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THE REPRESENTATIONS OF FINITE REFLECTION GROUPS

Muhittin Başer and Sait Halıcıoğlu

Abstract. The construction of all irreducible modules of the symmetric groups over an
arbitrary field which reduce to Specht modules in the case of fields of characteristic zero is given
by G. D. James. Halıcıoğlu and Morris describe a possible extension of James’ work for Weyl
groups in general, where Young tableaux are interpreted in terms of root systems. In this paper,
we further develop the theory and give a possible extension of this construction for finite reflection
groups which cover the Weyl groups.

1. Introduction

The representation theory of symmetric groups over fields of characteristic zero
is well developed and documented with a number of books devoted to the subject.
The original approach was due to G. Frobenius and I. Schur followed independently
by A.Young in a long series of difficult but highly influential papers. Later, in the
1930’s, W. Specht presented an alternative approach which led in an elegant way
to a full set of irreducible modules, now called Specht modules. I. G. Macdonald
showed [12] how to obtain irreducible modules for a Weyl groups by a construction
using subsystems of the root system of the Weyl groups. Macdonald’s method gives
many, but in general not all, of the irreducible modules. In 1976, G. D. James in
a very important paper [11], gave an easy and ingenious construction of all the
irreducible modules of the symmetric groups over an arbitrary field which reduce
to Specht modules in the case of fields of characteristic zero. Al-Aamily, Morris
and Peel [1] showed how this construction could be extended to deal with the Weyl
groups of type Bn. In [13], A. O. Morris described a possible extension of James’
work for Weyl groups in general.

Later, the second author and Morris [7] gave an alternative generalisation
of James’ work which is an improvement and extension of the original approach
suggested by Morris. In [8], L. Hawkins extended Macdonald’s construction to the
case where the subsystem of the roots is replaced by a parabolic subset. Although
the conjugacy classes and irreducible characters are known for all finite reflection
groups individually no unified approach has been obtained. We now give a possible
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extension of James’ work for finite reflection groups which is a generalization of the
original approach suggested by Halıcıoğlu [6].

2. Preliminaries

In this section, we establish the notation and state some results on finite reflec-
tion groups which are required later. The basic definitions and background material
required here may be found in N. Bourbaki [2], R. W. Carter [3], J. E. Humphreys
[9] [10], Grove and Benson [5], Halıcıoğlu and Morris [7].

Let V be l-dimensional Euclidean space over the real field equipped with a
positive definite inner product ( , ). For α ∈ V , α �= 0, let τα be the reflection
in the hyperplane orthogonal to α, that is, τα is the linear transformation on V
defined by

τα : V −→ V, v �→ τα(v) = v − 2
(α, v)
(α, α)

α

for all v ∈ V . Let Φ be a root system in V and π be a simple system in Φ
with corresponding positive system Φ+ and negative system Φ−. Then the finite
reflection group

W = W(Φ) = 〈τα | τ2
α = (τατβ)mαβ = e, α, β ∈ π and α �= β〉

where e is the identity element of W and mαβ is the order of τατβ . Let l(w) denote
the length of w and the sign of w, s(w), is defined by s(w) = (−1)l(w), w ∈ W.

2.1 To each root system Φ, there corresponds a graph Γ called the Coxeter
graph (or Dynkin diagram) of W, whose nodes are in one-to-one correspondence
with the elements of π. A finite reflection group is irreducible if its Coxeter graph is
connected. Finite irreducible reflection groups have been classified and correspond
to root systems of type Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4), E6, E7, E8,
F4, G2, H3, H4, I2(p) (p = 5 or p ≥ 7). For example W(Al) ∼= Sl+1 the symmetric
group on the set {1, 2, . . . , l + 1} and W(G2) ∼= D6 dihedral group of order 12.

2.2 A subsystem Ψ of Φ is a subset of Φ which is itself a root system in the
space which it spans. The finite reflection subgroup W(Ψ) of W corresponding to
a subsystem Ψ is the subgroup of W generated by the τα, α ∈ Ψ. The subsystems
Ψ1 and Ψ2 are conjugate under W if Ψ1 = wΨ2 for some w ∈ W.

2.3 The graphs which are Dynkin diagrams of subsystems of Φ may be obtained
up to conjugacy by a standard algorithm due independently to E. B. Dynkin, A.
Borel and J. de Siebenthal (see e.g. [4]).

