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UNIFICATION OF SOME CONCEPTS
SIMILAR TO THE LINDELÖF PROPERTY

T. Hatice Yalvaç

Abstract. In this paper the ϕ1,2-Lindelöf property is defined and studied with the aim of
unifying various concepts related to the Lindelöf property in General Topology.

1. Introduction

Unifications of various concepts in general topology have been studied in [1,
10–16,18, 21, 24–28]. Although the unifications discussed in [11] and [13] using
operations were given for fuzzy topological spaces, it was pointed out that they
apply equally well to topological spaces.

A principle aim of unification theory is to reduce the confusion caused by a
plethora of very similar properties. For the most part we will not repeat here the
definitions of the various properties used to illustrate the results obtained, although
these will usually be clear from the particular choice of operations involved.

In a topological space (X, τ) we will use int, cl, scl, etc., to stand for the
interior, closure and semi-closure operations, and so on. We will also use Ao, A to
stand for the interior and closure, respectively, of a subset A of X.

Definition 1.1. Let (X, τ) be a topological space. A mapping ϕ : P (X) →
P (X) is called an operation on (X, τ) if Ao ⊂ ϕ(A) for all A ∈ P (X) and ϕ(∅) = ∅.

The class of all operations on a topological space (X, τ) will be denoted by
O(X, τ).

A partial order “≤” on O(X, τ) is defined by ϕ1 ≤ ϕ2 ⇔ ϕ1(A) ⊂ ϕ2(A) for
each A ∈ P (X). An operation ϕ ∈ O(X, τ) is called monotonous if ϕ(A) ⊂ ϕ(B)
whenever A ⊂ B, (A,B ∈ P (X)).

Definition 1.2. Let ϕ ∈ O(X, τ) and A,B ⊂ X. Then A is called ϕ-open
if A ⊂ ϕ(A). Likewise, B is called ϕ-closed if X \ B is ϕ-open. An operation
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ϕ̃ ∈ O(X, τ) is called the dual operation of ϕ if ϕ̃(A) = X \ ϕ(X \ A) for each
A ∈ P (X).

If ϕ is monotonous, then the family of all ϕ-open sets is a supratopology
(U ⊂ P (X)) is a supratopology on X means that ∅ ∈ U , X ∈ U and U is closed
under arbitrary unions [2]).

Let (X, τ) be a topological space, ϕ ∈ O(X, τ), U ⊂ P (X) and x ∈ X. We will
use the following notation.

U(x) = {U : x ∈ U ∈ U },
ϕO(X) = {U : U ⊂ X, U is ϕ-open },
ϕC(X) = {K : K ⊂ X, K is ϕ-closed },

ϕO(X,x) = {U : U ∈ ϕO(X), x ∈ U },
N (U , x) = {N : N ⊂ X and there exists a U ∈ U(x) such that U ⊂ N }.

Definition 1.3. Take ϕ ∈ O(X, τ) and U ⊂ P (X). Then ϕ is called regular
with respect to (shortly w.r.t.) U if x ∈ X and given U, V ∈ U(x) there exists
W ∈ U(x) such that ϕ(W ) ⊂ ϕ(U) ∩ ϕ(V ).

For any operation ϕ ∈ O(X, τ), τ ⊂ ϕO(X) and X, ∅ are both ϕ-open and
ϕ-closed.

Definition 1.4. Let ϕ1, ϕ2 ∈ O(X, τ), A ⊂ X. Then
a) x ∈ ϕ1,2 int A ⇔ there exists U ∈ ϕ1O(X,x) such that ϕ2(U) ⊂ A.
b) x ∈ ϕ1,2 cl A ⇔ for each U ∈ ϕ1O(X,x), ϕ2(U) ∩ A �= ∅.
c) A is ϕ1,2-open ⇔ A ⊂ ϕ1,2 int A.
d) A is ϕ1,2-closed ⇔ ϕ1,2 cl A ⊂ A.
If A ⊂ B then ϕ1,2 int A ⊂ ϕ1,2 int B and ϕ1,2 cl A ⊂ ϕ1,2 cl B. Clearly, for

any set A we have X \ ϕ1,2 int A = ϕ1,2 cl(X \ A) and A is ϕ1,2-open iff X \ A is
ϕ1,2-closed.

We will use ϕ1,2O(X) (ϕ1,2C(X)) to denote the family of all ϕ1,2-open subsets
(the family of all ϕ1,2-closed subsets) of X.

Theorem 1.5. ([13]) Let ϕ1, ϕ2 ∈ O(X, τ).
a) ϕ1,2O(X) is a supratopology on X.
b) If ϕ2 is regular w.r.t. ϕ1O(X) then ϕ1,2O(X) is a topology on X and a

subset K of X is closed w.r.t. this topology iff ϕ1,2 cl K ⊂ K.
c) If ϕ2 is regular w.r.t. ϕ1O(X) and if ϕ2 ≥ ı or ϕ2 ≥ ϕ1 then ϕ1,2O(X) is

a topology on X and a set K is closed w.r.t. this topology iff ϕ1,2 cl K = K.
In [17], conditions were obtained under which the operator k : P (X) → P (X)

defined by k(A) = ϕ1,2 cl A for each A ∈ P (X) is a Kuratowski closure operator.
Example 1.6. Let the following operations be defined on a topological space

