UDK 517.984 оригинални научни рад research paper

OPERATIONAL QUANTITIES DERIVED FROM THE MINIMUM MODULUS

Manuel Gonzáles[†] and Antonio Martinón[‡]

Abstract. The minimum modulus $\gamma(T)$ of an operator T is useful in perturbation theory because it characterizes the operators with closed range. Here we study the operational quantities derived from $\gamma(T)$. We show that the behavior of some of these quantities depends largely on whether the null space of T is finite dimensional or infinite dimensional.

1. Introduction

For every (linear bounded) non-zero operator $T \in L(X, Y)$, where X and Y are Banach spaces, the *minimum modulus* is defined by

$$\gamma(T) := \inf_{x \notin N(T)} \frac{\|Tx\|}{\operatorname{dist} (x, N(T))}.$$

For T = 0 we set $\gamma(0) = 0$. It is well known that $\gamma(T) > 0$ if and only if T has closed range and $T \neq 0$ [1, Theorem IV.1.6].

Here we study the operational quantities that can be derived from the minimum modulus $\gamma(T)$.

In the preliminaries, we give a description of the procedure to derive the quantities associated to a given quantity. This procedure, applied to the norm $n(T) \equiv ||T||$, provides three quantities *in*, *sin* and *i***n* which have been studied (with a different notation) in [9], [4], [7] and [2, 3]. Applied to the injection modulus $j(T) := \inf\{||Tx|| : x \in X, ||x|| = 1\}$, it provides three quantities s^*j , sj and *isj* which have been studied in [7] and [2, 3].

These operational quantities have been applied to characterize the classes of operators in Fredholm theory: see Theorem 1 in the preliminaries. For an excellent exposition of the Fredholm theory using operational quantities we refer to Chapter 14 in Schechter's book [8].

AMS Subject Classification: 47 A 53

[†]Supported in part by DGI (Spain), Proyecto BFM2001-1147

 $^{^{\}ddagger}$ Supported in part by Ministerio de Ciencia y Tecnologia (Spain) and FEDER, BFM2003-07139.

¹

From the minimum modulus γ we can derive eight quantities $is\gamma$, $sis\gamma$, $i^*s\gamma$, $s\gamma$, $i\gamma$, $s^*i\gamma$, $isi\gamma$ and $si\gamma$. In this paper we obtain that $i\gamma$ agrees with the injection modulus j and we derive, consequently, that the quantities $s^*i\gamma$, $isi\gamma$ and $si\gamma$ are the known quantities s^*j , isj and sj, respectively.

On the other hand, we prove that if the operator T has finite dimensional null space N(T), then $sj(T) \leq s\gamma(T) \leq 2sj(T)$ and we obtain that $s\gamma, sis\gamma$ and $i^*s\gamma$ characterize the strictly singular operators, while $is\gamma$ characterizes the upper semi-Fredholm operators. In the case N(T) infinite dimensional, we have $s\gamma(T) = n(T)$ and we obtain that the quantities $is\gamma, sis\gamma$ and $i^*s\gamma$ characterize the upper semi-Fredholm operators, the strictly singular operators and the compact operators, respectively.

Along the paper, X, Y, Z and W are infinite dimensional Banach spaces. By L(X, Y) we denote the space of all (linear continuous) operators from X into Y. For a (closed) subspace M of X, J_M is the inclusion of M into X. An operator $T \in L(X, Y)$ is upper semi-Fredholm if its range is closed and its null space is finite dimensional; it is strictly singular if no restriction TJ_M of T to a closed infinite dimensional subspace M of X is an isomorphism.

2. Preliminaries

Roughly speaking, an operational quantity is a procedure a which determines a real number $a(T) \ge 0$ for every operator T. For two quantities a and b we write $a \le b$ when

$$a(T) \leq b(T)$$
, for every operator T.

We say that the operational quantities a and b are equivalent if $\alpha a \leq b \leq \beta a$, for some $\beta > \alpha > 0$.

