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FORCING SIGNED DOMINATION NUMBERS IN GRAPHS

S. M. Sheikholeslami

Abstract. We initiate the study of forcing signed domination in graphs. A function f :
V (G) −→ {−1, +1} is called signed dominating function if for each v ∈ V (G),

∑
u∈N [v]

f(u) ≥
1. For a signed dominating function f of G, the weight f is w(f) =

∑
v∈V

f(v). The signed

domination number γs(G) is the minimum weight of a signed dominating function on G. A signed
dominating function of weight γs(G) is called a γs(G)-function. A γs(G)-function f can also be
represented by a set of ordered pairs Sf = {(v, f(v)) : v ∈ V }. A subset T of Sf is called a forcing
subset of Sf if Sf is the unique extension of T to a γs(G)-function. The forcing signed domination
number of Sf , f(Sf , γs), is defined by f(Sf , γs) = min{|T | : T is a forcing subset of Sf} and
the forcing signed domination number of G, f(G, γs), is defined by f(G, γs) = min{f(Sf , γs) :
Sf is a γs(G)-function}. For every graph G, f(G, γs) ≥ 0. In this paper we show that for
integer a, b with a positive, there exists a simple connected graph G such that f(G, γs) = a and
γs(G) = b. The forcing signed domination number of several classes of graph, including paths,
cycles, Dutch-windmills, wheels, ladders and prisms are determined.

1. Introduction

Let G a be graph with vertex set V (G). For every vertex v ∈ V (G), the open
neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood
is N [v] = N(v)∪{v}. For a function f : V (G) −→ {−1, 1} and a subset S of V (G)
we define f(S) =

∑
u∈S f(u). If S = N [v] for some v ∈ V , then we denote f(S) by

f [v]. For a function f : V (G) −→ R, the weight f is w(f) =
∑

v∈V f(v). A signed
dominating function of G is a function f : V (G) −→ {+1,−1} such that f [v] ≥ 1
for all v ∈ V . The signed domination number γs(G) is the minimum weight of a
signed dominating function on G. A signed dominating function of weight γs(G)
is defined a γs(G)-function. For every graph G, we have γs(G) ∈ Z. The signed
domination number was introduced by Dunbar et al. in [2] and since then many
results have also been obtained on the parameter γs(G) (see for instance [3, 4, 8,
9, 11, 13]. We use [12] for terminology and notation which are not defined here.

A signed dominating function f of G can also be represented by a set of
ordered pairs Sf = {(v, f(v)) | v ∈ V }. Let f be a γs(G)-function. A subset T of
Sf is called a forcing subset of Sf if Sf is the unique extension of T to a γs(G)-
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function. The forcing signed domination number of Sf , f(Sf , γs), is defined by
f(Sf , γs) = min{|T | : T is a forcing subset of Sf}. The forcing signed domination
number f(G, γs) is defined by f(G, γs) = min{f(Sf , γs) | Sf is a γs(G)-function}.
Hence for every graph G, f(G, γs) ≥ 0.

The concept of forcing numbers has been studied in different areas of combina-
torics and graph theory, including the chromatic numbers [10], domination numbers
[1, 6] and semi-H-cordial labeling of a graph [7]. In this paper we initiate the study
of forcing signed domination numbers in graphs. The paper is organized as follows:
In Section 2, we give some preliminary results for f(G, γs). We also prove that for
every two integer a, b of which a is positive, there exists a simple connected graph G
such that f(G, γs) = a and γs(G) = b. In section 3, we find the forcing signed dom-
ination number of paths and cycles. In Section 4, we determine the forcing signed
domination number of Dutch-windmill graphs and wheels. Section 5 is devoted to
determine the forcing signed domination number of ladders and prisms.

Here are some well-known results on γs(G).

Theorem A. [2] If f is a signed dominating function for a graph G, then each
endvertex and each vertex adjacent with an endvertex of G is assigned the value 1
under f .

Theorem B. [5] For n ≥ 2, γs(Pn) = n− 2bn−2
3 c.

Theorem C. [5] For n ≥ 3, γs(Cn) = n− 2bn
3 c.

Theorem D. [8] For n ≥ 2,

γs(P2 × Pn) =
{

n if n is even;
n− 1 if n is odd.

