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ON UNIFORM CONVERGENCE ON CLOSED INTERVALS
OF SPECTRAL EXPANSIONS AND THEIR DERIVATIVES,

FOR FUNCTIONS FROM W
(1)
p

Neboǰsa L. Lažetić

Abstract. We consider the global uniform convergence of spectral expansions and their

derivatives,
∑∞

n=1 fn u
(j)
n (x), (j = 0, 1, 2), arising by an arbitrary one-dimensional self-adjoint

Schrödinger operator, defined on a bounded interval G ⊂ R. We establish the absolute and
uniform convergence on G of the series, supposing that f belongs to suitable defined subclasses

of W
(1+j)
p (G) (1 < p ≤ 2). Also, some convergence rate estimates are obtained.

1. Introduction

Let L be an arbitrary self-adjoint differential operator of second order, defined
by the differential expression

L(u)(x) = −u′′(x) + q(x)u(x), x ∈ G, (1)

and the self-adjoint boundary conditions

α10u(a) + α11u
′(a) + β10u(b) + β11u

′(b) = 0,

α20u(a) + α21u
′(a) + β20u(b) + β21u

′(b) = 0,
(2)

where (αi0, αi1, βi0, βi1) ∈ R
4 (i = 1, 2) are linearly independent vectors, G = (a, b)

is a bounded interval of the real axis R, and q(x) ∈ L1(G) is a real function.
Denote by D(L) ⊂ L2(G) the domain of the operator L : h(x) ∈ D(L) if functions
h(x), h′(x) are absolutely continuous on G, L(h)(x) ∈ L2(G), and h(x) satisfies the
conditions (2). If h(x) ∈ D(L), then L(h)(x) def= L(h)(x) (see [1, §18]). Spectrum
of L is discrete. We can suppose, with no loss of generality, that L is a positive
operator.

Let {un(x)}∞n=1 be complete (in L2(G)) and orthonormal system of eigenfunc-
tions of L, and let {λn}∞n=1 be the corresponding system of positive eigenvalues,
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enumerated in non-decreasing order. (By definition, un(x) belongs to D(L) and
satisfies the differential equation

−u′′
n(x) + q(x)un(x) = λnun(x) (3)

almost everywhere in G.) If f(x) ∈ L1(x) and µ > 2, we can form the partial sum
of order µ:

σµ(x, f) def=
[µ]∑

n=1

fnun(x), fn
def=

∫ b

a

f(x)un(x) dx.

([µ] denotes the entire part of µ.) The problem of behavior of functions σ
(j)
µ (x, f)

on subsets K ⊆ G, as µ → +∞, is the classical one. (Note, h(0)(x) def= h(x).) It is
still actual and important, especially in the case of a non-self-adjoint operator L,by
itself. The importance of the problem also follows from its relationship with the
Fourier method for solving mixed boundary problems for one-dimensional hyper-
bolic (or parabolic) equations of second order, containing different classes of (non-)
self-adjoint boundary conditions.

One of the most fruitful approaches to the problem is so-called “equiconver-
gence approach”: one studies the behavior on K of the difference σ

(j)
µ (x, f) −

S
(j)
µ (x, f), as µ → +∞, where Sµ(x, f) is the corresponding partial sum of the

trigonometrical Fourier series of function f(x). When j = 0 and K ⊂ G is a
compact set, the problem has been completely solved by V. A. Il’in (see [2–5]) for
a large class of non-self-adjoint boundary conditions. The Lp-equiconvergence on
K ⊆ G (1 ≤ p ≤ +∞, j = 0) was deeply studied by I. S. Lomov in papers [6–8]. A
very extensive review of different results (case j = 0) can be found in [12]. As far
as the convergence of derivatives of the spectral expansions concerned, it was less
studied.

In this paper we consider the uniform convergence on the whole G. A “naive”
direct method is used:we point out some classes of functions f(x) such that the
equalities

f (j)(x) =
∞∑

n=1

fnu(j)
n (x), x ∈ G, j = 0, 1, 2,

are valid, where series
∑∞

n=1 |fnu
(j)
n (x)| converges uniformly on G. (We (will) say

that the series converges “absolutely and uniformly” on G.) Also, we establish
some uniform (on G) asymptotic estimates for the differences f (j)(x)−σ

(j)
µ (x, f),as

µ → +∞.