Given an operational quantity a and denoting by J_M the canonical inclusion of M into X, for every operator $T \in L(X, Y)$, where X is an infinite dimensional space, we derive the following basic quantities:

> $s^*a(T) := \sup\{a(TJ_P) : P \text{ finite codimensional subspace of } X\},$ $sa(T) := \sup\{a(TJ_M) : M \text{ infinite dimensional subspace of } X\},$ $i^*a(T) := \inf\{a(TJ_P) : P \text{ finite codimensional subspace of } X\},$ $ia(T) := \inf\{a(TJ_M) : M \text{ infinite dimensional subspace of } X\}.$

Repeating the procedure, we could derive new quantities like sia, sisa, i^*issa , ..., but surprisingly we obtain only three different new quantities when a is monotone [5]:

If a is *increasing*, in the sense that $a(TJ_M) \leq a(T)$ for every M, then ia, sia and i^*a are the only new quantities, and they satisfy

$$ia \leqslant sia \leqslant i^*a \leqslant a.$$

If a is *decreasing*, in the sense that $a(TJ_M) \ge a(T)$ for every M, then sa, isa and s^*a are the only new quantities, and they satisfy

$$a \leqslant s^*a \leqslant isa \leqslant sa.$$

The norm $n(T) \equiv ||T||$ is an increasing quantity. So we get i^*n , in and sin. The injection modulus j(T) is decreasing. So we get s^*j , sj and isj. There are some relations between these quantities: $isj \leq in$ and $sj \leq sin$.

The operational quantities associated to n and j have been applied to characterize the classes of operators in Fredholm theory:

THEOREM 1. [2, 3], [7], [9]

1.
$$i^*n(T) = 0 \Leftrightarrow T \text{ compact},$$

2. $sin(T) = 0 \Leftrightarrow sj(T) = 0 \Leftrightarrow T$ strictly singular,

3. $in(T) > 0 \Leftrightarrow s^*j(T) > 0 \Leftrightarrow isj(T) > 0 \Leftrightarrow T$ upper semi-Fredholm.

The quantity isj has been introduced in [2]; moreover, it was proved in [3] that, although

$$s^*j \leq isj \leq in$$
,

these quantities are pairwise non-equivalent.

3. Main results

The operational quantity γ is not monotone, but $i\gamma$ is decreasing and $s\gamma$ is increasing. Hence we derive from γ the quantities

$$i\gamma \leqslant s^* i\gamma \leqslant isi\gamma \leqslant si\gamma;$$
$$is\gamma \leqslant sis\gamma \leqslant i^* s\gamma \leqslant s\gamma.$$

We begin by studying the operational quantities associated with $i\gamma$.

THEOREM 2. For every $T \in L(X, Y)$, $i\gamma(T) = j(T)$.

Proof. Let T in L(X, Y). If $N(T) = \{0\}$ or N(T) is infinite dimensional, then the statement is obvious. So we assume that $0 < \dim N(T) < \infty$, hence j(T) = 0.

We choose $x \in N(T)$ with ||x|| = 1 and $y \in X \setminus N(T)$, and we write

$$X = N(T) \oplus \langle y \rangle \oplus M_{\mathfrak{s}}$$

where $\langle y \rangle$ is the subspace generated by y and M is a closed complement of $N(T) \oplus \langle y \rangle$. Moreover, denoting $y_n = (1/n)y$, we define

$$M_n := M \oplus \langle x + y_n \rangle.$$

Suppose that $z \in M_n \cap N(T)$ then

$$z = m + \lambda(x + y_n) = \lambda x + \lambda y_n + m$$

for some $m \in M$ and some scalar λ . Thus $\lambda y_n = m = 0$, and we conclude z = 0.

Since TJ_{M_n} is injective, $||x + y_n|| \to 1$ and $||T(x + y_n)|| = (1/n)||Ty|| \to 0$, we have $\gamma(TJ_{M_n}) \to 0$; hence $i\gamma(T) = 0$.

COROLLARY 1. Let $T \in L(X, Y)$.

- 1. $i\gamma(T) > 0 \Leftrightarrow T$ isomorphism (into);
- 2. $si\gamma(T) = 0 \Leftrightarrow T$ strictly singular;
- 3. $isi\gamma(T) > 0 \Leftrightarrow s^*i\gamma(T) > 0 \Leftrightarrow T$ upper semi-Fredholm.

