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NEW APPROACH TO SHOCKS GENERATION FOR CONSERVATION
LAWS. EXAMPLE: GLOBAL SOLUTION TO HOPF EQUATION

V. G. Danilov and D. Mitrović

Abstract. We present a new method for constructing global solution to Hopf equation.
Propagation and formation of nonlinear waves are described.

1. Introduction

In general, the use of asymptotic method for solving a differential equation
means the construction of function which depends on some small parameter, say
ε, and satisfy a differential equation up to OS(εα) when ε → 0 and α > 0. Here,
OS(εα) means that expression OS(εα)

εα stays bounded in S sense when ε → 0, where
S is suitable functional space, usually Ck. In our new approach, S = D′(R). That
means that for a given differential equation we look for a function which satisfies
this equation in D′(R) or in a weak sense. Therefore, the name of this method is
the weak asymptotic method (see [3]).

In what follows, we use our method on the following problem:

Lu = ut + (u2)x = 0, x ∈ R, t > 0, (1)

u
∣∣
t=0

= u0(x), (2)

where u0 is decreasing, Lipschitz continuous and takes values in some compact
interval. Asymptotic solutions for this problem has already been searched by several
authors as J.Witham and A.M.Il’in. These authors were interested exactly in the
scalar conservation law. On the other hand, more general approach (analysis of the
system of conservation laws) was proceeded by J.Glimm (see [1]) and Bressan (see
[8]). (We mentioned only the authors which completed appropriate approaches.)

Witham uses Florin-Hopf-Cole linearization of equation ut + (u2)x = εuxx. In
that manner he obtains its exact solution. Moreover, he analyzes it as ε → 0 for
different periods of time.
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This method cannot be used for more general situation of the scalar conser-
vation law since in general it is not known how to linearize corresponding problem
with vanishing viscosity. Successful attempt to generalize Whitham approach was
made by Il’in. He introduced “the matching method”. In his work he considers
Cauchy problem ut +(f(u))x = εuxx, u(0, x) = ϕ(x) where ϕ is bounded, piecewise
smooth function. For fixed ε one knows that the last problem has bounded infinitely
differentiable solution everywhere for t > 0 with the exception of the discontinuity
points of the initial function. On the contrary, when ε → 0 the solution stops to be
even continuous and the discontinuity line appears. So, the solution of the problem
he searches in the form of two asymptotical series. He chooses the first one to be
the solution of the problem in an arbitrary domain which does not comprise the
discontinuity line while the second series is the solution of the problem near the
discontinuity line. He shows that those two series coincides in the vicinity of the
discontinuity line. The solution obtained in a such way has complicated form.

The drawback of mentioned approaches lies in the fact that they cannot be
applied on the systems of hyperbolic conservation laws. More comprehensive ap-
proach was offered by Glimm (“random choice method”) and Bressan (“front track-
ing method”). (Front tracking method was first proposed by DiPerna for 2 × 2
systems.)

Our idea in this paper is the closest to Glimm’s ideas. He breaks x-axis as
well as t-axis creating a mesh in xt-plane. He assigns recursively, (beginning from
the time t0 = 0) some constant value on each of intervals (xi−1, xi+1) × {ts},
i ∈ Z, s ∈ N, i + s even. In that manner, he obtains a sequence of Riemann
problems for equation (1) on disjoint intervals (x2i−1, x2i+3) (or (x2i, x2i+2)) with
the initial moment t = ts where i ∈ Z2, s ∈ N2 + 1 (or i ∈ Z2, s ∈ N2). He
breaks t-axis in such a way that no two shocks created from mentioned Riemann
problems interact till t = ts+1. In t = ts+1 he reapproximates the solution with
new step function and so he obtains the Cauchy problem as in the beginning (with
the difference that initial moment is not t = 0 but t = ts+1). Finally, he proves
that solution constructed in this way tends to the admissible weak solution of the
original problem. Shortcoming of this approach lies in the fact that it does not give
any explicit formula which would represent the asymptotic solution of problem
(1), (2) but it gives the proof of existence of the Cauchy problem for the initial
data with small variation. Method can be applied on Hopf type equation with an
arbitrary nonlinearity. (Since Bressan approach is quite different from ours we will
not mention it. One can find more information about it in [8].)