2. Main results

Let AC(G) be the class of (real-valued) absolutely continuous functions on
the closed interval G = [a, b], and let BV (G) be the class of functions having the
bounded variation on that interval. By W

(k)
p (G) we denote the set of functions
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h(x) such that h(x), h′(x), . . . , h(k−2)(x) are continuously differentiable functions
on G,h(k−1)(x) ∈ AC(G), and h(k)(x) ∈ Lp(G)(1 ≤ p < +∞, k ∈ N). We say that
function h(x) ∈ Lp(G) belongs to the class Hα

p (G)(0 < α ≤ 1) if there exists a
constant C(h) > 0 such that

‖h(x + t) − h(t)‖Lp(G|t|) ≤ C(h)|t|α

for every t ∈ ((a − b)/2, (b − a)/2),where G|t|
def= (a + |t|, b − |t|).

We can now state our results.

Theorem 1. Let q(x) ∈ L1(G), f(x) ∈ W
(1)
p (G) (1 < p ≤ 2) and f(a) = 0 =

f(b). Then:
(a) for x ∈ G the equality

f(x) =
∞∑

n=1

fnun(x) (4)

is valid, and the series is absolutely and uniformly convergent on G;
(b) the estimate

max
x∈G

|f(x) − σµ(x, f)| = o

(
1

µ1−1/p

)
, µ → +∞. (5)

holds.

Theorem 2. Let q(x) ∈ L1(G) and f(x) ∈ D(L). Then for every x ∈ G we
have the equalities

f (j)(x) =
∞∑

n=1

fnu(j)
n (x), j = 0, 1, (6)

the series (6) being absolutely and uniformly convergent on G. Also, the following
estimates are valid

max
x∈G

|f (j)(x) − σ(j)
µ (x, f)| = o

(
1

µ3/2−j

)
, j = 0, 1. (7)

Theorem 3. Let q(x) ∈ W
(1)
1 (G) and f(x) ∈ D(L) ∩ W

(3)
1 (G). If L(f)(x) ∈

W
(1)
p (G) (1 < p ≤ 2) and L(f)(a) = 0 = L(f)(b), then:

(a) the equalities

f (j)(x) =
∞∑

n=1

fnu(j)
n (x), j = 0, 1, 2, (8)

hold on G, and the series (8) converge absolutely and uniformly on G;
(b) we have the estimates

max
x∈G

|f (j)(x) − σ(j)
µ (x, f)| = o

(
1

µ3−j−1/p

)
, j = 0, 1, 2. (9)
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Remark 1. In some special cases estimate (5) can be improved. For example,
if f ′(x) ∈ BV (G), then

max
x∈G

|f(x) − σµ(x, f)| = O

(
1
µ

)
.

Also, if f ′(x) ∈ L∞(G) ∩ Hα
1 (G) (0 < α ≤ 1), then

max
x∈G

|f(x) − σµ(x, f)| = O

(
1

µα

)
+ o

(
1

µ1/2

)
.

These estimates were obtained in [13].
Remark 2. Propositions of Theorem 2 were actually proved in papers [14]

and [13]. In order to keep the completeness of exposition of all our results obtained
in the considered classes of smoothness for q(x) and f(x), we cite the propositions
here. Note, the uniform convergence on G of the series

∑∞
n=1 fnun(x), for every

function f(x) ∈ D(L), is a very well known fact (see [1, p.90]).
Related to Theorem 2, we can add the following. Let q(x) ∈ L1(G), f(x) ∈

W
(2)
1 (G), L(f)(x) ∈ Lp(G) (1 < p ≤ 2), and f (j)(a) = 0 = f (j)(b), j = 0, 1. Then

the first proposition of the theorem holds, and the estimates

max
x∈G

|f (j)(x) − σ(j)
µ (x, f)| = o

(
1

µ2−j−1/p

)
, j = 0, 1, (10)

are valid, instead of estimates (7).
Remark 3. The estimates (9) can be also improved in some cases. If

L(f)′(x) ∈ BV (G), supposing the other conditions of Theorem 3 are satisfied,
then

max
x∈G

|f (j)(x) − σ(j)
µ (x, f)| = O

(
1

µ3−j

)
, j = 0, 1, 2.