(X, τ): ϕ1 = int, ϕ2 = cl ◦ int, ϕ3 = cl, ϕ4 = scl, ϕ5 = ı (ı is the identity operation),
ϕ6 = int ◦ cl. Then:
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ϕ1 ≤ ϕ2 ≤ ϕ3, ϕ1 ≤ ϕ5 ≤ ϕ4 ≤ ϕ3 and ϕ1 ≤ ϕ6 ≤ ϕ4.
ϕ1O(X) = τ , ϕ2O(X) = SO(X) = the family of semi-open sets.
ϕ3O(X) = ϕ5O(X) = ϕ4O(X) = P (X) = the power set of X.
ϕ6O(X) = PO(X) = the family of pre-open sets.
ϕ1,3O(X) = τθ = the topology of all θ-open sets.
ϕ2,4O(X) = SθO(X) = the family of semi-θ-open sets.
ϕ1,6O(X) = τs = the semi regularization topology of X. This is the topology

with base RO(X) consisting of the regular open sets = the family of δ-open sets.
ϕ2,3O(X) = θSO(X) = the family of all θ-semi-open sets.
ϕ1, ϕ3 (ϕ2, ϕ6) are pairs of dual operations. Also, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 are

regular w.r.t. ϕ1O(X).
We use SC(X) (PC(X), RC(X), SθC(X) and θSC(X), respectively) to de-

note the family of semi-closed (pre-closed, regular closed, semi-θ-closed, and θ-semi-
closed) sets.

SR(X) = SO(X) ∩ SC(X) = the family of semi-regular sets.
Clearly if ϕ1 is monotonous and ϕ2 = ı for ϕ1, ϕ2 ∈ O(X, τ), then ϕ1,2O(X) =

ϕ1O(X) and ϕ1,2C(X) = ϕ1C(X).

2. Filters

Throughout this section the operations ϕi, i = 1, 2, . . . are defined on a topo-
logical space (X, τ).

Definition 2.1. ([26]) Let F be a filter (or filter-base) in (X, τ) and a ∈ X.
Then F is said to:

a) ϕ1,2-accumulate to a if a ∈ ⋂{ϕ1,2 cl F : F ∈ F};
b) ϕ1,2-converge to a if for each U ∈ ϕ1O(X, a), there exists an F ∈ F such

that F ⊂ ϕ2(U).

Theorem 2.2. ([26]) 1) A filter-base Fb ϕ1,2-accumulates (ϕ1,2-converges) to
a iff filter generated by Fb ϕ1,2-accumulates (ϕ1,2-converges) to a.

2) If ϕ2 is monotonous, we can take the family N (ϕ1O(X), a) instead of
ϕ1O(X, a) in the above definitions.

3) A filter F ϕ1,2-converges to a iff {ϕ2(U) : U ∈ ϕ1O(X, a)} ⊂ F .
4) If F ϕ1,2-converges to a then F ϕ1,2-accumulates to a.
5) Let F ⊂ F ′ for the filters F and F ′

a) If F ′ ϕ1,2-accumulates to a, then F ϕ1,2-accumulates to a.
b) If F ϕ1,2-converges to a then F ′ ϕ1,2-converges to a.

6) If ϕ
′
1O(X) ⊂ ϕ1O(X) and ϕ

′
2 ≥ ϕ2 for the operations ϕ1, ϕ2, ϕ

′
1, ϕ

′
2 ∈

O(X, τ), then a filter (or a filter-base) F ϕ
′
1,2-accumulates (ϕ

′
1,2-converges) to a

whenever F ϕ1,2-accumulates (ϕ1,2-converges) to a.
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A space (X, τ) is called ϕ1,2-T2 if for each x, y ∈ X (x �= y) there are ϕ1-open
sets Ux and Uy such that x ∈ Ux, y ∈ Uy and ϕ2(Ux) ∩ ϕ2(Uy) = ∅ [13, 26].

Theorem 2.3. ([26]) Let (X, τ) be a ϕ1,2-T2 space. If a filter F ϕ1,2-converges
to some point a ∈ X and ϕ1,2-accumulates to some point b ∈ X then a = b.

Example 2.4. Let a ∈ X and F be a filter in (X, τ).
a) Let ϕ1 = cl ◦ int, ϕ2 = cl. F ϕ1,2-converges (ϕ1,2-accumulates) to a iff F

rc-converges (rc-accumulates) to a since {V : V ∈ τ, x ∈ V } = {U : x ∈ U ∈
SO(X)} [9].

b) Let ϕ1 = int, ϕ2 = cl. F ϕ1,2-converges to a iff F r-converges [8] (or
equivalently almost converges [4]) to a. (X, τ) is ϕ1,2-T2 iff (X, τ) is Urysohn.

c) Let ϕ1 = int, ϕ2 = ı. F ϕ1,2-converges to a iff F converges to a in (X, τ).
(X, τ) is ϕ1,2-T2 iff (X, τ) is Hausdorff.

A filter F is called a σ-filter if F is closed under countable intersections and
a filter-base Fb is called a σ-filter-base if Fb is a base of a σ-filter. Clearly in
any topological space (X, τ), for any ϕ ∈ O(X, τ), F = {X} is a σ-filter and
X ∈ ϕO(X).

Lemma 2.5. If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, then ϕ1O(X) ⊂ ϕ2O(X). The converse is
false.