Theorem E. [8] For n ≥ 3,

γs(P2 × Cn) =





n if n ≡ 0 (mod 4);
n + 2 if n ≡ 2 (mod 4);
n + 1 if n is odd.

2. Realizability

We have already noted that if G is a graph with f(G, γs) = a and γs(G) = b,
then a ≥ 0 and b ∈ Z. In this section we prove the corresponding realization result.

The following observations will be useful in this note.
Observation 1. Let G be a graph with ∆ ≤ 3, g be a signed dominating

function of G and u, v ∈ V (G). If g(u) = g(v) = −1, then d(u, v) ≥ 3.
Observation 2. For a graph G, f(G, γs) = 0 if and only if G has a unique

γs(G)-function. Moreover, f(G, γs) = 1 if and only if G does not have a unique
γs(G)-function but some pair (v,±1) belongs to exactly one γs(G)-function.
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The following result is a direct consequence of Observation 2

Corollary 3. For a graph G, f(G, γs) > 1 if and only if every pair (v,±1)
of each γs(G)-function belongs to at least two γs(G)-functions.

Theorem 4. For every graph G of order n, if γs(G) = n then f(G, γs) = 0.

Proof. Let γs(G) = n. We show that every non isolated vertex is either
an endvertex or adjacent to an endvertex. Consider a vertex v that is neither an
endvertex nor adjacent to an endvertex. Then we can assign −1 to v and +1 to each
other vertex, to produce a signed dominating function on G of weight n− 2, which
is a contradiction. This proves our claim and the theorem is true by Theorem A.

Corollary 5. For n ≥ 1, f(K1,n, γs) = 0.

Proof. By Theorem A, γs(K1,n) = n and the result follows by Theorem 4.
Next theorem shows that for every pair a, b of integers, with a positive, there

exists a simple connected graph G such that f(G, γs) = a and γs(G) = b.

Theorem 6. For every two integers a and b, with a positive, there exists a
simple connected graph G such that a = f(G, γs) and b = γs(G).

Proof. Let G be obtained from complete graph K8|b|+8 whose vertex set
is {v1, . . . , v8|b|+8}, by adding 24|b| + 24 new vertices, say u1, u2, . . . , u8|b|+8,
w1, w2, . . . , w8|b|+8, z1, z2, . . . , z8|b|+8 and new edges uivi, v1wi, v2wi, v3zi, v4zi for
each i. We consider three cases.

Case 1. b = 0. Obviously f(G, γs) = γs(G) = 0. Suppose now that a > 0.
Let G1 be obtained from G by adding 2a new vertices, say mi, ni (1 ≤ i ≤ a),
and new edges v8|b|+8mi, v8|b|+8ni and mini for i = 1, . . . , a. It is easy to see that
f(G1, γs) = a and γs(G1) = 0.

Case 2. b > 0. First let a = 0. Let G2 be obtained from G by adding b pendant
edges at v8|b|+8, say v8|b|+8y1, . . . , v8|b|+8yb. It is easy to see that γs(G2) = b and
f(G2, γs) = 0. Suppose now that a > 0. Let G3 be obtained from G2 by adding
2a new vertices mi, ni (1 ≤ i ≤ a) and new edges v8|b|+8mi, v8|b|+8ni and mini for
i = 1, . . . , a. One can see that f(G3, γs) = a and γs(G3) = b.

Case 3. b < 0. If a = 0, then let G4 be obtained from G by adding |b| new
vertices, say y1, . . . , y|b|, and joining them to both v5, v6. Obviously f(G4, γs) = 0
and γs(G4) = b. If a > 0, then let G5 be obtained from G4 by adding 2a new
vertices mi, ni (1 ≤ i ≤ a) and adding new edges v8|b|+8mi, v8|b|+8ni and mini for
i = 1, . . . , a. It is easy to verify that f(G5, γs) = a and γs(G5) = b. This completes
the proof.

3. Forcing signed domination number of paths and cycles

In this section we determine the forcing signed domination number of paths
and cycles. We begin with the forcing signed domination number of paths. Since
for 1 ≤ n ≤ 4, f(Pn, γs) = 0 by Theorem A, we consider paths of order at least 5.
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Theorem 7. For n ≥ 5,

f(Pn, γs) =
{

0 if n ≡ 2 (mod 3);
1 if n ≡ 0 or 1 (mod 3).