Further, if L(f)′(x) ∈ L∞(G) ∩ Hα
1 (G), the following estimates hold:

max
x∈G

|f (j)(x) − σ(j)
µ (x, f)| = O

(
1

µ2−j+α

)
+ o

(
1

µ5/2−j

)
, j = 0, 1, 2,

(see paper [13]).
Remark 4. Suppose that the coefficients of boundary conditions (2) satisfy

the relation
α11β21 − α21β11 	= 0, (11)

as in the case of separated boundary conditions, for example. Then assumptions
f(a) = 0 = f(b) (in Theorem 1) and L(f)(a) = 0 = L(f)(b) (in Theorem 3) can be
dropped.

If one of the boundary conditions (2) has the form αj1u
′(a) + βj1u

′(b) = 0,
then f(a) = 0 = f(b) (in Theorem 1) can be replaced by βj1f(a) + αj1f(b) = 0,
and in Theorem 3 we can suppose that βj1L(f)(a) + αj1L(f)(b) = 0 instead of
L(f)(a) = 0 = L(f)(b).
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Remark 5. In paper [9] I. S. Lomov has proved that the assertion of propo-
sition (a) of Theorem 1 holds in the case of biorthogonal series

∑∞
n=1(f, vk)uk(x),

for f(x) ∈ W
(1)
2 (G), generated by a non-self-adjoint Schrödinger operator L, with

a complex-valued potential q(x) ∈ L1(G). The operator L is defined on G = (0, 1)
by multi-point boundary conditions.

Proofs of Theorems 1 and 3 are based on suitable estimates for the Fourier
coefficients of f(x). These estimates are obtained by the known asymptotics for
the eigenfunctions and eigenvalues of the operator L. On the other hand, the
propositions concerned with Theorem 2 can be proved by using only some uniform
estimates for the eigenfunctions and their derivatives, and an estimate for a number
of the eigenvalues (see the next section).

3. Auxiliary results

In our proofs we will use the following results.

Proposition 1 [15]. If q(x) ∈ L1(G), then there exists a constant C0 > 0,
independent of n ∈ N, such that

max
x∈G

|un(x)| ≤ C0, n ∈ N. (12)

Proposition 2 [15], [16]. If q(x) ∈ L1(G), then there exists a constant
A > 0 such that ∑

t≤√
λn≤t+1

1 ≤ A, (13)

for each t ≥ 0, where A does not depend on t.

Proposition 3 [17]. (a) Let q(x) ∈ L1(G). There is a constant C1 > 0, not
depending on n ∈ N, such that the following estimates are valid :

max
x∈G

|u′
n(x)| ≤ C1 · (

√
λn + 1), n ∈ N. (14)

(b) Let q(x) ∈ C(G). Then the eigenfunctions un(x) have continuous second
derivative, satisfy the equation (3) everywhere on G, and there exists a constant
C2 > 0, independent on n ∈ N, such that

max
x∈G

|u′′
n(x)| ≤ C2 · (λn + 1), n ∈ N. (15)

We will also need the following known asymptotics for the eigenfunctions and
eigenvalues of the (self-adjoint) operator L. Let q(x) ∈ L1(G), where G = (−1, 1).
There is a number n0 ∈ N such that for every n > n0 the equalities

un(x) = An(cos
√

λnx)
(

1 +
r1n(x)√

λn

)
+ Bn(sin

√
λnx)

(
1 +

r2n(x)√
λn

)
, (16)

u′
n(x) = −An

√
λn(sin

√
λnx)

(
1 +

r3n(x)√
λn

)
+ Bn

√
λn(cos

√
λnx)

(
1 +

r4n(x)√
λn

)
(17)
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are valid on [−1, 1]. Here |An|2 + |Bn|2 ∈ [c−1, c] for some constant c > 0, and
there is a constant D > 0 such that for every n > n0 we have

max
x∈G

{|rin(x)||i = 1, 2, 3, 4} ≤ D.