Example 2.6. Let ϕ1 = cl ◦ int, ϕ2 = semi- int be defined on R with the usual
topology. For A = (0, 1], ϕ1(A) = [0, 1], ϕ2(A) = (0, 1] and ϕ1(A) �⊂ ϕ2(A). i.e.
ϕ1 �≤ ϕ2.

For the set of rational numbers Q, Q �⊂ ϕ2(Q) = ∅. i.e. ϕ2 �≥ ı. But ϕ1O(R) =
SO(R) = ϕ2O(R).

It can be easily seen that if ϕ2 is regular w.r.t. ϕ1O(X) and ϕ1O(X) ⊂ ϕ2O(X)
then ϕ1,2O(X) is the same topology as that given in Theorem 1.5 (c).

Theorem 2.7. Let A ⊂ X. Then:
1) If there exists a σ-filter F containing A which ϕ1,2-accumulates to a, then

a ∈ ϕ1,2clA.
2) If ϕ1O(X) is closed under countable intersections and ϕ2 is monotonous,

then,
a) a ∈ ϕ1,2 cl A iff there exists a σ-filter containing A which ϕ1,2-converges

to a.
b) A is ϕ1,2-closed iff whenever there exists a σ-filter which contains A and

ϕ1,2-converges to a point a in X, then a ∈ A.
For the remainder of this section we will assume that ϕ1O(X) is closed under

countable intersections.

Theorem 2.8. If ϕ2 is monotonous then a σ-filter F ϕ1,2-accumulates to a
point a iff there exists a σ-filter F ′ such that F ⊂ F ′ and F ′ ϕ1,2-converges to a.
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Theorem 2.9. a) If ϕ1O(X) ⊂ ϕ2O(X) then Φa = ϕ1O(X, a) is σ-filterbase
for each a ∈ X and Φa ϕ1,2-converges to a.

b) If ϕ2 is monotonous and ϕ1O(X) ⊂ ϕ2O(X) then Φa = {ϕ2(U) : U ∈
ϕ1O(X, a)} is a σ-filter-base that ϕ1,2-converges to a.

If ϕ2 is monotonous, then since ϕ1O(X) is closed under countable intersections,
clearly ϕ2 is regular w.r.t. ϕ1O(X).

Theorem 2.10. Let ϕ2 be monotonous and ϕ1O(X) closed under countable
intersections. For any A ∈ P (X), let us define

cl∗ A = {x : there exists a σ-filter which contains A and ϕ1,2-converges to x }.
Clearly cl∗ A = ϕ1,2 cl A.

a) The cl∗ operator defines the topology τ∗ given by

τ∗ = {U ⊂ X : (X \ U)∗ ⊂ X \ U }
= {U ⊂ X : ϕ1,2 cl(X \ U) ⊂ X \ U } = ϕ1,2O(X).

b) If ϕ1O(X) ⊂ ϕ2O(X) then,

τ∗ = {U ⊂ X : (X \ U)∗ = X \ U }
= {U ⊂ X : ϕ1,2 cl A = A } = ϕ1,2O(X).

c) If ϕ1O(X) ⊂ ϕ2O(X) and {ϕ2(U) : U ∈ ϕ1O(X)} ⊂ ϕ1,2O(X) then cl∗

and ϕ1,2 cl are Kuratowski closure operators, since in this case ϕ1,2 cl(ϕ1,2 cl A) =
ϕ1,2 cl A, for each A ∈ P (X).

Example 2.11. Let ϕ1 = int, ϕ2 = cl. Then:
ϕ1O(X) = τ . ϕ2 is monotonous, regular w.r.t. ϕ1O(X) and ϕ2 ≥ ϕ1. Also,

ϕ1,2 cl A = θ cl A for any A ∈ P (X) and cl∗ A = {x : there exists a σ-filter F such
that A ∈ F and F ϕ1,2-converges to x}.

If (X, τ) is a P space (i.e. each Gδ set is open), then a set A is θ-closed iff
θ cl A = A iff whenever σ-filter contains A and ϕ1,2-converges to a point a in X,
then a ∈ A.

3. The Lindelöf property

Definition 3.1. Take ϕ1, ϕ2 ∈ O(X, τ), X ∈ A ⊂ P (X) and A ⊂ X.
a) If A ⊂ ⋃U for a subfamily U of A, then U is called an A-cover of A. If

an A-cover U of A is countable (finite) then we call U a countable A-cover (finite
A-cover) of A.

b) If each A-cover U of A has a countable subfamily U ′ such that A ⊂⋃{ϕ2(U) : U ∈ U ′}, then we say that A is (A-ϕ2)-Lindelöf relative to X (shortly,
a (A-ϕ2)-L. set)).

c) We call a (A-ı)-Lindelöf set relative to X a A-L. set for short.
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d) If we take A = ϕ1O(X) in (b), then we say A is ϕ1,2-Lindelöf relative to X
(shortly, a ϕ1,2-L. set).

If we take A = ϕ1,2O(X) in (c) we get the definition of a ϕ1,2O(X)-L. set.
If X is a ϕ1,2-L. set relative to itself, then X will be called a ϕ1,2-L. space.
If X is a ϕ1,2O(X)-L. set relative to itself, then X will be called a ϕ1,2O(X)-L.

space.

In the sequel it will be assumed that all operations ϕi, i = 1, 2, . . . are defined
on (X, τ) whenever they are used.

