
MATEMATIQKI VESNIK
58 (2006), 91–96

UDK 517.28
originalni nauqni rad

research paper

PROPERTIES OF FUNCTIONS OF GENERALIZED
BOUNDED VARIATION

R. G. Vyas

Abstract. The class of functions of ΛBV (p) shares many properties of functions of bounded
variation. Here we have shown that ΛBV (p) is a Banach space with a suitable norm, the intersec-
tion of ΛBV (p), over all sequences Λ, is the class of functions of BV(p) and the union of ΛBV (p),
over all sequences Λ, is the class of functions having right- and left-hand limits at every point.

Introduction. Looking to the feature of Jordan’s class the concept of bound-
ed variation has been generalized in many ways and many interesting results are
obtained in Analysis [1–6]. In most of the case these new notations have been
introduced because of their applicability to the study of Fourier series. In 1972
Waterman [1] introduced the class of functions of ΛBV . In 1980 Shiba [4] general-
ized this class. He introduced the class ΛBV (p) (p ≥ 1).

Definition. Given an interval I, and a sequence of non-decreasing positive
real numbers Λ = {λm} (m = 1, 2, . . . ) such that

∑n
m=1(1/λm) diverges and 1 ≤

p < ∞, we say that f ∈ ΛBV (p)(I) (that is f is a function of p-Λ-bounded variation
over I) if

VΛ(f, p, I) = sup
{Im}

VΛ({Im}, f, p, I) < ∞,

where VΛ({Im}, f, p, I) =
(∑

m

|f(am)− f(bm)|p
λm

)1/p

, and {Im} is a sequence of

non-overlapping subintervals Im = [am, bm] ⊂ I = [a, b].

Note that, if p = 1, one gets the class ΛBV (I); if λm ≡ 1 for all m, one gets
the class BV (p); if p = 1 and λm ≡ m for all m, one gets the class Harmonic
BV (I). If p = 1 and λm ≡ 1 for all m, one gets the class BV (I). Moreover, for
any f ∈ BV (P )(I) it follows f ∈ ΛBV (p)(I).

D. Waterman [1, 2] has studied Fourier coefficients properties of this class. He
also proved the following result.
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Theorem A. The class of functions ΛBV (I) is a Banach space.

Perlman [6] has also studied some properties of this class. He proved the
following results.

Theorem B. If f ∈ ΛBV (I) then f has right- and left-hand limits at every
point of I.

Theorem C. If f ∈ ΛBV (I) for every sequence Λ, then f ∈ BV (I).

Theorem D. If a function f has a right- and left-hand limit at each point of
I, then f ∈ ΛBV (I).

Here we have extended these results for the class of functions of ΛBV (p).
We will show that the class of functions of ΛBV (p) lies between the regulated
functions and the class of functions of BV (p). That is, we will prove that the the
union of ΛBV (p)-functions over all sequences Λ are the regulated functions and the
intersection of ΛBV (p)-functions over all sequences Λ are the functions of BV (p).

Theorem 1. The class of functions of ΛBV (p)(I) is a Banach space.

Theorem 2. If f ∈ ΛBV (p)(I) then f has right- and left-hand limits at every
point of I.

Theorem 1 and Theorem 2 generalize Theorem A and Theorem B respectively
because p = 1 reduces the class ΛBV (p)(I) to the class ΛBV (I).

Theorem 3. If f ∈ ΛBV (p)(I), for every sequence Λ then f ∈ BV (p)(I).

Hence the intersection of ΛBV (p)(I), taken over all sequences Λ, is the class
of functions of BV (p)(I).

Theorem 4. If f is a continuous function over I, then f ∈ ΛBV (p)(I) for
some sequence Λ.

Theorem 5. If ϕ is a monotone function from I into [c, d] and f ∈
ΛBV (p)[c, d] then f◦ϕ ∈ ΛBV (p)(I).

As a partial converse of Theorem 2 we have the following result.

Theorem 6. If f has right- and left-hand limits at every point of I, then
f ∈ ΛBV (p)(I) for some sequence Λ.

It follows from Theorem 2 and Theorem 6 that the union of ΛBV (p), taken
over all sequences Λ, is the class of functions having right- and left-hand limits at
every point.

Theorem 7. If g is continuous and F ∈ ΛBV (p)(I), then g◦F ∈ Λ′BV (p)(I)
for some sequence Λ′.
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To prove these results we need the following Lemmas.