We will search the weak asymptotic solution of problem (1), (2) with the
accuracy ε1−µ, ε → 0, 0 < µ < 1. That means that we look for a net of smooth
functions uε(x, t), x ∈ R, t ∈ R+, ε < 1, which satisfies

Luε = OD′(ε1−µ) (3)

uε

∣∣
t=0

− u
∣∣
t=0

= OLloc
1

(ε1−µ), (4)

or, more precisely, we search for uε(x, t), x ∈ R, t ∈ R+, 0 < ε < 1, smooth for
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ε > 0 and such that for every φ ∈ C∞
0 (R1

x) we have in the distributional sense,
∫

Luεφdx = O(ε1−µ)

‖uε

∣∣
t=0

− u
∣∣
t=0

‖Lloc
1 (R) = O(ε1−µ), ε → 0.

First, we approximate given initial condition by a polygon, and then, we solve equa-
tion (3) with this polygon as initial condition. It is well known that, as time goes,
ends of intervals will reach one another (we will call that phenomenon interaction
of points). So, sooner or later one or few shock waves will appear and ends of
intervals which do not take part in shocks formation will continue to interact with
the formed shocks.

In the analysis of this situation we start from the case when we have two
weak discontinuities, and then when we have one weak discontinuity and one shock
wave. We use such an approach to analyze the situation when we have arbitrary
many weak discontinuities. Here, we additionally assume that no three consequent
point will interact simultaneously. We can assume that interactions happens in the
moments t∗1 < t∗2 < · · · < t∗n < · · · . First, we will look for the partial solutions of
equation (3) in the intervals [0, t∗1 +δ1), [t∗1, t

∗
2 +δ2), . . . , and prove that in common

parts of every two intervals partial solutions match. Then, we will connect them
by the partition of unity of the time interval.

2. Some weak asymptotic formulas

We will introduce necessary definitions and formulas. The proofs can be found
in [3] or in [6].

Proposition 2.1. Let ω(z) ∈ S(R1), where S is the Schwartz space. For any
function η(x) ∈ C∞

0 we have

〈1
ε
ω
(x − a

ε

)
, η(x)〉 =

n∑
k=0

Ωk
εk

k!
(−1)k〈δ(k)(x − a), η〉 + O(εn), ε > 0, (5)

where
Ωk =

∫
ω(z)zk dz, k = 1, . . . , n. (6)

Expression (5) we call the weak asymptotic of the function (distribution)
1
εω

(
x−a

ε

)
.

Definition 2.2. We denote by OD′(εα) an element of D′ such that for every
function η(x) ∈ C∞

0 we have

f(x, ε) = OD′(εα) ⇔ 〈f(x, ε), η(x)〉 = O(εα).

Proposition 2.3. Let ω1(z), ω2(z) ∈ S(R). We have

ω1

(x − a1

ε

)
ω2

(x − a2

ε

)
=

1
2
[εδ(x − a1) + εδ(x − a2)]B

(∆a

ε

)
+ OD′(ε2), (7)
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where

B
(∆a

ε

)
=

∫
ω1(z)ω2

(
z − ∆a

ε

)
dz =

∫
ω1

(
z +

∆a

ε

)
ω2(z) dz. (8)

Remark 2.4. Under the assumptions of Proposition 2.1 and the condition
that

∫
ωi(z) dz = 1, the functions ωi((x − ai)/ε) are weak approximations (weak

asymptotic) of the functions εδ(x − ai),

ωi((x − ai)/ε) = εδε,i(x − ai)

Hence we can rewrite (8) as

εδε,1(x − a1)εδε,2(x − a2) =
1
2
[εδ(x − a1) + εδ(x − a2)]B(∆a/ε) + OD′(ε2).