2.4 The simple system J of Ψ can always be chosen such that J ⊂ Φ+ [14].

2.5 The set DΨ = {w ∈ W | w(j) ∈ Φ+ for all j ∈ J } is a distinguished set
of coset representatives of W(Ψ) in W, that is, each element w ∈ W has unique
expression of the form dΨwΨ, where dΨ ∈ DΨ and wΨ ∈ W(Ψ). Furthermore dΨ is
the element of minimal length in the coset dΨW(Ψ) [3].
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2.6 If Ψ is a subsystem of Φ with simple system J ⊂ Φ+ and Dynkin diagram
∆ then let Ψ =

⋃r
i=1 Ψi, where Ψi are the indecomposable components of Ψ. Let

Ji be a simple system in Ψi (i = 1, 2, . . . , r) and J =
⋃r

i=1 Ji. Let Ψ⊥ be the largest
subsystem in Φ orthogonal to Ψ and let J⊥ ⊂ Φ+ the simple system of Ψ⊥. Let Ψ

′

be a subsystem of Φ which is contained in Φ \Ψ, with simple system J
′ ⊂ Φ+ and

Dynkin diagram ∆
′
, Ψ

′
=

⋃s
i=1 Ψ

′
i, where Ψ

′
i are the indecomposable components

of Ψ
′
, then let J

′
i be a simple system in Ψ

′
i (i = 1, 2, . . . , s) and J

′
=

⋃s
i=1 J

′
i . Let

Ψ
′⊥ be the largest subsystem in Φ orthogonal to Ψ

′
and let J

′⊥ ⊂ Φ+ the simple
system of Ψ

′⊥. If J̄ stand for the ordered set {J1, J2, . . . , Jr;J
′
1, J

′
2, . . . , J

′
s}, where

in addition the elements in each Ji and J
′
i are ordered, then let T∆ = {wJ̄ | w ∈ W}.

The pair J̄ = {J ;J
′} is called a useful system in Φ if W(J) ∩ W(J

′
) = 〈e〉 and

W(J⊥) ∩W(J
′⊥) = 〈e〉. The elements of T∆ are called ∆-tableaux, the J and J

′

are called the rows and the columns of {J ;J
′} respectively. Two ∆-tableaux J̄

and K̄ are row − equivalent, written J̄ ∼ K̄, if there exists w ∈ W(J) such that
K̄ = wJ̄ . The equivalence class which contains the ∆-tableau J̄ is {J̄} and is called
a ∆-tabloid. Let τ∆ be the set of all ∆-tabloids. Then τ∆ = {{ dJ̄ } | d ∈ DΨ}.
The group W acts on τ∆ as σ{wJ} = {σwJ} for all σ ∈ W. Let K be arbitrary
field and M∆ be the K-space whose basis elements are the ∆-tabloids. Extend the
action of W on τ∆ linearly on M∆, then M∆ becomes a KW-module. Let

κJ ′ =
∑

σ∈W(J′ )

s(σ)σ and eJ,J ′ = κJ ′{J̄}

where s is the sign function. Then eJ,J ′ is called the generalized ∆-polytabloid

associated with J . Let SJ,J
′

be the subspace of M∆ generated by ewJ,wJ ′ where

w ∈ W. Then SJ,J
′

is called a generalized Specht module. A useful system {J ;J
′}

in Φ is called a good system if d Ψ ∩ Ψ
′
= ∅ for d ∈ DΨ then { dJ } appears with

non-zero coefficient in eJ,J ′ . If {J ;J
′} is a good system, then SJ,J

′
is irreducible [7].

3. Specht modules for finite reflection groups

In this section we show how to construct irreducible modules for finite reflection
groups.

By [7], if Ψ1 and Ψ2 are W-conjugate subsystems of Φ, then the corresponding
Specht modules S∆1 and S∆2 are isomorphic. Hence, it is important to choose
a representative from the set of W-conjugate subsystems. We now give a natural
method to choose the representative.

Let Φ be a root system with simple system π = {α1, α2, . . . , αn} and α, β ∈ Φ
such that α =

∑n
i=1 aiαi and β =

∑n
i=1 biαi,

“α ≺ β if and only if for some i, aj = bj for j < i and ai < bi”.