Also, for every n > n0 the following holds:√
λn = nπ + γ +

ρn

nβ−1
, (18)

where β = 2 if the boundary conditions (2) satisfy θ2
0 − 4θ−1θ1 	= 0, and β = 3/2 if

θ2
0 − 4θ−1θ1 = 0 (see [1, pp. 66–67, 74], [10], [11]). Here γ > 0 is a constant, and
{ρn}∞n=n0

is a bounded sequence: |ρn| ≤ ρ.

4. Proof of Theorem 1

In order to avoid technicalities, we will prove the theorem supposing that
G = (−1, 1). Transition from the interval (−1, 1) to an arbitrary interval (a, b) can
be realized by the following change of variable:

x =
b − a

2
t +

a + b

2
, −1 ≤ t ≤ 1.

Consequently, in formulae (16)–(17) one should put (2x− a− b)/(b− a) instead of
x, and π in equality (18) should be replaced by π/(b − a).

An estimate for the Fourier coefficients. The first step in the proof is to
establish an appropriate estimate for the Fourier coefficients fn(n > n0).

Let λn be an arbitrary eigenvalue such that n > n0. Using the equation (3),
the integration by parts, and assumption f(−1) = 0 = f(1), we obtain the equality

fn =
1
λn

·
(∫ 1

−1

f ′(x)u′
n(x) dx +

∫ 1

−1

f(x)q(x)un(x) dx

)
. (19)

Consider the integral
∫ 1

−1
f ′(x)u′

n(x) dx. By virtue of equalities (17)–(18) it
can be represented in the form∫ 1

−1

f ′(x)u′
n(x) dx = −An

√
λn·

(
I1(n, β)+I2(n, β)

)
+Bn

√
λn·

(
I3(n, β)+I4(n, β)

)

− An

∫ 1

−1

f ′(x)r3n(x) sin
√

λn x dx + Bn

1∫
−1

f ′(x)r4n(x) cos
√

λn x dx, (20)

where Ij(n, β) are defined as follows:

I1(n, β) =
∫ 1

−1

f ′(x)
[
sin nπx · cos

(
γ +

ρn

nβ−1

)
x

]
dx,

I2(n, β) =
∫ 1

−1

f ′(x)
[
cos nπx · sin

(
γ +

ρn

nβ−1

)
x

]
dx,

I3(n, β) =
∫ 1

−1

f ′(x)
[
cos nπx · cos

(
γ +

ρn

nβ−1

)
x

]
dx,

I4(n, β) =
∫ 1

−1

f ′(x)
[
sin nπx · sin

(
γ +

ρn

nβ−1

)
x

]
dx.
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Let us introduce ρn,β
def= ρnn1−β . In the further transformations of integrals

Ij(n, β) we will use the following fact: for any point x ∈ [−1, 1] there exist numbers
θ1(x), θ2(x) ∈ (0, 1) such that

cos ρn,βx = 1 − ρ2
n,βx2

2
cos(ρn,βθ1(x)x),

sin ρn,βx = ρn,βx − ρ2
n,βx2

2
sin(ρn,βθ2(x)x).

Now, for the integral I1(n, β) we obtain

I1(n, β) =
∫ 1

−1

[
f ′(x) cos γx

]
sin nπx · cos(ρn,βx) dx

−
∫ 1

−1

[
f ′(x) sin γx

]
sin nπx · sin(ρn,βx) dx

=
∫ 1

−1

[
f ′(x) cos γx

]
sin nπx dx − ρn,β ·

∫ 1

−1

[
f ′(x)x sin γx

]
sin nπx dx

− ρ2
n,β

2
·
∫ 1

−1

[
f ′(x)x2 cos γx · cos(ρn,βθ1(x)x)

]
sin nπx dx

+
ρ2

n,β

2
·
∫ 1

−1

[
f ′(x)x2 sin γx · sin(ρn,βθ2(x)x)

]
sin nπx dx.