Proof. Let Pn = v1, v2, . . . , vn and g be a γs-function of Pn. By Theorem
A, g(v1) = g(v2) = g(vn) = g(vn−1) = 1. By Observation 1, g(vi) = g(vj) = −1
implies that |i− j| ≥ 3. Therefore, the number of vertices of Pn which g can assign
−1 to them is at most bn−2

3 c. On the other hand, g must assign the value −1 to
exactly bn−2

3 c vertices of Pn by Theorem B. If n = 3k + 2 for some k ∈ N, then
obviously g(v3i) = −1 for i = 1, . . . , k and g assigns the value 1 to each other
vertex. Thus f(P3k+2, γs) = 0.

Now let n 6≡ 2 (mod 3). Define g, h : V (Pn) −→ {−1, +1} by

g(vi) =
{ −1 if i = 3, 6, . . . , 3(bn

3 c − 1);
1 otherwise,

and

h(vi) =
{ −1 if i = 4, 7, . . . , 3(bn

3 c − 1) + 1;
1 otherwise .

It is easy to see that g and h are γs(Pn)-function. It follows that f(Pn, γs) ≥ 1 by
Observation 2. Consider two cases.

Case 1. n ≡ 0 (mod 3). Let T = {(vn−2, 1)}. We claim that T is a forcing
subset for g. Let f be a γs(Pn)-function such that f(vn−2) = 1. This forces
f(v3i) = −1 for 1 ≤ i ≤ n

3 − 1, which implies f assigns the value 1 to each other
vertex. Therefore f = g and f(Sg, γs) ≤ 1. Thus, f(Pn, γs) ≤ 1.

Case 2. n ≡ 1 (mod 3). We show that T = {(vn−4,−1)} is a forcing subset
of g. Let f be a γs(Pn)-function such that f(vn−4) = −1. This forces f(vn−3) =
f(vn−2) = f(vn−5) = f(vn−6) = 1 by Theorem A and Observation 1. Since f must
assign the value −1 exactly to bn−2

3 c vertices of Pn by Theorem B, we must have
f(v3) = f(v6) = . . . = f(vn−4) = −1. It follows that f must assign the value 1 to
each other vertex. Thus f = g and f(Sg, γs) ≤ 1. Therefore f(Pn, γs) ≤ 1 and the
proof is complete.

Next we determine f(Cn, γs) for all cycles. Obviously, f(Cn, γs) = 1 when
n = 3, 4, 5. Therefore, we consider cycles of order at least 6.

Theorem 8. For n ≥ 6,

f(Cn, γs) =
{

1 if n ≡ 0 (mod 3);
2 if n ≡ 1 or 2 (mod 3).

Proof. Let Cn = v1, v2, . . . , vn. By Theorem C, γs(Cn) = n − 2bn
3 c. Define

g, h : V (Cn) −→ {−1, +1} by

g(vi) =
{ −1 if i = 1, 4, . . . , 3(bn

3 c − 1) + 1;
1 otherwise,
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and

h(vi) =
{ −1 if i = 2, 5, . . . , 3(bn

3 c − 1) + 2;
1 otherwise .

It is easy to see that g and h are γs(Cn)-function. It follows that f(Cn, γs) ≥ 1
by Observation 2. First let n ≡ 0 (mod 3). We claim that T = {(v1,−1)} is a
forcing subset for g. Let f be an extension of T to a γs(Cn)-function. This forces
f(v2) = f(v3) = f(vn) = f(vn−1) = 1 by Observation 1. Since f is a γs(Cn)-
function, f must assign the value −1 to exactly bn

3 c vertices of Cn by Theorem C.
This forces f(v4) = f(v7) = . . . = f(vn−2) = −1. It follows that f assigns the value
1 to each other vertex of Cn. Therefore f = g and f(Cn, γs) ≤ 1.

Now let n ≡ 1 (mod 3). Then n = 3k + 1 for some k ≥ 2. First we show that
every set T = {(v, ε) | v ∈ V (Cn) and ε = +1 or − 1} which has an extension to
a γs(Cn)-function, has at least two extension to a γs(Cn)-function which implies
f(Cn, γs) ≥ 2. Without loss of generality, we can assume v = v1 and ε = −1.
Define g, h : V (Cn) −→ {−1,+1} by

g(vi) =
{ −1 if i = 1, 4, . . . , 3(k − 1) + 1;

1 otherwise,

and

h(vi) =
{ −1 if i = 1, 5, . . . , 3(k − 1) + 2;

1 otherwise .