Proof. From $i\gamma = j$ we derive $s^*i\gamma = s^*j$, $isi\gamma = isj$ and $si\gamma = sj$. From Theorem 1 we obtain the statement. \blacksquare

Now we study the quantities associated to $s\gamma$. We will see that the behavior of some of these quantities depends largely on whether the null space of T is finite dimensional or infinite dimensional.

LEMMA 1. Let N be a finite dimensional subspace of X, and let $0 < \varepsilon < 1$. For every infinite dimensional subspace M of X, there exists a finite codimensional subspace M_{ε} of M such that, for every $x \in M_{\varepsilon}$,

$$||x|| \leq (2+\varepsilon)\operatorname{dist}(x, N).$$

Proof. Let $\{y_1, \ldots, y_k\}$ be an $(\varepsilon/2)$ -net in the unit sphere of N. We choose f_1, \ldots, f_k in the unit sphere of the dual space X^* of X so that $f_i(y_i) = 1$ for i = 1, 2, ..., k, and take

$$M_{\varepsilon} := \{ x \in M : f_1(x) = \dots = f_n(x) = 0 \}$$

Let $x \in M_{\varepsilon}$. For each $y \in N$ we denote $z_i := \|y\|y_i \ (1 \leq i \leq k)$. Then

$$||y - x|| \ge ||x - z_i|| - ||y - z_i|| \ge f_i(z_i) - (\varepsilon/2)||y|| = ||y|| - (\varepsilon/2)||y|| \ge \frac{||y||}{1 + \varepsilon}$$

for some *i*. Hence, $||y|| \leq (1+\varepsilon)||y-x||$ for each *y* in *N*. From this we obtain $||x|| \leq ||x-y|| + ||y|| \leq (2+\varepsilon)||x-y||$,

$$||x|| \leq ||x - y|| + ||y|| \leq (2 + \varepsilon)||x - y||$$

for each y in N, and this implies $||x|| \leq (2 + \varepsilon) \operatorname{dist}(x, N)$.

THEOREM 3. Let $T \in L(X, Y)$. If N(T) is finite dimensional, then $sj(T) \leq s\gamma(T) \leq 2sj(T).$

Proof. Let M be an infinite dimensional subspace of X, and let $\varepsilon > 0$. By Lemma 1, there exists a finite codimensional subspace M_{ε} of M such that for $x \in M_{\varepsilon},$

$$||x|| \leq (2+\varepsilon)\operatorname{dist}(x, N(T)) \leq (2+\varepsilon)\operatorname{dist}(x, N(TJ_M)).$$

Then

$$\gamma(TJ_M) = \inf_{x \in M, Tx \neq 0} \frac{\|Tx\|}{\operatorname{dist}(x, N(TJ_M))}$$

$$\leq \inf_{x \in M_{\varepsilon}, Tx \neq 0} \frac{\|Tx\|}{\operatorname{dist}(x, N(TJ_M))}$$

$$\leq \inf_{x \in M_{\varepsilon}, Tx \neq 0} \frac{\|Tx\|}{\|x\|} (2 + \varepsilon) = (2 + \varepsilon)j(TJ_{M_{\varepsilon}}).$$

Operational quantities derived from the minimum modulus

Hence, $\gamma(TJ_M) \leq (2 + \varepsilon)sj(T)$, so $s\gamma(T) \leq 2sj(T)$. The inequality $sj(T) \leq s\gamma(T)$ is obvious.

COROLLARY 2. Let $T \in L(X, Y)$. If N(T) is finite dimensional, then

- 1. $isj(T) \leq is\gamma(T) \leq 2isj(T)$,
- 2. $sj(T) \leq sis\gamma(T) \leq 2sj(T)$,
- 3. $sj(T) \leq i^* s\gamma(T) \leq 2sj(T)$.

Proof. Note that $N(TJ_M)$ is also finite dimensional for each M.

1. For every infinite dimensional subspace M of X we have that $sj(TJ_M) \leq s\gamma(TJ_M) \leq 2sj(TJ_M)$, hence $isj(T) \leq is\gamma(T) \leq 2isj(T)$.

2. Similar to 1., taking into account sisj(T) = sj(T) [5].

3. Similar to 1., taking into account $i^*sj(T) = sj(T)$ [5].

The following result shows that the property $is\gamma(T) > 0$ is preserved by taking products.