If we define functions and Fourier coefficients

gjc(x) def= f ′(x)xj cos γx, gjs(x) def= f ′(x)xj sin γx, j = 0, 1, 2;

an(h) def=
∫ 1

−1

h(x) cos nπx dx, bn(h) def=
∫ 1

−1

h(x) sin nπx dx, n ∈ N,

then from the preceding equalities it follows that

I1(n, β) = bn(g0c) − ρn

nβ−1
· bn(g1s) + O

(
1

n2(β−1)

)
.

Analogously, one can obtain the asymptotic relations

I2(n, β) = an(g0s) +
ρn

nβ−1
· an(g1c) + O

(
1

n2(β−1)

)
,

I3(n, β) = an(g0c) − ρn

nβ−1
· an(g1s) + O

(
1

n2(β−1)

)
,

I4(n, β) = bn(g0s) +
ρn

nβ−1
· bn(g1c) + O

(
1

n2(β−1)

)
,

where |O(n2(1−β))| ≤ ρ2‖f ′‖L1(G)n
2(1−β) in all the cases.
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Let us return to the equality (20). Applying the preceding representations of
the integrals Ij(n, β),we can get the following estimate:

∣∣∣∣
∫ 1

−1

f ′(x)u′
n(x) dx

∣∣∣∣ ≤
√

cλn

[
|an(g0c + g0s)| + |bn(g0c + g0s)|

+
ρ

nβ−1
(|an(g1c + g1s)| + |bn(g1c + g1s)|) +

4ρ2‖f ′‖L1(G)

n2(β−1)

]
+ 2

√
c D‖f ′‖L1(G).

(21)

That is why from (19) and (21) it follows, by virtue of estimate (12) and equality
(18), that the final (desired) estimate

|fn| ≤ D1

n
· (|an(g0c + g0s)| + |bn(g0c + g0s)|

)

+
D2

nβ
· (|an(g1c + g1s)) + |bn(g1c + g1s)|

)
+

D3

n2
, n > n0, (22)

holds, where the constants Dj have the following values:

D1
def=

√
c

π
, D2

def=
ρ
√

c

π
,

D3
def=

(
4ρ2

√
c

πn2β−3
0

+
2
√

cD

π2

)
· ‖f ′‖L1(G) +

C0

π2
· ‖f‖C(G)‖q‖L1(G). (23)

Proof of equality (4). We first prove the absolute and uniform convergence
on G = [−1, 1] of the series (4), and the equality (4).

Note that the trigonometrical system {1/
√

2, cos nπx, sin nπx | n ∈ N} is uni-
formly bounded and orthonormal in L2(G). Therefore, the corresponding Riesz
inequality holds: for every function h(x) ∈ Lp(G)(1 < p ≤ 2) we have

( ∞∑
n=0

(|an(h)|r + |bn(h)|r)
)1/r

≤ ‖h‖Lp(G),

where 1/p + 1/r = 1 and a0(h) def= 2−1
∫ 1

−1
h(x) dx, b0(h) def= 0 (see [18]).

Now, the mentioned convergence of series (4) is a consequence of the following
formal chain of equalities and inequalities:

∞∑
n=1

|fnun(x)| =
n0∑

n=1

|fnun(x)| +
∞∑

n=n0+1

|fnun(x)| ≤ n0C
2
0 · ‖f‖L1(G)

+ C0D1 ·
∞∑

n=n0+1

[
1
n

(|an(g0c + g0s)| + |bn(g0c + g0s)|
)]

+ C0D2 ·
∞∑

n=n0+1

[
1
nβ

(|an(g1c + g1s)| + |bn(g1c + g1s)|
)]

+
∞∑

n=n0+1

C0D3

n2
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≤ E1 + E2

( ∞∑
n=1

1
np

)1/p( ∞∑
k=0

(|ak(·)|r + |bk(·)|r)
)1/r

+ E3

( ∞∑
n=1

1
nβp

)1/p( ∞∑
k=0

(|ak(··)|r + |bk(··)|r)
)1/r

+ E4 ·
∞∑

n=1

1
n2

≤ E1 + E2

( ∞∑
n=1

1
np

)1/p

· ‖g0c + g0s‖Lp(G)

+ E3

( ∞∑
n=1

1
nβp

)1/p

· ‖g1c + g1s‖Lp(G) + E4 ·
∞∑

n=1

1
n2

,

the constants E1–E4 having an obvious meaning. Estimates (12),(22) and inequal-
ities of Hölder and Riesz are used.