It is easy to see that g and h are γs(Cn)-function such that g(v1) = h(v1) = −1.
It follows that f(Cn, γs) ≥ 2 by Corollary 3. Now it is easy to verify that T =
{(v1,−1), (vn−2, 1)} is a forcing subset of g which implies f(Cn, γs) ≤ 2. Thus
f(Cn, γs) = 2.

If n ≡ 2 (mod 3), then an argument similar to that described in case n ≡ 1
(mod 3) shows that f(Cn, γs) = 2. This completes the proof.

4. The Dutch-windmill graphs and wheels

The Dutch-windmill graph, K
(m)
3 , is a graph which consists of m copies of

K3 with a vertex in common. The wheel, Wn, is a graph with n + 1 vertices
{v0, v1, . . . , vn} and edges {v0vi | 1 ≤ i ≤ n} ∪ {v1v2, v2v3, . . . , vn−1vn, vnv1}. In
this section we find the forcing signed domination number of K

(m)
3 and Wn.

Lemma 9. For every positive integer m, γs(K
(m)
3 ) = 1.

Proof. By Theorem C, we may assume m ≥ 2. Let v, ui, wi are the vertices
of the i-th copy of K3 in K

(m)
3 (v is the common vertex). Define g : V (K(m)

3 ) −→
{−1,+1} by

g(w) =
{

1 if w = v, wi and 1 ≤ i ≤ m;
−1 if w = ui and 1 ≤ i ≤ m.

Obviously g is a signed dominating function for K
(m)
3 . Thus, γs(K

(m)
3 ) ≤ 1. Now

let h be a γs-function of K
(m)
3 . Then h(v) = 1, for otherwise h must assign the
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value +1 to each other vertex which leads to γs(h) = 2m− 1 > 1, a contradiction.
Now h can assign the value −1 to exactly one of the vertices wi or vi for each i.
Thus, w(h) ≥ 1 and γs(K

(m)
3 ) = 1.

Theorem 10. For every positive integer m, f(K(m)
3 , γs) = m.

Proof. Let g be the γs-function of K
(m)
3 defined in Lemma 9. It is easy

to see that T = {(ui,−1) | 1 ≤ i ≤ m} is a forcing subset of g. Therefore,
f(K(m)

3 , γs) ≤ m. Now we show that f(K(m)
3 , γs) ≥ m. Let S = {(w, εw) |

w ∈ V (K(m)
3 ) and εw = +1 or -1} where |S| < m and S has at least an ex-

tension to a γs-function of K
(m)
3 . Without loss of generality we may assume S

does not intersect the first copy of K3. Define S1 = S ∪ {(w1, 1), (u1,−1)} and
S2 = S ∪ {(w1,−1), (u1, 1)}. Now we can extend S1 and S2, to a γs-function of
K

(m)
3 . It follows that S is not a forcing subset for any γs-function of K

(m)
3 . Thus,

f(K(m)
3 , γs) ≥ m and the proof is complete.

Since γs(W3) = 2 and γs(W4) = 3, we consider Wn with n ≥ 5.

Lemma 11. For n ≥ 5, γs(Wn) = n + 1− 2bn
3
c.

Proof. Define g : Wn −→ {−1, +1} by

g(w) =

{
−1 if w = v3i+1 and 0 ≤ i ≤ bn

3
c − 1;

1 otherwise .

Obviously g is a signed dominating function for Wn which implies γs(Wn) ≤ n +
1 − 2bn

3 c. Now let h be a γs-function of Wn. We claim that h(v0) = 1. Let, to
the contrary, h(v0) = −1. Since deg(vi) = 3 for each i, h must assign the value +1
to each other vertex which implies γs(h) = n− 1 > n + 1− 2bn

3 c, a contradiction.
Therefore h(v0) = 1. Since deg(vi) ≤ 3 for each i ≥ 1, h(vi) = h(vj) = −1 implies
that |i−j| ≥ 3 by Observation 1. It follows that |{w ∈ V (Wn) : h(w) = −1}| ≤ bn

3
c.