COROLLARY 3. Let $T \in L(X,Y)$ and $S \in L(Y,Z)$. If N(T) and N(S) are finite dimensional, then

$$is\gamma(S) is\gamma(T) \leq 4 is\gamma(ST)$$

Proof. It is known that isj(S) $isj(T) \leq isj(ST)$ [2], hence $is\gamma(S)$ $is\gamma(T) \leq 2isj(S)$ $2isj(T) \leq 4isj(ST) \leq 4is\gamma(ST)$.

THEOREM 4. For each operator $T \in L(X,Y)$ with N(T) infinite dimensional, $s\gamma(T) = n(T)$.

Proof. For T = 0 the result is obvious. Suppose $T \neq 0$. For each $x \notin N(T)$ we put $M_x := N(T) \oplus \langle x \rangle$, where $\langle x \rangle$ is the subspace generated by x.

For every $y \in M_x$, $y = \lambda x + z$, $z \in N(T)$, we obtain

$$\frac{\|Tx\|}{\|x\|} = \frac{|\lambda| \|Tx\|}{|\lambda| \|x\|} = \frac{\|Ty\|}{\|y-z\|} \leqslant \frac{\|Ty\|}{\operatorname{dist}(y, N(T))}$$

Thus $n(T) \leq \gamma(TJ_{M_x}) \leq s\gamma(T)$.

Note that for every $T \neq 0$ with R(T) finite dimensional (hence N(T) is infinite dimensional), $sj(T) = 0 \neq n(T)$. Thus sj and $s\gamma$ are not equivalent.

COROLLARY 4. Let $T \in L(X, Y)$.

- 1. $is\gamma(T) > 0 \Leftrightarrow T$ is upper semi-Fredholm.
- 2. If N(T) is finite dimensional, then

 $s\gamma(T) = 0 \Leftrightarrow sis\gamma(T) = 0 \Leftrightarrow i^*s\gamma(T) = 0 \Leftrightarrow T$ is strictly singular.

3. If N(T) is infinite dimensional, then

- (a) $s\gamma(T) = 0 \Leftrightarrow T = 0;$
- (b) $sis\gamma(T) = 0 \Leftrightarrow T$ is strictly singular;
- (c) $i^*s\gamma(T) = 0 \Leftrightarrow T$ is compact.

Proof. (1) [6, Example 5.1].

- (2) It is immediate from Theorem 1, Theorem 3 and Corollary 2.
- (3) (a) Theorem 4.

(b) $sis\gamma(T) = 0$ is equivalent to $is\gamma(TJ_M) = 0$ for every infinite dimensional subspace M of X, which is equivalent by (1) to TJ_M is not an upper semi-Fredholm operator, and consequently to T strictly singular.

(c) Since $i^*s\gamma(T)$ is the infimum of $s\gamma(TJ_P) = n(TJ_P)$ where P runs over the finite codimensional subspaces of X, from Theorem 1, we obtain $i^*s\gamma(T) = i^*n(T) = 0$ if and only if T is compact.

REFERENCES

- S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966 [Dover, New York, 1985].
- [2] M. González, A. Martinón, Fredholm Theory and Space Ideals, Bol. U.M.I. (7) 7-B (1993), 473–488.
- [3] M. González, A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13–27.
- [4] A. Lebow, M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1–26.
- [5] A. Martinón, Generating real maps on a biordered set, Comment. Math. Univ. Carolinae 32 (1991), 265–272.
- [6] A. Martinón, Operational quantities, Comment. Math. Univ. Carolinae 38 (1997), 471–484.
- [7] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061–1071.
- [8] M. Schechter, Principles of Functional Analysis, American Mathematical Society, Providence, Rhode Island, 2002.
- [9] A. A. Sedaev, The structure of certain linear operators (in Russian), Mat. Issled. 5 (1970), 166–175.

(received 11.02.2003, in revised form 23.12.2004)

Manuel Gonzáles, Departamento de Matemáticas, Universidad de Cantabria, 39071 Santander, Spain

E-mail: gonzalem@unican.es

Antonio Martinón, Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain

E-mail: anmarce@ull.es