ζn) + ẇ ]ρn (−v̇)tn] = −∇2 exp(Γ(χn)) (DΓ(χn)(ξn, ζn)) .

But from the identity (∇2 exp−1 ◦∇1 exp)(p, 0) = IdTpP and the exponential de-
crease ‖Γ(χn)‖, ‖DΓ(χn)‖ n→∞−→ 0, we conclude

‖(ξn ]ρn ζn) + ẇ ]ρn (−v̇)tn‖W 1,r → 0.

So it follows

‖ξn + ẇtn‖W 1,r(−∞, ρn
2 ] → 0, ‖ζn − v̇tn‖W 1,r[−2ρn,+∞) → 0.

Since ζn ∈ Tv̂M̂(x, y,H) and Tv̂M̂(x, y,H) ∩Rv̇ = {0} we conclude tn → 0, so

‖ξn‖, ‖ζn‖ → 0

which is in contradiction with (40). Hence we proved the regularity of D ].
The injectivity of ] (for ρ large enough) follows from already proved regularity

and the compactness of K. We argue by contradiction, so assume that there exist
sequences ρn →∞,

(wn, v̂n) 6= (δn, σ̂n) (41)
such that wn ]ρn v̂n = δn ]ρn σ̂n. Since K is compact we can assume that

wn → w, v̂n → v̂, δn → δ, σ̂n → σ̂.

It follows from exponential decrease of Γ(χn) = Γ(wn, v̂n, ρn) and Γ(λn) =
Γ(δn, σ̂n, ρn) that in local coordinates:

‖w ]0ρn
v − δ ]0ρn

σ‖W 1,r
n→∞−→ 0

so w = δ, v̂ = σ̂. Since we already proved that ] is local diffeomorphism, we
conclude that there exists n0 ∈ N such that for all n ≥ n0 it holds

(wn, v̂n) = (δn, σ̂n)

which contradicts (41).
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We have finished the proof of the part a) of Theorem 2.
The proof of the part b) goes analogously.
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Matematički fakultet, Studentski trg 16, 11000 Belgrade, Serbia

E-mail : jelenak@matf.bg.ac.yu