In a similar way, under the assumptions of Proposition 2.3 ωi((x−a1)/ε) = θε,i(x−
ai) are approximations of the Heaviside θ-function. Hence we can rewrite (8) as

θε,1(x− a1)θε,2(x− a2) = θ(x− a1)B1(∆a/ε) + θ(x− a2)B2(∆a/ε) + OD′(ε). (9)

3. Uniform in t ∈ R solution of the Hopf equation
with the “simple” functions as an initial condition

We remind that our task is to connect two states of the solution of Cauchy
problem (1), (2). The first state is the continuous one (i.e. before blow up of the
classical solution), and the other one is discontinuous state. As we have already
said, for accomplishing our task, we will use well known idea of replacing (approxi-
mating) old initial data with a more simple function. In the case of random choice
method or wave front tracking method, the old initial data are replaced by piece-
wise constant functions, or, in other words, the old initial data are locally replaced
by the Heaviside function. In our case, we have to replace the old initial data with
some continuous function (since we want to inspect the passage from continuous to
discontinuous state we have to start from something which is continuous). Natu-
rally, in the beginning we have to consider Hopf equation with the initial function
equal to the function we will locally replace our old initial data with.

3.1. Interaction of weak discontinuities. Generation of shock waves

We will consider the Hopf equation

Lu = ut + (u2)x = 0 (10)

and pose the following initial condition

u
∣∣
t=0

= u0
0 + u0

1(a1 − x)+ − u0
1(a2 − x)+,

where a1 > a2, z+ = zθ(z), u0
i = const > 0.
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We shall seek the weak asymptotic solution in the form of the (regularized)
broken line

uε(x, t) = u0
0 + u1(t, ε)(ϕ1(t, ε) − x)θε,1(−x + ϕ1(t, ε))

− u2(t, ε)(ϕ2(t, ε) − x)θε,2(−x + ϕ2(t, ε)).

The unknown functions ϕi and ui, i = 1, 2, appearing in the last expression belong
to C1(R+) for every fixed ε and they satisfy the following initial conditions:

ϕi(0, ε) = ai, ui(0, ε) = u0
1, i = 1, 2.

Substituting the approximation of uε(x, t) into equation (10) and taking into
account the definitions and calculations given in the previous section we obtain

(
u1(ϕ1 − x)+

)
t
− (

u2(ϕ2 − x)+
)
t
+

(
u2

1(ϕ1 − x)2+
)
x

+
(
u2

2(ϕ2 − x)2+
)
x

+ 2
[
u0u1(ϕ1 − x)+

]
x
− 2

[
u0u2(ϕ2 − x)+

]
x

− 2
[
u1u2(ϕ1 − x)(ϕ2 − x)θ(ϕ1 − x)

]
x
B1(∆ϕ/ε)

− 2
[
u1u2(ϕ1 − x)(ϕ2 − x)θ(ϕ2 − x)

]
x
B2(∆ϕ/ε) = OD′(ε), ∆ϕ= ϕ2 − ϕ1.

Let us consider the domain ϕ2 < x ≤ ϕ1. Notice that in this case θ1 = θ(ϕ1−x) = 1
and θ2 = θ(ϕ2 − x) = 0. Accordingly, we have

u1t(ϕ1 − x) + u1ϕ1t + 2
[
u0u1(ϕ1 − x)

]
x

+
[
u2

1(ϕ1 − x)2
]
x

+ 2u1u2(ϕ1 − x)B1 + 2u1u2(ϕ2 − x)B1 =

u1t(ϕ1−x)+u1ϕ1t−2u0u1+2u2
1(ϕ1−x)+2u1u2(ϕ1−x)B1+2u1u2(ϕ2−x)B1 = 0

Setting x = ϕ1 we obtain,

ϕ1t − 2u0 + 2u2∆ϕB1 = 0. (11)

Substituting this relation into the last equation, we arrive at the following equation
for the function u1:

u1t − 2u2
1 + 4u1u2B1 = 0. (12)

In a similar way, considering the domain −∞ < x ≤ ϕ2, we obtain the other two
equations

ϕ2t − 2u0 + 2u1∆ϕB2(∆ϕ/ε) = 0, (13)

u2t + 2u2
2 − 4u1u2B2(∆ϕ/ε) = 0, ∆ϕ = ϕ2 − ϕ1. (14)