Theorem 3.2. If X ∈ A′ ⊂ A ⊂ P (X) and ϕ2 ≤ ϕ′
2 then each (A-ϕ2)-L. set

is an (A′-ϕ′
2)-L. set. So if ϕ′

1O(X) ⊂ ϕ1O(X) and ϕ2 ≤ ϕ′
2 then a ϕ1,2-L. set is a

ϕ′
1,2-L. set.

Corollary 3.3. If ϕ′
1 ≤ ϕ1 and ϕ2 ≤ ϕ′

2, then each ϕ1,2-L. set is a ϕ′
1,2-L.

set.
Remark 3.4. If ϕ2 is regular w.r.t. ϕ1O(X), then a subset A of X is a

ϕ1,2O(X)-L. set iff A is Lindelöf relative to X in the topological space (X,ϕ1,2O(X)).
Example 3.5. Let ϕ1 = cl ◦ int, ϕ2 = scl, ϕ′

1 = int, ϕ′
2 = int ◦ cl, ϕ′′

1 = int
and ϕ′′

2 = cl. For a subset A, we have:
A is a ϕ1,2-L. set iff A is a (SO(X)-scl)-L. set iff A is an SR-L. set (see Example

3.10 below).
An SR-L. space was called rs-Lindelöf in [7].
A is a ϕ1,2O(X)-L. set iff A is a SθO(X)-L. set iff A is Lindelöf relative to X

in the supratopological space (X,SθO(X)).

Note that ϕ
′
1,2-L. sets were defined for H(P ) spaces under the name C1-closed

relative to X [23] and ϕ
′
1,2-L. spaces were defined for H(P ) spaces under the name

strongly H(P )-closed spaces [23].

A is a ϕ
′
1,2O(X)-L. set iff A is Lindelöf relative to X in (X, τs).

The set A is a ϕ′′
1,2O(X)-L. set iff A is Lindelöf relative to X in (X, τθ).

H(P )-closedness was defined for H(P ) spaces. An H(P ) space is called H(P )-
closed iff it is a ϕ′′

1,2-L. space [20].
Sets which are H(P )-closed relative to X were defined in H(P ) spaces in [19].

So, in an H(P ) space, a set A is H(P )-closed relative to X iff A is a ϕ′′
1,2-L. set.

A ϕ′′
1,2-L. space was called weakly Lindelöf in [5].

Since ϕ′′
1 ≤ ϕ1 and ϕ2 ≤ ϕ′′

2 , each ϕ1,2-L. set is a ϕ′′
1,2-L. set. Hence each SR-L.

set is a (τ -cl)-L. set and each rs-Lindelöf space is a weakly Lindelöf space.

Theorem 3.6. If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if ϕ1 is monotonous, then each
ϕ1O(X)-L. set is a ϕ1,2O(X)-L. set.

Proof. It can be easily seen that ϕ1,2O(X) ⊂ ϕ1O(X) under the given condi-
tions [13], from which the proof is clear.
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Theorem 3.7. Let B = {ϕ2(U) : U ∈ ϕ1O(X)}. Then:
a) If ϕ2(U) ∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊂ ϕ2(U) for each U ∈ ϕ1O(X) then

B ⊂ ϕ1,2O(X) ∩ ϕ1O(X).
b) If ϕ1O(X) ⊂ ϕ2O(X) and B ⊂ ϕ1,2O(X), then B is a base for the

supratopology ϕ1,2O(X).
c) If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if B ⊂ ϕ1,2O(X), then B is a base for the

supratopology ϕ1,2O(X) [24].
d) If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊂ ϕ2(U) for each

U ∈ ϕ1O(X), then B is a base for the supratopology ϕ1,2O(X) [24].
Proof. a) Let U ∈ ϕ1O(X) and x ∈ ϕ2(U). Then x ∈ ϕ2(U) ∈ ϕ1O(X) and

ϕ2(ϕ2(U)) ⊂ ϕ2(U), so x ∈ ϕ1,2 int ϕ2(U). We have ϕ2(U) ⊂ ϕ1,2 intϕ2(U). Hence
ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X) and B ⊂ ϕ1,2O(X) ∩ ϕ1O(X).

b) Let A ∈ ϕ1,2O(X) and x ∈ A. There exists a U ∈ ϕ1O(X,x) such
that ϕ2(U) ⊂ A. Hence we have x ∈ U ⊂ ϕ2(U) ⊂ A, ϕ2(U) ∈ ϕ1,2O(X) and
ϕ2(U) ∈ B.

The proofs of (c) and (d) are clear from Lemma 2.5 and (a), (b).

Theorem 3.8. The following results are valid.
1) If A is a ϕ1,2-L. set, then it is a ϕ1,2O(X)-L. set.
2) Let B ⊂ P (X). Then:

a) If X ∈ B ⊂ ϕ1,2O(X), then each ϕ1,2O(X)-L. set is a B-L. set.
b) If B is a base of ϕ1,2O(X) then a set is a B-L. set iff it is a ϕ1,2O(X)-L.

set.
3) Let B = {ϕ2(U) : U ∈ ϕ1O(X)}. Then:

a) If ϕ1O(X) ⊂ ϕ2O(X) then each B-L. set is a ϕ1,2-L. set.
b) If ϕ1O(X) ⊂ ϕ2O(X) and B ⊂ ϕ1,2O(X) then a set is a ϕ1,2-L. set iff it is

a ϕ1,2O(X)-L. set iff it is a B-L. set.
c) If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if B ⊂ ϕ1,2O(X), then a set is a B-L. set iff it is

a ϕ1,2O(X)-L. set iff it is a ϕ1,2-L. set.
d) If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊂ ϕ2(U) for each

U ∈ ϕ1O(X), then a set is a B-L. set iff it is a ϕ1,2O(X)-L. set iff it is a ϕ1,2-L.
set.