Clearly this is a total ordering on Φ. If Ψ1 and Ψ2 are W-conjugate subsystems of
Φ with simple systems J1 = {v1, v2, . . . , vl} and J2 = {u1, u2, . . . , ul}, respectively,
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then

“Ψ1 � Ψ2 if and only if for some i, vj = uj for j < i and vi ≺ ui”.

It is also easy to see that this is a total ordering on the set of W-conjugate subsys-
tems. From now on, we consider the maximum subsystem according to the order
� as a representative of W-conjugate subsystems. In the case Al, maximum sub-
systems are Al1 + Al2 + · · · + Als , where (l1 + 1, l2 + 1, . . . , ls + 1) is a partition of
l + 1.

Example 3.1. Let Φ = A4 with simple system π = {α1 = e1 − e2, α2 =
e2 − e3, α3 = e3 − e4, α4 = e4 − e5}. In this case, we have three W(A4)-conjugate
subsystems of type 2A1, that is, Ψ1 = 2A1; J1 = {α1, α3}, Ψ2 = 2A

′
1; J2 =

{α1, α4} and Ψ3 = 2A
′′
1 ; J3 = {α2, α4}. The Dynkin diagrams for Ψ1,Ψ2,Ψ3 and

corresponding compositions

Ψ1 = 2A1; J1 = {α1, α3} ©—
⊗

—©—
⊗

λ1 = (2, 2, 1)
1 2 3 4

Ψ2 = 2A′
1; J2 = {α1, α4} ©—

⊗
—

⊗
—© λ1 = (2, 1, 2)

1 2 3 4

Ψ3 = 2A′′
1 ; J3 = {α2, α4}

⊗
—©—

⊗
—© λ1 = (1, 2, 2)

1 2 3 4

Since Ψ3 � Ψ2 � Ψ1, the maximum subsystem is Ψ1 and corresponding composition
is λ1 = (2, 2, 1) which is a partition of 5.

Let Ψ is a subsystem of Φ with simple system J and Ψ is the maximum
subsystem of W-conjugate subsystems. Let J̄ be the ordered set

{J1, J2, . . . , Jr;J
′
1, J

′
2, . . . , J

′
s},

satisfying (2.6), wJ̄ = {wJ1, wJ2, . . . , wJr ; wJ
′
1, wJ

′
2, . . . , wJ

′
s} for w ∈ W and

let T∆ = {wJ̄ | w ∈ W }. Now we can give our principal definition.

Definition 3.2. Let Ψ and Ψ
′
be subsystems of Φ with simple system J and

J
′
respectively. J̄ = {J, J

′} is called irreducible system in Φ if

(i) W(J) ∩W(J
′
) = 〈e〉 and W(J⊥) ∩W(J

′⊥
) = 〈e〉,

(ii) If dΨ∩Ψ
′
= ∅ then there exist σ ∈ W(J

′
) and ρ ∈ W(J) such that d = σρ

for d ∈ DΨ.

By [7], if J̄ is an irreducible system in Φ then |T∆| = |W|.
Remark 3.3. If J̄ is an irreducible system in Φ and d ∈ DΨ ∩DΨ′ then dJ is

irreducible system in Φ.

Definition 3.4. Let J̄ be an irreducible system in Φ. Then the elements of
T∆ are called ∆-tableaux, the J and J

′
are called the rows and the columns of J̄ ,
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respectively. The subgroups W(J) and W(J
′
) are called the row group and the

column group of J̄ , respectively.

Definition 3.5. Two ∆-tableaux J̄ and K̄ are row-equivalent, written J̄ ∼ K̄,
if there exists w ∈ W(J) such that K̄ = wJ̄ . The equivalence class which contains
the ∆-tableau J̄ is {J̄} and is called a ∆-tabloid.

Let τ∆ be the set of all ∆-tabloids. It is clear that the number of distinct
elements in τ∆ is [W : W(J)] and by (2.5) we have

τ∆ = {{ dJ̄ } | d ∈ DΨ}.

The group W acts on τ∆ according to

W (Φ) × τ∆ −→ τ∆, (σ , {wJ}) �→ σ{wJ} = {σwJ}

This action is well defined, for if {w1J} = {w2J}, then there exists ρ ∈ W(w1J)
such that ρw1J = w2J . Hence since σρσ−1 ∈ W(σw1J) and σw2J = σρw1J =
(σρσ−1)(σw1J), we have {σw1J} = {σw2J}.