The equality (4) follows from the completeness of the system {un(x)}∞n=1 in
L2(G) and from the continuity of f(x) on G.

Proof of estimate (5). Let µ > n0 and x ∈ [−1, 1]. Using equality (4),
estimates (12) and (22), and the Hölder inequality, we obtain the relations

|f(x) − σµ(x, f)| =
∣∣∣∣

∞∑
n=[µ]+1

fnun(x)
∣∣∣∣

≤ E2

( ∞∑
n=[µ]+1

1
np

)1/p( ∞∑
n=[µ]+1

(|an(g0c + g1c)|r + |bn(g0c + g1s)|r
))1/r

+ E3

( ∞∑
n=[µ]+1

1
nβp

)1/p

(
∞∑

n=[µ]+1

(|an(g1c + g1s)|r + |bn(g1c + g1s)|r
))1/r

+ E4

∞∑
n=[µ]+1

1
n2

≤ E2

(∫ +∞

[µ]

dt

tp

)1/p

· α1,r(µ) + E3

(∫ +∞

[µ]

dt

tβp

)1/p

· α2,r(µ)

+ E4

∫ +∞

[µ]

dt

t2
≤ 1

µ1−1/p
·
(

E5 · α1,r(µ) +
E6

µβ−1
· α2,r(µ) +

2
µ1/p

)
,

where functions α1,r(µ) and α2,r(µ) are defined in the following way:

α1,r(µ) =
( ∞∑

n=[µ]+1

(|an(g0c + g0s)|r + |bn(g0c + g0s)|r
))1/r

,

α2,r(µ) =
( ∞∑

n=[µ]+1

(|an(g1c + g1s)|r + |bn(g1c + g1s)|r
))1/r

.

The Riesz inequality gives limµ→+∞ α1,r(µ) = 0 = limµ→+∞ α2,r(µ). Therefore,
estimate (5) is a consequence of relations mentioned above.

Proof of Theorem 1 is completed.
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5. On Remark 2

In the second part of Remark 2 we have stated a proposition essentially related
to Theorem 2. Proof of the proposition “contains” a proof of the theorem, and it
is not based on asymptotic relations (16)–(18).

Let f(x) ∈ W
(2)
1 (G) and L(f)(x) ∈ Lp(G) (1 < p ≤ 2). Using differential

equation (3) and the integration by parts twice, we can write

fn =
1
λn

·
∫ b

a

f(x)L(un)(x) dx

=
1
λn

(
−f(x)u′

n(x)|ba + f ′(x)un(x)|ba +
∫ b

a

L(f)(x)un(x) dx

)
.

By virtue of f (j)(a) = 0 = f (j)(b) (j = 0, 1), the double replacements vanish, and
we get the basic relation

fn =
1
λn

·
∫ b

a

L(f)(x)un(x) dx ≡ 1
λn

· L(f)n, (24)

playing in the following a role analogous to the one of estimate (22).

Let x ∈ G. Using estimates (12)–(14), equality (24), and the Riesz inequality,
we obtain

∞∑
n=1

|fnu(j)
n (x)| =

∑
0<

√
λn≤1

(·) +
∑

√
λn>1

(·) ≤ AC0Cj‖f‖L1(G)

+ Cj

( ∑
√

λn>1

|L(f)n|r
)1/r[ ∞∑

k=1

( ∑
k≤√

λn<k+1

1

λ
p(1−j/2)
n

)]1/p

≤ E7 + A1/pC
(2/p−1)
0 Cj‖L(f)‖Lp(G) ·

( ∞∑
k=1

1
kp(2−j)

)1/p

,

where j = 0, 1 and 1/p + 1/r = 1. Therefore, it follows that series (6) converge
absolutely and uniformly on G.