Thus γs(Wn) = w(h) ≥ n + 1− 2bn
3 c and the proof is complete.

It is easy to see that f(Wn, γs) = 1 when n = 3, 4, 5. Therefore, we assume
n ≥ 6.

Theorem 12. For n ≥ 6,

f(Wn, γs) =
{

1 if n ≡ 0 (mod 3);
2 otherwise .

Proof. First let n ≡ 0 (mod 3). Define g, h : V (Wn) −→ {−1, +1} by

g(vi) =
{ −1 if i = 1, 4, . . . , 3(bn

3 c − 1) + 1;
1 otherwise,



Forcing signed domination numbers in graphs 177

and

h(vi) =
{ −1 if i = 2, 5, . . . , 3(bn

3 c − 1) + 2;
1 otherwise .

Obviously g and h are signed dominating function for Wn. By Lemma 11, g and h
are γs(Wn)-functions. It follows that f(Wn, γs) ≥ 1 by Observation 2. It is easy to
verify that T = {(v1,−1)} is a forcing subset for g which impliesf(Wn, γs) = 1.

Now let n 6≡ 0 (mod 3). Let T = {(v, ε) | v ∈ V (Wn) and ε = +1 or − 1} and
T has an extension to a γs(Wn)-function. If i = 0 or ε = +1, then obviously T has
at least two extension to a γs(Wn)-function. Suppose now that i 6= 0 and ε = −1.
Without loss of generality we may assume v = v1. Define g∗, h∗ : V (Wn) −→
{−1,+1} by

g∗(vi) =
{ −1 if i = 1, 4, . . . , 3(bn

3 c − 1) + 1;
1 otherwise,

and

h∗(vi) =
{ −1 if i = 1, 5, . . . , 3(bn

3 c − 1) + 2;
1 otherwise .

Obviously g∗ and h∗ are signed dominating functions for which g(v1) = h(v1) = −1
and by Lemma 11, g∗ and h∗ are γs(Wn)-functions. It follows that f(Wn, γs) ≥ 2
by Corollary 3. It is straightforward to see that T1 = {(v1,−1), (vn−2, 1)} if n ≡ 1
(mod 3) and T2 = {(v1,−1), (vn−4,−1)} when n ≡ 2 (mod 3), is a forcing subset
of g∗ which implies f(Wn, γs) ≤ 2. Thus f(Wn, γs) = 2 and the proof is complete.

5. Ladders and Prisms

In this section we find the forcing signed domination number of ladders and
prisms. Throughout this section we assume the vertices of the i-th copy of P2 in
ladders P2 × Pn (prisms P2 × Cn) are ui, vi for i = 1, 2, . . . , n. (see Figure 1).

Fig. 1. Ladders P2 × Pn

Since P2 × P2 = C4, f(P2 × P2, γs) = 1. We assume n ≥ 3.

Theorem 13. For n ≥ 3, f(P2 × Pn, γs) = 1.

Proof. Define g, h : V (P2 × Pn) −→ {−1, +1} by

g(w) =





−1 if w = u4i+1 and 0 ≤ i ≤ dn
4 e − 1;

−1 if w = v4i+3 and 0 ≤ i ≤ bn+1
4 c − 1;

1 otherwise,
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and h(ui) = g(vi) and h(vi) = g(ui) for each i. It is easy to see that g and h
are γs-functions for P2 × Pn by Theorem D. It follows that f(P2 × Pn, γs) ≥ 1 by
Observation 2. Let g be the γs-function defined above. Let M = {w ∈ V (P2×Pn) |
g(w) = −1}. Consider two cases.

Case 1. n is odd. By Theorem D, |M | = n+1
2 . Now we show that T =

{(u1,−1)} is a forcing subset for g. Let f be an extension of T to a γs(P2 × Pn)-
function. By Observation 1, f(v1) = f(u2) = f(v2) = f(u3) = 1 and |M ∩
{ui, vi, ui−1, vi−1, ui+1, vi+1}| ≤ 1 for each i. Since |M | = n+1

2 , f(v3) = −1. An
inductive argument shows that f(u4i+1) = −1 for 0 ≤ i ≤ dn

4 e − 1, f(v4i+3) = −1
for 0 ≤ i ≤ bn+1

4 c−1 and f assigns the value +1 to each other vertex. Thus, f = g
and f(P2 × Pn, γs) ≤ f(Sg, γs) ≤ 1.