Now if K is arbitrary field, let M∆ be the K-space whose basis elements are
the ∆-tabloids. Extend the action of W on τ∆ linearly on M∆, then M∆ becomes
a KW-module. Then we have the following lemma.

Lemma 3.6. The KW-module M∆ is a cyclic KW-module generated by any
one tabloid and dimKM∆ = [W : W(J)].

Proof. See [7].
Now we proceed to consider the possibility of constructing a KW-module which

corresponds to the Specht module in the case of symmetric groups. In order to do
this we need to define a ∆-polytabloid.

Definition 3.7. Let J̄ be an irreducible system in Φ. Let

κJ̄ =
∑

σ∈W(J′ )

s(σ)σ and eJ̄ = κJ̄{J̄}

Then eJ̄ is called the generalized ∆-polytabloid .

If w ∈ W(Φ), then

wκJ̄ =
∑

σ∈W(J′ )

s(σ)wσ =
∑

σ∈W(J′ )

s(σ)(wσw−1)w = {
∑

σ∈W(wJ ′ )

s(σ)σ}

Hence, for all w ∈ W(Φ), we have

weJ̄ = κwJ{wJ} = ewJ . (3.1)

Let SJ̄ be the subspace of M∆ generated by ewJ where w ∈ W. Then by
(3.1) SJ̄ is a KW-submodule of M∆, which is called a generalized Specht module.
Then we have the following theorem.
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Theorem 3.8. The KW-module SJ̄ is a cyclic submodule generated by any
∆-polytabloid.

Proof. Straightforward.

Lemma 3.9. Let J̄ be an irreducible system in Φ and let d ∈ DΨ. If {dJ}
appears in eJ̄ then it appears only once.

Proof. As in Lemma 3.10 [7].

Corollary 3.10. If J̄ be an irreducible system in Φ, then eJ̄ �= 0.

Lemma 3.11. Let J̄ be an irreducible system in Φ and let d ∈ DΨ. Then the
following conditions are equivalent:

(i) {dJ} appears with non-zero coefficient in eJ̄ ,

(ii) there exists σ ∈ W(J
′
) such that σ{J̄} = {dJ},

(iii) there exists ρ ∈ W(J) and σ ∈ W(J
′
) such that d = σ ρ,

(iv) dΨ ∩ Ψ
′
= ∅.

Proof. The equivalence of (i) and (ii) follows directly from the formula

eJ̄ =
∑

σ∈W(J′ )

s(σ)σ{J̄}

(ii) ⇒ (iii). Suppose that there exists σ ∈ W(J
′
) such that σ{ J̄ } = { dJ }.

Then we have σ−1 d{ J̄ } = {J̄ }. By the definition of equivalence there exists
ρ ∈ W(J) such that σ−1 d J̄ = ρ J̄ . Then ρ−1σ−1d ∈ W(J⊥) ∩ W(J

′⊥). Since
{J, J

′} is an irreducible system in Φ then d = σ ρ , where σ ∈ W(J
′
) and ρ ∈ W(J).

(iii) ⇒ (ii). Let d = σρ, where σ ∈ W(J
′
) and ρ ∈ W(J). Since ρ ∈ W(J),

ρJ̄ = J̄ then {dJ} = {σρJ} = {σJ}.
(i) ⇒ (iv). Let α ∈ dΨ. If {dJ} appears in eJ̄ then by (i) ⇒ (iii) d = σρ,

where σ ∈ W(J
′
) and ρ ∈ W(J). Then α ∈ σρΨ. Since ρ ∈ W(J), then α ∈ σΨ

and σ−1α ∈ Ψ. But Ψ∩Ψ
′
= ∅, then σ−1α �∈ Ψ

′
. Since σ ∈ W(J

′
), σΨ

′
= Ψ

′
then

α �∈ Ψ
′
.

(iv) ⇒ (i). By definition of irreducible system.

Lemma 3.12. Let J̄ be an irreducible system in Φ and let d ∈ DΨ. If dΨ∩Ψ
′ �=

∅, then κJ̄{dJ} = 0.
Proof. As in Lemma 3.18 [7].