Let ∆ϕ < 0, then, up to O(εN ), we have B1(∆ϕ/ε) = 0, B2(∆ϕ/ε) = 1 and
we obtain the following system of equations describing the evolution of the broken
line until it turns over (or, more formally, until ϕ1 > ϕ2):

(ϕ10)′t − 2u0 = 0, (ϕ20)′t − 2u0 + 2u10(ϕ20 − ϕ10) = 0, (15)

(u10)′t − 2(u10)2 = 0, (u20)′t + 2u2
20 − 4u10u20 = 0,
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Solutions of this system have the form

u10(t) = u20(t) = u0
1/(1 − 2tu0

1),

ϕ10 = a1 + 2u0t, ϕ20 = a2 + 2[u0
1(a1 − a2) + u0]t.

We write ψ0 = ϕ20(t) − ϕ10(t).

At time t = t∗ such that ψ0(t∗) = 0 the weak discontinuities merge and a
shock wave is generated. To construct formulas that are uniform in t and describe
the interaction of weak discontinuities and the generation of a shock wave, we seek
the functions ϕi, i = 1, 2, in the form

ϕk(t, ε) = ϕk0(t) + ψ0φk(τ), τ = ψ0/ε, k = 1, 2.

We also introduce the function ρ = ρ(τ):

ρ(τ) =
ϕ2(t, ε) − ϕ1(t, ε)

ε
.

Substituting this into (11) and (13) and letting ρ → −∞ we see that φk must
satisfy

φk(τ)
∣∣
τ1→−∞ = 0,

dφk

dτ

∣∣
|τ |→∞ = o(τ−1).

We shall seek the functions uk(t, ε), k = 1, 2, in the form

uk(t, ε) = ψ0(0)u0
1/(ψ0 + εgk(τ)), k = 1, 2.

Here we assume that the functions gk(τ) behave in the same way as the functions
φk(τ). From equations (12), (13), (14), (15) we conclude τ +g = τ +g1 = τ +g2 = ρ
as well as

ρ̇ = 1 − 2B1(ρ), ρ/τ
∣∣
τ→−∞ → 1.

The stationary solution of this equation is ρ = ρ0, where ρ0 is such that B1(ρ0) =
1/2. Since 0 < B1 < 1 we see that ρ̇ > 0. Accordingly, ρ is an increasing function
which tends to ρ0.

This allows us to calculate the solution for ∆ψ0 > 0 (i.e., after the interaction).
Notice that in that case τ → ∞.

We introduce the function G(τ) = τ + g(τ). By the previous, Ġ = ρ̇,
G/τ

∣∣
τ→−∞ → +1, and we choose

G = −
∫ ∞

−∞
(1 − 2B1(ρ)) dτ ′ + ρ0.

On the other hand, we can express the functions ui via the function G:

ui =
ψ0(0)u0

1

εG

τ→∞→ ψ0(0)u0
1

ερ0
.
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We calculate the limit (ϕk)+t as τ → ∞ of the velocities of the weak discontinuities

(ϕ2)+t = 2u0 − 2ψ0(0)u0
1

ερ0

1
2
ερ0 = 2u0 + (a1 − a2)u0

1,

(ϕ1)+t = 2u0 − 2ψ0(0)u0
1

ερ0

1
2
ερ0 = 2u0 + (a1 − a2)u0

1,

which coincides with the velocity of the shock wave

U(x, t) := u0
0 + (a1 − a2)u0

1θ(−x + ϕ+(t)),

where ϕ+ = ϕ+
2 = ϕ−

1 .
By using the explicit formula for the solution uε(x, t), we can easily show that

w − lim
ε→0

uε(x, t) = U(x, t), t > t∗.

To this end, we rewrite the above-constructed solution uε(x, t) in the form

uε(x, t) = u0 + u1(ϕ1 − ϕ2)θε,1(ϕ1 − x) + u1(x − ϕ2)
[
θε,2(ϕ2 − x) − θε,1(ϕ1 − x)

]
.