Lemma 1. [6, Lemma 1] Let {an} be a sequence of positive numbers tending
to zero. Then there exists a decreasing sequence {bn} of positive numbers tending
to zero such that

∑
bn = ∞ and

∑
anbn < ∞.

Lemma 2. [6, Lemma 3] Let {an} be a decreasing sequence of positive numbers.
If {bn} is a sequence of positive numbers tending to zero and {Bn} is the sequence
{bn} rearranged in decreasing order, then

∑
akbk ≤

∑
akBk.

Lemma 3. [6, Theorem, p. 207] A function has right- and left-hand limits
at each point if and only if it is the composition of a continuous function with a
monotone function.

Lemma 4. [5, Lemma 1.6] If f ∈ ΛBV (p)(I) then f is bounded over I.

Proof of Theorem 2. It is sufficient to prove the result for left-hand limits only.
Suppose that there is a point x in (a, b] at which f does not have a left-hand limit.
Then

L = lim
t→x−

> l = lim
t→x−

.

For δ = L−l
3 , consider increasing sequences {Pn} and {pn} converging to x such

that f(Pn) ≥ L− δ and f(pn) ≤ L+ δ. We choose subsequences {Qn} of {Pn} and
{qn} of {pn} such that q1 < Q1 < q2 < Q2 < · · · . Consider intervals In = [qn, Qn];
for all n, we get |f(In)| ≥ (L− δ)− (l + δ) = δ.

Hence
∑ |f(In)|p

λn
≥ δp(

∑
1

λn
) = ∞, which contradicts our hypothesis. Hence

the result follows.
Proof of Theorem 3. Let f∈ ΛBV (p)(I) for at lest one choice of Λ = {λn}.

Then, from Lemma 4, f is bounded over I that is m ≤ f ≤ M . To prove the result
it is sufficient to prove that F = f−m

M−m belongs to BV (p)(I).

Suppose that F is not in BV (p). Then there is a point x in I such that F is not
of BV (p) on any neighborhood of x. Let {an} be a sequence of positive numbers
such that

∑
an = ∞. Then there is a partition P1 of I such that∑

J∈P1

|F (J)|p ≥ a1 + 2.

The point x is either an interior point of an interval in P1 or an endpoint of at most
two intervals in P1. Removing this one, or possibly two, intervals from P1, for the
remaining collection of intervals, say Q1, since |F (x)| ≤ 1 for all x ∈ I, we get∑

J∈Q1

|F (J)|p ≥ a1.

If Q1 has q1 intervals we get Q1 = {I1
k | k = 1, 2, . . . , q1}. Define λk = 1 for all

k = 1, 2, . . . , q1, and we have
q1∑
1

|F (I1
k)|p

λk
≥ a1.

The result is true for the first step.
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Assume the result is true for n steps and we have to prove the result for the
next step. The one, or possible two, intervals that were removed from Pn to form
Qn, form a neighborhood Un of x. Since F is not of BV (p) on Un there is a finite
partition Pn+1 of Un so that

∑

J∈Pn+1

|F (J)|p ≥ (n + 1)an+1 + 2.

The point x is either an interior point of one interval or an endpoint of at most two
intervals in Pn+1. If we remove this one, or possible two, intervals from Pn+1 and
call the remaining collection of intervals Qn+1, then

∑

J∈Qn+1

|F (J)|p ≥ (n + 1)an+1.

If Qn+1 has qn+1 intervals we write Qn+1 = {In+1
k | k = 1, 2, . . . , qn+1} and define

λrn+i = n + 1, for all i=1 to qn+1, where rn =
∑n

0 qk and q0 = 0. We have

qn+1∑
1

|F (In+1
k )|p

λrn+k
≥ an+1.

Observe that the intervals of Qn+1 are within Un and all the intervals of Q1 ∪Q2 ∪
· · · ∪Qn+1 are pairwise non-overlapping. Then

n+1∑

i=1

qi∑

k=1

|F (Ii
k)|p

λri−1+k
≥

n+1∑

i=1

ai.

Thus, we construct a sequence of non-decreasing positive numbers {λk} and a
sequence {In

k | k = 1, 2, . . . , qn; n = 1, 2, . . . } of non-overlapping subintervals of I
such that 1

λk
decreases to zero,

∑
1

λk
= ∞ and

∞∑

i=1

qi∑

k=1

|F (Ii
k)|p

λri−1+k
= ∞.