Case 2. n is even. An argument similar to that described in case 1, proves
that T1 = {(vn−1,−1)} and T2 = {(un−1,−1)} are forcing subsets of g when 4|n
and 4 - n, respectively. It follows that f(P2×Pn, γs) ≤ f(Sg, γs) ≤ 1 and the proof
is complete.

Finally, we determine f(P2×Cn, γs) for n ≥ 3. Since f(P2×Cn, γs) = 1 when
n is 3 and 4, we assume n ≥ 5.

Theorem 14. For n ≥ 5,

f(P2 × Cn, γs) =
{

1 if n ≡ 0 (mod 4);
2 otherwise .

Proof. First let n ≡ 0 (mod 4). Define g, h : V (P2 × Cn) −→ {−1,+1} by

g(w) =
{ −1 if w = u4i+1, v4i+3 and 0 ≤ i ≤ bn

4 c − 1;
1 otherwise,

and h(ui) = g(vi) and h(vi) = g(ui) for each i. Obviously g and h are signed
dominating functions for P2 × Cn. Therefore, g and h are γs(P2 × Cn)-functions
by Theorem E. It follows that f(P2 × Cn, γs) ≥ 1 by Observation 2. An argument
similar to that described in the Theorem 13, shows that T = {(vn−1,−1)} is a
forcing subset for g. Thus f(P2 × Cn, γs) = 1.

Now let n 6≡ 0 (mod 4). First we show that f(P2 × Cn, γs) ≥ 2. In order to
do this, it is sufficient to show that every set T = {(w, εw) | w ∈ V (P2 ×Cn), εw =
+1 or− 1} which has at least one extension to a γs-function, has two extensions to
a γs-function for P2 × Cn. Without loss of generality, we may assume w = u1 and
ε = −1. Define g, h : V (P2 × Cn) −→ {−1,+1} by

g(w) =





−1 if w = u4i+1 and 0 ≤ i ≤ bn+1
4 c − 1;

−1 if w = v4i+3 and 0 ≤ i ≤ bn
4 c − 1;

1 otherwise,

and

h(w) =





−1 if w = u1, u4i+4 and 0 ≤ i ≤ bn
4 c − 1;

−1 if w = v4i+2 and 1 ≤ i ≤ bn+1
4 c − 1;

1 otherwise,
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if n ≡ 3 (mod 4), and

h(w) =





−1 if w = u1, u4i+2, 1 ≤ i ≤ bn+1
4 c − 1 and bn+1

4 c ≥ 2;
−1 if w = v4i+4, 0 ≤ i ≤ bn

4 c − 1;
1 otherwise,

when n ≡ 1 or 2 (mod 4). Obviously g, h are signed dominating functions for
P2 × Cn in each case and by Theorem E, g and h are γs(P2 × Cn)-functions.
It follows that f(P2 × Cn, γs) ≥ 2 by Corollary 3. Now we show that T1 =
{(u1,−1), (un−2,−1)} if n ≡ 3 (mod 4), T2 = {(u1,−1), (vn−3,−1)} if n ≡ 1
(mod 4) and T3 = {(u1,−1), (vn−2,−1)} when n ≡ 2 (mod 4), is a forcing subset
for g.

Let f be an extension of T1 to a γs-function for P2 × Cn. By Observation 1,
if f(u) = f(v) = −1, then d(u, v) ≥ 3 which implies f(v1) = f(u2) = f(v2) =
f(u3) = f(un) = f(vn) = f(un−1) = f(vn−1) = f(vn−2) = f(un−3) = f(vn−3) =
f(un−4) = 1. Since |{w ∈ V (P2×Cn) | f(w) = −1}| = n−1

2 , an inductive argument
shows that f(u4i+1) = −1 for 0 ≤ i ≤ bn+1

4 c−1, f(v4i+3) = −1 for 0 ≤ i ≤ bn
4 c−1

and f assigns +1 to each other vertex. Thus f = g and f(P2×Cn, γs) ≤ 2. Now an
argument similar to that described for T1 may be applied to show that T2 and T3

are forcing subset for g. Thus f(P2 × Cn, γs) = 2 and the proof is complete.
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