Consider the second term. We have

u1(ϕ1 − ϕ2) =
ψ0(0)u0

1ρ

G
= ψ0(0)u0

1 = (a1 − a2)u0
1

def= U0.

Since ϕ1

∣∣
t>t∗ 	 ϕ+, the first two terms pass into the shock wave U(x, t) for t > t∗.

Consider the last term

u1(x− ϕ2)
[
θε,2(ϕ2 − x)− θε,1(ϕ1 − x)

]
= u1(x− ϕ2)

[
θε,2(ϕ2 − x) − θε,1(ϕ1 − x)

ϕ1 − ϕ2

]

As was already shown, the coefficient of the expression in braces is a constant. The
expression in square brackets is an approximation of the δ-function at the point ϕ2.
Hence the entire expression in braces is small (in a weak sense) as ε → 0.

3.2. Interaction of a weak discontinuity and a shock wave

In this case mechanism of evolution is as follows: segments of the broken line
interact with the step that has already been formed.

In order to study this we consider the Hopf equation again. The initial condi-
tion corresponding to this type of interaction has the form

u
∣∣
t=0

= u0
0θ(a

0
1 − x) + u0

1(a1 − x)θ(a1 − x) − u0
1(a2 − x)θ(a2 − x), (16)

where u0
0, u0

1 are positive constants and a1 > a2. Just as before, we construct the
weak asymptotic solution in the form

uε(x, t) = u0(t, ε)θε,1(ϕ1(t, ε) − x) + u1(t, ε)(ϕ1(t, ε) − x)θε,1(ϕ1(t, ε) − x)

− u1(t, ε)(ϕ2(t, ε) − x)θε,2(ϕ2(t, ε) − x), (17)
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where ui = ui(t, ε), ϕi = ϕi(t, ε) are unknown C1(R+) functions for every fixed ε
which satisfy the following initial conditions:

ui(0, ε) = u0
i , ϕi(0, ε) = ai, i = 1, 2.

Denote ∆ϕ = ϕ2 − ϕ1. Substituting expression for uε(x, t) into the Hopf equation
and repeating the procedure from the previous subsection we obtain the following
system of equations determining the unknown functions from (17)

ϕ1t − u0 + 2u1(ϕ2 − ϕ1)B1(∆ϕ/ε) = 0, (18)

u0t − u0u1(1 − 2B1(∆ϕ/ε)) = 0, (19)

u1t − 2u2
1 + 4u2

1B1(∆ϕ/ε) = 0, (20)

ϕ2t − 2u0B2 + 2u1ψB2(∆ϕ/ε) = 0. (21)

Before the interaction, we have ϕ2 < ϕ1, ∆ϕ/ε ∼ −∞, and B1 = 0, B2 = 1
with arbitrary accuracy in ε. Denoting by ϕ10, u10, ϕ20, u00 the solution of system
(18)–(21) with B1 = 0, B2 = 1 (i.e. before the interaction), we obtain the following
system of equations for these functions:

ϕ10t = u00,

u10t = 2u2
10,

u00t = u00u10,

ϕ20t = 2(u00 − u10ψ0), ψ0 = ϕ20 − ϕ10.

The solutions of this system are:

u10 =
u0

1

1 − 2u0
1t

, u00 =
u0

0

(1 − 2u0
1t)1/2

,

ϕ20 = a2 + 2Ut, ϕ10 = a1 +
∫ t

0

u00 dt, (22)

ψ0 =
1
u0

1

[
(ψ0

0u0
1 − u0

0)(1 − 2u1
0t) − u0

0

√
1 − 2u1

0t
]
, (23)

U = u0
0 + u0

1(a1 − a2).

One can easily see that the function ψ0(t) vanishes at the two points t1 = 1/2u1
0

and t∗ such that √
1 − 2u1

0t
∗ =

u0
0

U
.

Obviously, t∗ < t1 and x = ϕ10 and x = ϕ20 merge at t = t∗. In this case we have

u00(t∗) = u∗
00 ≡ U, u10(t∗) =

U2

(u0
0)2

u0
1 < ∞.