Theorem 3.9. If ϕ2(U) = ϕ3(U) for each U ∈ ϕ1O(X), then for a subset A,
we have:

a) A is a ϕ1,2-L. set iff it is a ϕ1,3-L. set.
b) A is a ϕ1,2O(X)-L. set iff it is a ϕ1,3O(X)-L. set.

Example 3.10. a) Let ϕ1 = cl ◦ int, ϕ2 = scl. Then:
ϕ1O(X) = SO(X) and ϕ1,2O(X) = SθO(X). For U ∈ ϕ1O(X) = SO(X)

we have ϕ2(U) = scl U ∈ SR(X) ⊂ SO(X). Also, ϕ2(ϕ2(U)) = scl(scl U) =
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scl U = ϕ2(U) and ϕ2 ≥ ı. Thus, B = {scl U : U ∈ ϕ1O(X)} = SR(X), whence
B = SR(X) is a base for the supratopology ϕ1,2O(X) = SθO(X).

So, a set is a SR-L. set iff it is a (SO(X)-scl)-L. set iff it is a SθO(X)-L. set.
b) Let ϕ1 = int, ϕ2 = int ◦ cl, ϕ3 = scl. Then:
ϕ1O(X) = τ , ϕ1,2O(X) = ϕ1,3O(X) = τs, ϕ2 ≥ ϕ1 and ϕ3 ≥ ϕ1. For each

U ∈ ϕ1O(X) = τ we have ϕ2(U) = U
o

= U ∪U
o

= scl U [3], and ϕ3(U) = ϕ2(U) ∈
ϕ1O(X) = τ , ϕ2(ϕ2(U)) = (U

o
)
o

= U
o

= ϕ2(U). Then, B = {ϕ2(U) : U ∈
ϕ1O(X)} = RO(X) and RO(X) is a base for τs.

So, a set is a RO(X)-L. set iff it is a (τ -int ◦ cl)-L. set iff it is a τs-L. set iff a
(τ -scl)-L. set.

Remark 3.11. a) For ϕ2 = ı, the ϕ1,2-L. property relative to X coincides
with the ϕ1O(X)-L. property relative to X.

b) If ϕ1 is monotonous and ϕ2 = ı, then for A ⊂ X we have:
The set A is a ϕ1,2-L. set iff A is a ϕ1O(X)-L. set iff A is a ϕ1,2O(X)-L. set.
Proof. a) Clear.
b) If ϕ1 is monotonous then ϕ1O(X) is a supratopology and for ϕ2 = ı we

have ϕ1O(X) = ϕ1,2O(X), from which the result follows easily.

Theorem 3.12. Take X ∈ A ⊂ P (X), A ⊂ X and let K = {X \ U : U ∈ A}.
Then the following are equivalent:

a) A is an A-L. set.
b) If W is any subfamily of K such that for each countable subfamily W ′ of W

we have A ∩ (
⋂W ′) �= ∅, then A ∩ (

⋂W) �= ∅.
c) If W is any subfamily of K with A∩(

⋂W) = ∅ then there exists a countable
subfamily W ′ of W such that A ∩ (

⋂W ′) = ∅.
Theorem 3.13. If ∅, X ∈ A ⊂ P (X), then X is an A-L. space iff for each

U ∈ A, X \ U is a A-L. set.
If we take A = ϕ1,2O(X) in Theorem 3.12 and Theorem 3.13, then K =

ϕ1,2C(X) and we obtain equivalent conditions for a set to be a ϕ1,2O(X)-L. set,
and equivalent conditions for the space X to be a ϕ1,2O(X)-L. space.

Theorem 3.14. If ϕ̃2 is the dual of ϕ2 then the following are equivalent.
a) A is a ϕ1,2-L. set.
b) For any family Φ of ϕ1-closed sets with A ∩ (

⋂
Φ) = ∅, there exists a

countable subfamily Φ′ of Φ such that A ∩ (
⋂{ϕ̃2(F ) : F ∈ Φ′}) = ∅.

c) If Φ is a family of ϕ1-closed sets such that for each countable subfamily Φ′

of Φ we have A ∩ (
⋂{ϕ̃2(F ) : F ∈ Φ′}) �= ∅, then A ∩ (∩Φ) �= ∅.