Lemma 3.13. Let J̄ be an irreducible system in Φ and let d ∈ DΨ.
(i) If {dJ} does not appear in eJ̄ then κJ̄{dJ} = 0.

(ii) If {dJ} appears in eJ̄ then there exists σ ∈ W(J
′
) such that κJ̄{dJ} =

s(σ)eJ̄ .
Proof. See Lemma 3.20 [7].
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Corollary 3.14. Let J̄ be an irreducible system in Φ. If m ∈ M∆ then κJ̄m
is a multiple of eJ̄ .

We now define a bilinear form 〈 , 〉 on M∆ by setting

〈{J̄}, {K̄}〉 :=
{

1, {J̄} = {K̄}
0, {J̄} �= {K̄}.

This is a symmetric, non-singular, W-invariant bilinear form on M∆.
Now we can prove James’ submodule theorem in this general setting.

Theorem 3.15. Let J̄ be an irreducible system in Φ. Let U be submodule of
M∆. Then either SJ̄ ⊆ U or U ⊆ SJ̄⊥

.
Proof. If u ∈ U then

〈u, eJ̄ 〉 = 〈u,
∑

σ∈W(J′ )

s(σ)σ{J̄}〉 =
∑

σ∈W(J′ )

〈s(σ)σ−1u, {J̄}〉 = 〈κJ̄u, {J̄}〉.

But by Corollary 3.14 κJ̄u = λeJ̄ , for some λ ∈ K. If λ �= 0 for some u ∈ U , then
eJ̄ ∈ U , that is, SJ̄ ⊆ U . However, if λ = 0 for all u ∈ U , then 〈u, eJ̄ 〉 = 0, that is,
U ⊆ SJ̄⊥

.
We can now prove our principal result.

Theorem 3.16. Let J̄ be an irreducible system in Φ. The KW-module

SJ̄/SJ̄ ∩ SJ̄⊥

is zero or irreducible.

Proof. Let SJ̄/SJ̄ ∩ SJ̄⊥ �= {0}. We need to show that the KW-module

SJ̄/SJ̄ ∩ SJ̄⊥
is irreducible. Let U/SJ̄ ∩ SJ̄⊥

be a submodule of SJ̄/SJ̄ ∩ SJ̄⊥
.

Then SJ̄ ∩ SJ̄⊥ ⊆ U ⊆ SJ̄ and U = SJ̄ or U = SJ̄ ∩ SJ̄⊥
by Theorem 3.15. If

U = SJ̄ then U/SJ̄∩SJ̄⊥
= SJ̄/SJ̄∩SJ̄⊥

. If U = SJ̄∩SJ̄⊥
then U/SJ̄∩SJ̄⊥

= {0}.
Thus SJ̄/SJ̄ ∩ SJ̄⊥

is irreducible.
In the case of K = Q or any field of characteristic zero 〈 , 〉 is an inner product

and SJ̄/SJ̄ ∩ SJ̄⊥ ∼= SJ̄ . Thus if for a subsystem Ψ of Φ an irreducible system
J̄ can be found, then we have a construction for irreducible KW-modules. Hence
it is essential to show for each subsystem that an irreducible system exists which
satisfies Definition 3.2.

Remark 3.17. For any root system Φ with simple system π, there are two
trivial irreducible system in Φ. We can describe immediately the representations
arising in these cases.

If J̄1 = {π; ∅}, then W(J1) = W(Φ) and W(J1

′
) = 〈e〉. So

eJ̄1
=

∑
σ∈W (J1

′
)

s(σ)σ{J̄1} = s(e)e{J̄1} = {J̄1}.
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We clearly have SJ̄1 = Sp{eJ̄1
} = Sp{{J̄1}} and weJ̄1

= w{J̄1} = {J̄1} = eJ̄1
for

all w ∈ W and the identity representation of W is given.

If J̄2 = {∅;π}, then W(J2) = 〈e〉 and DΨ2 = W(Φ) = W(J2

′
). So

eJ̄2
=

∑
σ∈W (J2

′
)

s(σ)σ{J̄2} =
∑

σ∈W(Φ)

s(σ)σ{J̄2}.