Proofs of equalities (6) are the standard ones. These equalities allow us to
show that the estimates

|f (j)(x) − σ(j)
µ (x, f)| ≤ A1/pCj

( ∞∑
n=[µ]+1

|L(f)n|r
)1/r( ∞∑

n=[µ]+1

1
np(2−j)

)1/p

hold on G, wherefrom the estimates (10) easily follow.
Let us suppose now that f(x) ∈ D(L). Then L(f)(x) ∈ L2(G), and equalities

(24) are valid. The double replacements still vanish, as a consequence of the self-
adjointness of the operator L. So, we see that the propositions of theorem 2 follow
from the previous arguments (case p = 2).
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6. Proof of Theorem 3

This proof is completely analogous to the one of Theorem 1; we suppose that
G = (−1, 1), and use relations (16)–(18).

Estimate for the Fourier coefficients. The starting point is equality (24),
which is obviously valid in the case considered. So, using equation (3), the integra-
tion by parts, and assumption L(f)(−1) = 0 = L(f)(1), we obtain the equalities

fn =
1
λ2

n

·
∫ 1

−1

L(f)(x)L(un)(x) dx

=
1
λ2

n

(∫ 1

−1

L(f)′(x)u′
n(x) dx +

∫ 1

−1

L(f)(x)q(x)un(x) dx

)
.

(25)

We need a suitable estimate for the integral
∫ 1

−1
L(f)′(x)u′

n(x)dx, n > n0.
Repeating, step by step, the arguments used in the first part of the proof of Theorem
1, we get the estimate∣∣∣∣

∫ 1

−1

L(f)′(x)u′
n(x) dx

∣∣∣∣ ≤
√

cλn

[
|an(h0c + h0s)| + |bn(h0c + h0s)|

+
ρ

nβ−1

(|an(h1c +h1s)|+ |bn(h1c +h1s)|
)
+

4ρ2‖L(f)′‖L1(G)

n2(β−1)

]
+2

√
cD‖L(f)′‖L1(G),

(26)

with functions hjc(x) and hjs(x) defined as follows:

hjc(x) = L(f)′(x)xj cos γx, hjs(x) = L(f)′(x)xj sin γx, j = 0, 1.

From (25)–(26) we obtain, having in mind estimate (12) and equality (18), the
necessary estimate for fn:

|fn| ≤ D4

n3
· (|an(h0c + h0s)| + |bn(h0c + h0s)|

)

+
D5

nβ+2
· (|an(h1c + h1s)| + |bn(h1c + h1s)|

)
+

D6

n4
, n > n0, (27)

where the constants Dj have the values:

D4
def=

2
√

c

π3
, D5

def=
ρ
√

c

π3
,

D6
def=

(
4ρ2

√
c

π3n2β−3
0

+
2
√

cD

π4

)
· ‖L(f)′‖L1(G) +

2C0

π4
· ‖L(f)q‖L1(G). (28)

Proof of equalities (8). First we prove that series (8) converge absolutely
and uniformly on [−1, 1].

Having in mind estimates (12), (14), (15), (27), the equality (18), and inequal-
ities of Hölder and Riesz, we obtain the following formal chain:

∞∑
n=1

|fnu(j)
n (x)| =

n0∑
n=1

(·) +
∞∑

n=n0+1

(·) ≤ n0C0Cjλ
j/2
n0

· ‖f‖L1(G)
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+ (2π)jCjD4 ·
∞∑

n=n0+1

1
n3−j

· (|an(h0c + h0s)| + |bn(h0c + h0s)|
)

+ (2π)jCjD5 ·
∞∑

n=n0+1

1
nβ+2−j

· (|an(h1c + h1s)| + |bn(h1c + h1s)|
)

+ (2π)jCjD6 ·
∞∑

n=n0+1

1
n4−j

≤ E8 + E9

( ∞∑
n=1

1
n(3−j)p

)1/p

· ‖h0c + h0s‖Lp(G)

+ E10

( ∞∑
n=1

1
n(β+2−j)p

)1/p

· ‖h1c + h1s‖Lp(G) + E11 ·
∞∑

n=1

1
n4−j

.

The numerical series on the right-hand side of the last inequality being convergent
for j = 0, 1, 2, the convergence of series (8) holds as it has been claimed.