Theorem 3.15. Take A ⊂ X and B = {ϕ2(U) : U ∈ ϕ1O(X)}. If ϕ2 ≥ ϕ1 or
ϕ2 ≥ ı, and if ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊂ ϕ2(U) for each U ∈ ϕ1O(X), then
the following are equivalent:
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a) A is a ϕ1,2-L. set.
b) A is a B-L. set.
c) A is a ϕ1,2O(X)-L. set.
d) If W is any subfamily of {X \ ϕ2(U) : U ∈ ϕ1O(X)} such that for each

countable subfamily W ′ of W we have A ∩ (
⋂W ′) �= ∅ then A ∩ (

⋂W) �= ∅.
e) If W is any subfamily of {X \ ϕ2(U) : U ∈ ϕ1O(X)} with A ∩ (

⋂W) = ∅
then there exists a countable subfamily W ′ of W such that A ∩ (

⋂W ′) = ∅.
f) If W is any subfamily of {X\U : U ∈ ϕ1,2O(X)} such that for each countable

subfamily W ′ of W we have A ∩ (
⋂W ′) �= ∅, then A ∩ (∩W) �= ∅.

g) If W is any subfamily of {X \U : U ∈ ϕ1,2O(X)} such that A∩ (
⋂W) = ∅,

then there exists a countable subfamily W ′ of W such that A ∩ (
⋂W ′) = ∅.

If ϕ̃2 is the dual of ϕ2 then the following statements (h) and (i) are equivalent
to each one of the above statements.

h) For any family of Φ of ϕ1-closed sets with A ∩ (
⋂

Φ) = ∅, there exists a
countable subfamily Φ′ of Φ such that A ∩ (

⋂{ϕ̃2(F ) : F ∈ Φ′}) = ∅.
i) If Φ is any family of ϕ1-closed sets such that for each countable subfamily

Φ′ of Φ we have A ∩ (
⋂{ϕ̃2(F ) : F ∈ Φ′}) �= ∅, then A ∩ (

⋂
Φ) �= ∅.

Now, using the equality ϕ1,2C(X) = {X \ U : U ∈ ϕ1,2O(X)} and the Theo-
rems 3.13 and 3.15 we obtain the following theorem.

Theorem 3.16. Under the hypotheses of Theorem 3.15 the following are equiv-
alent.

a) X is a ϕ1,2-L. space.
b) X is a B-L. space.
c) X is a ϕ1,2O(X)-L. space.
d) For each U ∈ ϕ1O(X), X \ ϕ2(U) is a ϕ1,2-L. set.
e) For each U ∈ ϕ1O(X), X \ ϕ2(U) is a ϕ1,2O(X)-L. set.
f) For each U ∈ ϕ1O(X), X \ ϕ2(U) is a B-L. set.
g) Each ϕ1,2-closed set is a ϕ1,2-L. set.
h) Each ϕ1,2-closed set is a ϕ1,2O(X)-L. set.
i) Each ϕ1,2-closed set is a B-L. set.
Other equivalent expressions may be obtained by taking X in place of A in

(d–i) of Theorem 3.15.

Example 3.17. Let ϕ1 = semi- int, ϕ2 = scl. Then:
The conditions of Theorem 3.15 are satisfied and ϕ2 is the dual of ϕ1.
ϕ1O(X) = SO(X), ϕ1C(X) = SC(X), B = {ϕ2(U) : U ∈ ϕ1O(X)} = {scl U :

U ∈ SO(X)} = SR(X).
{X \ ϕ2(U) : U ∈ ϕ1O(X)} = SR(X). ϕ1,2O(X) = SθO(X) and ϕ1,2C(X) =

SθC(X).
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Now we obtain equivalent conditions for a set to be a (SO(X)-scl)-L. set by
using Theorem 3.15, and equivalent conditions for the space (X, τ) to be a (SO(X)-
scl)-L. space (equivalently, SR-Lindelöf) by using Theorem 3.16.

Theorem 3.18. Let (X, τ) be a topological space and A ⊂ X. Then the
following are equivalent.

a) For each SO(X)-cover U of A, there exists a countable subfamily U ′ of U
such that A ⊂ ∪{scl U : U ∈ U ′}.

b) For each SR(X)-cover U of A there exists a countable subfamily U ′ of U
such that A ⊂ ⋃U ′.

c) For each SθO(X)-cover U of A, there exists a countable subfamily U ′ of A
such that A ⊂ ⋃U ′.

d) If W is a subfamily of SR(X) such that for each countable subfamily W ′ of
W, we have A ∩ (

⋂W ′) �= ∅, then A ∩ (
⋂W) �= ∅.

e) If W is any subfamily of SR(X) such that A∩ (
⋂W) = ∅, then there exists

a countable subfamily W ′ of W such that A ∩ (
⋂W ′) = ∅.

f) If W is a subfamily of SθC(X) such that for each countable subfamily W ′

of W we have A ∩ (
⋂W ′) �= ∅, then A ∩ (

⋂W) �= ∅.
g) If W is any subfamily of SθC(X) with A ∩ (

⋂W) = ∅ then there exists a
countable subfamily W ′ of W such that A ∩ (

⋂W ′) = ∅.
h) For any subfamily Φ of semi-closed sets with A ∩ (

⋂
Φ) = ∅ there exists a

countable subfamily Φ′ of Φ such that A ∩ (
⋂{semi- int(F ) : F ∈ Φ′}) = ∅.

i) If Φ is any family of semi-closed sets such that for each countable subfamily
Φ′ of Φ, we have A ∩ (

⋂{semi- int(F ) : F ∈ Φ′}) �= ∅, then A ∩ (
⋂

Φ) �= ∅.
For a topological space (X, τ) to be rs-Lindelöf [7] (equivalently, a (SO(X)-

scl)-L. space), we can add the following equivalent statements to those given in
Theorem 3.18, by taking X instead of A there.

j) Each semi-regular set is a SR(X)-L. set.

k) Each semi-regular set is a SθO(X)-L. set.

l) Each semi-regular set is a (SO(X)-scl)-L. set.

m) Each ϕ1,2-closed set is a SR(X)-L. set.

n) Each ϕ1,2-closed set is a SθO(X)-L. set.

o) Each ϕ1,2-closed set is a (SO(X)-scl)-L. set.