Hence SJ̄2 = Sp{eJ̄2
} and weJ̄2

= s(w)eJ̄2
for all w ∈ W. Thus w �→ sgn(w) for all

w ∈ W, and the corresponding representation leads to the sign character of W.
In the following example, we show that an irreducible system may be con-

structed in the case of the finite reflection group of type I2(8).
Example 3.18. Let Φ = I2(8) with simple system π = {α1 = e1, α2 =

cos 7π
8 e1 + sin 7π

8 e2} and Φ+ = {α1 = e1, α2 = cos 7π
8 e1 + sin 7π

8 e2, α3 = cos π
8 e1 +

sin π
8 e2, α4 = cos 2π

8 e1 + sin 2π
8 e2, α5 = cos 3π

8 e1 + sin 3π
8 e2, α6 = cos 4π

8 e1 +
sin 4π

8 e2, α7 = cos 5π
8 e1 + sin 5π

8 e2, α8 = cos 6π
8 e1 + sin 6π

8 e2}. Let e, (τ1τ2)4, τ1τ2,
(τ1τ2)2, (τ1τ2)3, τ1, τ2 be representatives of conjugate classes C1, C2, C3, C4, C5,
C6, C7 respectively of W(I2(8)). The character table of W(I2(8)) is given by

C1 C2 C3 C4 C5 C6 C7

χ1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 −1
χ3 1 1 −1 1 −1 1 −1
χ4 1 1 −1 1 −1 −1 1
χ5 2 −2

√
2 0 −

√
2 0 0

χ6 2 2 0 −2 0 0 0
χ7 2 −2 −

√
2 0

√
2 0 0

The non-conjugate subsystem of I2(8) are:
1. Ψ1 = I2(8); J1 = {α1, α2}
2. Ψ2 = 2A1; J2 = {α2,−α̃}
3. Ψ3 = A1; J3 = {α1}
4. Ψ4 = A

′
1; J4 = {α2}

5. Ψ5 = ∅; J5 = ∅
where α̃ = cos 3π

8 e1 + sin 3π
8 e2 is the longest root in I2(8).

(1) Let Ψ1 = I2(8) be the subsystem of Φ with simple system J1 = {α1 , α2}.
Then Coxeter graph for Ψ1 is

⊗ 8
—© 8

—©
− α̃ α1 α2

If Ψ
′
1 = ∅ with simple system J

′
1 = ∅, then {α1, α2; ∅} is an irreducible system in Φ

by Remark 3.17. Thus we have
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C1 C2 C3 C4 C5 C6 C7

ψ1 1 1 1 1 1 1 1

that is the character χ1.
(2) Let Ψ2 = 2A1 be the subsystem of Φ with simple system J2 = {α2 ,−α̃}.

Then Coxeter graph for Ψ2 is

© 8
—

⊗ 8
—©

− α̃ α1 α2

In this case, we have not found an irreducible system in Φ.
(3) Let Ψ3 = A1 be the subsystem of Φ with simple system J3 = {α1}. Then

Coxeter graph for Ψ3 is

⊗ 8
—© 8

—
⊗

− α̃ α1 α2

If Ψ
′
3 = 2A1 with simple system J

′
3 = {α4, α8}, then {α1;α4, α8} is an irreducible

system in Φ. Thus we have

C1 C2 C3 C4 C5 C6 C7

ψ2 2 2 0 −2 0 0 0

that is the character χ6.
(4) Let Ψ4 = A

′
1 be the subsystem of Φ with simple system J4 = {α2}. Then

Coxeter graph for Ψ4 is

⊗ 8
—

⊗ 8
—©

− α̃ α1 α2

If Ψ
′
4 = 2A1 with simple system J

′
4 = {α4, α8} then {α2;α4, α8} is an irreducible

system in Φ. Thus we have

C1 C2 C3 C4 C5 C6 C7

ψ3 2 2 0 −2 0 0 0

that is the character χ6.
(5) Let Ψ5 = ∅ be the subsystem of Φ with simple system J5 = ∅. Then

Coxeter graph for Ψ5 is

⊗ 8
—

⊗ 8
—

⊗
− α̃ α1 α2
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If Ψ
′
5 = I2(8) with simple system J

′
5 = {α1, α2} then {∅;α4, α8} is an irreducible

system in Φ by Remark 3.17. Thus we have

C1 C2 C3 C4 C5 C6 C7

ψ4 1 1 1 1 1 −1 −1

that is the character χ2.
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