Thus F is not in ΛBV (P ) for this particular sequence of λ’s which contradict our
hypothesis. Hence the result follows.

Proof of Theorem 4. For δ > 0 and p ≥ 1 the p-modulus of continuity of f
over I (that is ω(p, δ) over I) is defined as

ω(p, δ) = ‖ |Thf − f |p‖∞,I ,

where (Thf)(x) = f(x + h), ∀x. Clearly, ω(p, δ) is increasing and converges to zero
as δ → 0 because of the uniform continuity of f on I.

Let In = [an, bn] be a sequence of non-overlapping subintervals of I. Define

Em = {Ik | ω(p,
b− a

m
) ≥ |f(Ik)|p > ω(p,

b− a

m + 1
)}, m = 1, 2, . . . .
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If |f(Ik)|p ≤ b−a
m+1 , then

|f(Ik)|p = |f(bk)− f(ak)|p ≤ ω(p, |bk − ak|) ≤ ω(p,
b− a

m + 1
).

Thus Ik ∈ Em only if |Ik| > b−a
m+1 . Thus Em contains at most m intervals. Also if

Ip ∈ Er and Iq ∈ Er+s then

|f(Iq)|p ≤ ω(p,
b− a

r + s
) ≤ ω(p,

b− a

r + 1
) < |f(Ip)|p.

Thus by considering those intervals in E1, then those in E2, etc., and rearranging
the intervals we get Jk such that

|f(J1)|p ≥ |f(J2)|p ≥ · · · ≥ |f(Jn)|p ≥ · · · → 0, (1)

where
|f(Jm)|p ≤ ω(p,

b− a

m
). (2)

Namely, if m is an integer for which |f(Jm)|p > ω(p, b−a
m ), then

|f(J1)|p ≥ |f(J2)|p ≥ · · · ≥ |f(Jm)|p > ω(p,
b− a

m
)

implies |Jk| > b−a
m (k = 1, 2, . . . ,m), which is impossible since the intervals Jk

(k = 1, 2, . . . , m) are non-overlapping and contained in [a, b]. Thus (2) holds for
all m.

Since sequence ω(p, b−a
n ) decreases to zero, from Lemma 1 we get a non-

decreasing sequence of positive numbers {λn} such that

1
λn

→ 0,
∑ 1

λn
= ∞ and

∑ ω(p, b−a
n )

λn
< ∞.

Applying Lemma 2 to the sequences {λn} and {|f(In)|p} we get

∑ |f(In)|p
λn

≤
∑ |f(Jn)|p

λn
≤

∑ ω(p, b−a
n )

λn
< ∞.

Hence the result follows.
Since the convergence in the norm is the uniform convergence, the class of all

continuous functions over I becomes a closed subspace of the class functions of
ΛBV (p)(I).

Proof of Theorem 5. Let In = [sn, tn] be a sequence of non-overlapping subin-
tervals of I. Let Jn be the interval determined by the points ϕ(sn) and ϕ(tn). Then
ϕ(In) ⊆ Jn ⊆ [c, d] and the intervals Jn are non-overlapping, which implies

∑ |f◦ϕ(In)|p
λn

=
∑ |f◦ϕ(sn)− f◦ϕ(tn)|p

λn

=
∑ |f [ϕ(sn)]− f [ϕ(tn)]|p

λn
=

∑ |f(Jn|p
λn

< ∞,

as f ∈ ΛBV (p). Hence the result follows.
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Proof of Theorem 6. Since f has left- and right-hand limit at every point of
I, from Lemma 3 we get f = F ◦ϕ where ϕ is a monotone function defined on I
and F is a continuous function defined on the smallest closed interval, say [c, d],
containing the range of ϕ. Let ψ be a linear one to one mapping from [c, d] onto I.
Then g = ψ◦ϕ is a monotone function from I into I and h = f◦ψ−1 is a continuous
function defined on I. Hence the result follows from Theorem 4 and Theorem 5.

Proof of Theorem 7. Since F ∈ ΛBV (p)(I), from Theorem 2 F has right- and
left-hand limit at every point of I. From Lemma 3 we get F = h◦φ where h is a
continuous function defined on I and φ is a monotone function from I into I. Then,
we get g◦F = (g◦h)◦φ where g◦h is continuous and φ is monotone function. From
Lemma 3, g◦F has a right- and left-hand limit at every point of I. Thus the result
follows from Theorem 6.
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