Example 3.19. a) Let ϕ1 = cl ◦ int, ϕ2 = cl. Then:

The conditions of Theorem 3.15 are satisfied. ϕ̃2 = int is the dual of ϕ2.
ϕ1O(X) = SO(X) and ϕ1C(X) = SC(X).

B = {ϕ2(U) : U ∈ ϕ1O(X)} = {cl U : U ∈ SO(X)} = RC(X).

ϕ1,2O(X) = θSO(X) and ϕ1,2C(X) = θSC(X) = {X \ U : U ∈ ϕ1,2O(X)}.
{X \ B : B ∈ B} = RO(X).
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A set A is a ϕ1,2-L. set iff it is a (SO(X)-cl)-L. set iff it is a θSO(X)-L. set iff
it is RC(X)-L. set.

Hence we obtain, (X, τ) is a ϕ1,2-L. space iff X is rc-Lindelöf (rc-Lindelöf
spaces were defined by D. Janković and Ch. Konstadilaki, as mentioned in [5]).

Again, we can get equivalent conditions for a set to be a (SO(X)-cl)-L. set in
a topological space (X, τ), and equivalent conditions for a space to be rc-Lindelöf
by using Theorems 3.15 and 3.16.

b) Let ϕ1 = int, ϕ2 = int ◦ cl on (X, τ). Then:
The conditions of Theorem 3.15 are satisfied and ϕ̃2 = cl ◦ int.
ϕ1O(X) = τ , ϕ1C(X) = family of closed sets. ϕ1,2O(X) = τs = family of

δ-open sets, {X \ U : U ∈ ϕ1,2O(X)} = ϕ1,2C(X) = family of τs-closed sets =
family of δ-closed sets.

B = {ϕ2(U) : U ∈ ϕ1O(X)} = {Uo
: U ∈ τ} = RO(X). {X \ B : B ∈ B} =

{X \ ϕ2(U) : U ∈ ϕ1O(X)} = RC(X).
Now, using Theorems 3.15 and 3.16 we can obtain equivalent conditions for

a set to be a (τ -int ◦ cl)-L. set, and equivalent conditions for a space to be a (τ -
int ◦ cl)-L. space. Also, in H(P ) spaces, equivalent conditions for a set to be C1-
closed relative to the space and equivalent conditions for a space to be strongly
H(P )-closed.

Some equalities related to different types of closure can be obtained using
operations. Some of them were given in [24] and some of them are given below. In
a topological space (X, τ) we have:

1) T = θ-clT = τs-cl T , for each T ∈ τ .
2) θ-semi-cl T = scl T = semi-θ-cl T , for each T ∈ τ .

3) T = τs-cl T = τα-cl T , for each T ∈ τα, (τα = {U : U ⊂ X,U ⊂ Uoo}).
4) semi-θ-cl T = scl T , for each T ∈ τα.
Example 3.20. Let ϕ1 = int, ϕ2 = τ -cl, ϕ3 = θ-cl, ϕ4 = τs-cl. Then:
ϕ1O(X) = τ . For each U ∈ τ we have ϕ2(U) = ϕ3(U) = ϕ4(U).
ϕ̃2 = τ -int, for each ϕ1-closed set K, intK = θ-int K = τs-int K.
ϕ1,2O(X) = ϕ1,3O(X) = ϕ1,4O(X) = τθ.
{X \ U : U ∈ ϕ1,2O(X)} = ϕ1,2C(X) = ϕ1,3C(X) = ϕ1,4C(X) = family of

θ-closed sets.
Now, by using Theorems 3.9, 3.12, 3.13, 3.14 and 3.16 we can add some more

equivalent conditions for a set to be a ϕ1,2-L. set (ϕ1,2O(X)-L. set), and for a
space (X, τ) to be a ϕ1,2-L. space (ϕ1,2O(X)-L. space) for some special choices of
the operations ϕ1 and ϕ2.

Lemma 3.21. ([25]) For each U ∈ ϕ1O(X) we have U ⊂ ϕ1,2 int ϕ2(U).

Theorem 3.22. The following are equivalent for any subset A of X.
a) A is a ϕ1,2-L. set.
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b) Each σ-filter-base in A ϕ1,2-accumulates in X to some point in A.
c) Every σ-filter-base in X which meets A ϕ1,2-accumulates in X to some point

of A.
d) For any family of non-empty sets W with A ∩ (

⋂{ϕ1,2 cl F : F ∈ W}) = ∅,
there exists a countable subfamily W ′ of W such that A ∩ (

⋂{F : F ∈ W ′}) = ∅.
e) For any family W of non-empty sets such that for each countable subfamily

W ′ of W we have A ∩ (
⋂{F : F ∈ W ′}) �= ∅, it holds that A ∩ (

⋂{ϕ1,2 cl F : F ∈
W}) �= ∅.

f) If F is a σ-filter-base such that A ∩ (
⋂{ϕ1,2 cl F : F ∈ F}) = ∅, then there

exists an F ∈ F such that F ∩ A = ∅.
Proof. (a ⇒ b). Let A be a ϕ1,2-L. set. Let us accept that some σ-filter-base

Fb in A does not accumulate to any point in A.
Then, for each a ∈ A there exists a Ua ∈ ϕ1O(X, a) and an Fa ∈ Fb such that

Fa ∩ ϕ2(Ua) = ∅. Since A is a ϕ1,2-L. set there is a countable subset C of A such
that A ⊂ ⋃

a∈C ϕ2(Ua). Hence (
⋂

a∈C Fa)∩ (
⋃

a∈C ϕ2(Ua)) = ∅. Hence there exists
an F ∈ Fb such that F ⊂ ⋂

a∈C Fa. Thus F ∩A = ∅. This contradiction completes
the proof.