In the proof of equality (8) (case j = 0) one have to use, in a standard way,
the continuity of f(x) and the completeness of the system {un(x)}∞n=1. The clas-
sical theorem on differentiability of the sum of a functional series helps in proving
equality (8) in the cases j = 1, 2.

Proof of estimates (9). Let µ > n0 and x ∈ [−1, 1]. Starting from equalities
(8), we can obtain, as in the preceding part of the proof, the inequalities

|f (j)(x) − σ(j)
µ (x, f)| ≤

∞∑
n=[µ]+1

|fnu(j)
n (x)|

≤ E9

( ∞∑
n=[µ]+1

1
n(3−j)p

)1/p

· α3,r(µ)

+ E10

( ∞∑
n=[µ]+1

1
n(β+2−j)p

)1/p

· α4,r(µ) + E11 ·
∞∑

n=[µ]+1

1
n4−j

≤ 1
µ3−j−1/p

(
E12 · α3,r(µ) +

E13

µβ−1
· α4,r(µ) +

E14

µ1/p

)
, (29)

where constants Ej have obvious meanings, and

α3,r(µ) def=
( ∞∑

n=[µ]+1

(|an(h0c + h0s)|r + |bn(h0c + h0s)|r)
)1/r

,

α4,r(µ) def=
( ∞∑

n=[µ]+1

(|an(h1c + h1s)|r + |bn(h1c + h1s)|r
))1/r

.

By virtue of limµ→+∞ α3,r(µ) = 0 = limµ→+∞ α4,r(µ), estimates (9) follow from
relations (29).

Theorem 3 is proved.
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7. On Remark 4

If the coefficients in boundary conditions (2) satisfy (11), then equations (2)
can be solved with respect to the “variables” u′

n(a) and u′
n(b):

u′
n(a) = R1a(αij , βij)un(a) + R1b(αij , βij)un(b),

u′
n(b) = R2a(αij , βij)un(a) + R2b(αij , βij)un(b),

where constants R do not depend on n. Let us suppose that f(a) 	= 0 or/and
f(b) 	= 0. Then we have, because of the above equalities and estimate (12), the
inequality

|f(a)u′
n(b) − f(b)u′

n(b)| ≤ 2C0R0(|f(a)| + |f(b)|), (30)

where constant R0 is independent of n.
Return now to the equality (19). In the general case considered, that equality

must have the following form:

fn =
1
λn

·
∫ b

a

f(x)L(un)(x) dx =
1
λn

[−f(a)u′
n(a) + f(b)u′

n(b)
]

+
1
λn

(∫ b

a

f ′(x)u′
n(x) dx +

∫ b

a

f(x)q(x)un(x)dx

)
. (31)

By virtue of estimate (30), the first member on the right-hand side of the second
equality (31) has a “satisfactory” order with respect to λn. That is why the ba-
sic estimate (22) is still valid in this case, the constant D3 being changed in the
corresponding way.

Analogous arguments work in the cases L(f)(a) 	= 0 or/and L(f)(b) 	= 0.
If one of boundary conditions (2) has the form αj1u

′(a) + βj1u
′(b) = 0 and

f(x) satisfies βj1f(a) + αj1f(b) = 0, then the double replacements in (31) vanish,
and we get estimate (22) again. The corresponding remark holds in the case of
function L(f)(x) from Theorem 3.

Note that theorems 1 and 3 were reported at the Seminar for Functional Anal-
ysis and Operator Theory (Faculty of Mathematics, Belgrade) on March 21st, 2002.

Acknowledgment. We thank the referee for valuable suggestions.
Added in proof. Recently, V. M. Kurbanov and R. A. Safarov [19] have

obtained, by a different approach, results stated in Theorem 1, with O(µ1/p−1)
standing in the estimate (5) (instead of o(µ1/p−1).
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richeskim ryadom spektral’nykh razlozheníi. II, Diff. uravneniya 16, 6 (1980), 980–1009.



104 N. L. Lažetić
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mernogo giperbolicheskogo uravneniya vtorogo poryadka(II), Publ. de l’Inst. Math. (Beograd)
64(78) (1998), 69–84.
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