(b ⇒ c). If Fb is a σ-filter-base in X which meets A, then F ′
b = {A∩F : F ∈ Fb}

is a σ-filter-base in A and hence in X.
The σ-filter F ′ generated by F ′

b contains A and Fb ⊂ F ′. From (a), F ′
b ϕ1,2-

accumulates to some point a in A. So Fb ϕ1,2-accumulates to a.
(c ⇒ d). Let {Fi : i ∈ I} be a family of non-empty sets with (∩{ϕ1,2 cl Fi :

i ∈ I}) ∩ A = ∅. Let us accept that for each countable subset J of I we have
(
⋂

j∈J Fj)∩A �= ∅. Then Fb = {⋂j∈J Fj : J ⊂ I, J countable } is a σ-filter-base in
X which meets A. Hence there exists a point a in A such that Fb ϕ1,2-accumulates
to a.

For each U ∈ ϕ1O(X, a) and for each F ∈ Fb, F ∩ ϕ2(U) �= ∅. So for each
U ∈ ϕ1O(X, a) and for each i ∈ I, Fi∩ϕ2(U) �= ∅. This gives a ∈ (

⋂
i∈I ϕ1,2 cl Fi)∩

A �= ∅. This contradiction completes the proof.
(d ⇒ a). Let A ⊂ ∪U where U ⊂ ϕ1O(X). Then (

⋂{X \U : U ∈ U})∩A = ∅.
Let K = {X \ϕ2(U) : U ∈ U}. If there exists a U ∈ U such that X \ϕ2(U) = ∅,

then A ⊂ ϕ2(U) = X. On the other hand, if for each U ∈ U , X \ ϕ2(U) �= ∅ let us
show that (

⋂{ϕ1,2 cl(X \ ϕ2(U)) : U ∈ U}) ∩ A = ∅.
Firstly, let us see that for each U ∈ U we have ϕ1,2 cl(X \ ϕ2(U)) ⊂ X \ U .

Let U ∈ U and x ∈ ϕ1,2 cl(X \ϕ2(U). From Lemma 3.20, U ⊂ ϕ1,2 int ϕ2(U). Now
x ∈ ϕ1,2 cl(X \ ϕ2(U)) = (X \ ϕ1,2 int ϕ2(U)) ⊂ X \ U . Hence

(
⋂

{ϕ1,2 cl(X \ ϕ2(U) : U ∈ U}) ∩ A ⊂ (
⋂

{X \ U : U ∈ U}) ∩ A = ∅.

From (d) there exists a countable subfamily U ′ of U such that (
⋂{X \ϕ2(U) : U ∈

U ′}) ∩ A = ∅. Hence A ⊂ ∪{ϕ2(U) : U ∈ U ′}, so A is a ϕ1,2-L. set.
d ⇔ e, d ⇒ f and f ⇒ c are clear.



Unification of some concepts similar to the Lindelöf property 75

Theorem 3.23. If (X, τ) is ϕ1,2-T2, ϕ1O(X) is closed under countable inter-
sections and ϕ2 is monotonous then each ϕ1,2-L. set is ϕ1,2-closed.

Proof. Let x ∈ ϕ1,2 cl A. Then there exists a σ-filter F such that A ∈ F and
F ϕ1,2-converges to x. Since F meets A and A is a ϕ1,2-L. set there exists a point
a in A such that F ϕ1,2-accumulates to a.

From Theorem 2.3 we must have a = x, so x ∈ A since we have ϕ1,2 cl A ⊂ A,
and A is a ϕ1,2-closed set.

Example 3.24. Let ϕ1 = int and ϕ2 ∈ O(X, τ) be a monotonous operation.
Then:

ϕ1O(X) = τ . ϕ1O(X) is closed under countable intersections iff (X, τ) is a P
space.

So, using σ-filters in P spaces we can obtain equivalent characterizations for a
ϕ1,2-L. set.

If (X, τ) is an H(P )-space, then by choosing ϕ1 = int and ϕ2 = cl, we get
equivalent conditions for a space to be H(P )-closed.

Proceeding in this way we can obtain many known results, some of which occur
in [4,7,20,22], and also many new results.
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[16] J. K. Kohli, Change of topology, characterizations and product theorems for semi-locally P-
spaces, Houston J. Math. 17, 3 (1991), 335–349.

[17] I. Kökdemir, Unification of weak continuities and strong continuities, M. Sc. Thesis, Hacettepe
Univ., January 2000.

[18] M. N. Mukherjee, G. Sengupta, On π-closedness: A unified theory, Anal. Sti. Univ. “Al. I.
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