Thus, in this example the mechanism of formation of a new shock wave consists not
in turning over the inclined segment of the broken line, as in the preceding example,
but in the disappearance of this inclined segment due to increasing vertical segment.
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Subtracting equation (20) from equation (18), we obtain the following equation
for the function ψ:

ψt = (u0 − 2ψu1)(1 − 2B1(∆ϕ/ε))
or, denoting ρ = ∆ϕ/ε = (ψ0 + ψ0ψ1(τ))/ε, τ = ψ0/ε,

ψ′
0ρ̇ = [u0 − 2ψu1](1 − 2B1(ρ)),

ρ

τ

∣∣∣∣
τ→−∞

→ 1.

Note that we can use the formula for ψ0 (and for the functions u00 and u10) only
for t ∈ [0, t∗ + δ], where δ > 0 is any number such that δ < t1 − t∗.

To obtain formulas that are global in t, we need to choose a number δ and
continue the functions u00, u10, and ψ0 smoothly to the time t ≥ t∗ + δ so that the
function uε remains the (weak asymptotic) solution of Cauchy problem (10), (16).
Since u0 − 2ψu1 = 2u0

1√
1−2u0

1t
+ u0

0 + (a1 − a2)u0
1 > 0, for t < t∗ we see that ρ̇ > 0 in

that interval. Like in Section 3.1 we conclude that there exists a solution ρ → ρ0

while τ → +∞, where ρ0 is a root of the equation B1(ρ) = 1/2. This implies that
ρ̇ → 0, τ → +∞ which means that when t > t∗ we have ϕ1(t) = ϕ2(t). From (20)
it is easy to compute ϕi(t), i = 1, 2 for t > t∗. We have, ϕi(t) = U , i = 1, 2, and
from initial conditions for ϕi, i = 1, 2, one sees that for t > t∗

ϕ1(t, ε) = ϕ10(t∗) + Ut + O(ε), ϕ2 = ϕ20(t∗) + Ut + O(ε). (24)
Let us consider the system of equations for the functions u0 and u1. From (19) and
(20) we see that

u1(t, ε) =
u0

1

1 − 2u0
1

∫ t

0
[1 − 2B1(ρ(τ))] dt′

.

Since
∫ t∗

0
(1 − 2B1) dt′ ≤ t∗, we have u1(t∗, ε) ≤ u10(t∗). On the other hand, we

have t > t∗ for ρ → ρ0. Therefore, ψ1(τ) → −1 as τ → ∞ and hence (∆ϕ) → 0 as
τ → ∞ (i.e., for t > t∗ and ε → 0). This implies that for t > t∗ we have

u1(t, ε) = u10(t∗) + o(1), ε → 0.

We represent the above-constructed solution in the form
uε(x, t) = u0θε,1(ϕ1 − x) + u1(ϕ1 − x)θε,1(ϕ1 − x) − u1(ϕ2 − x)θε,2(ϕ2 − x)

=Uθε,1(ϕ1 − x) + (u0 − U)θε,1(ϕ1 − x) + u1(ϕ1 − ϕ2)θε,1(ϕ1 − x)

+ [θε,1(ϕ1 − x) − θε,2(ϕ2 − x)](ϕ2 − x)u1.

Since when t > t∗ we have U − u0 → 0 and ϕ2 − ϕ1 → 0 the second and the third
term in the previous expression tends to zero while the fourth term tends to zero
because

[θε,1(ϕ1 − x) − θε,2(ϕ2 − x)](ϕ2 − x)u1

=
θε,1(ϕ1 − x) − θε,2(ϕ2 − x)

ϕ2 − ϕ1
(ϕ2−x)(ϕ2−ϕ1)u1 → δ(ϕ−x)(ϕ2−x)(U−u0) = 0

Since for t > t∗, ε → 0, from (24) we have ϕ1 = a1 + Ut, the first term, and
therefore constructed function uε(x, t) when t > t∗, approximates the shock wave

u = Uθ(a1 + Ut − x).
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4. Standard examples of Cauchy problems for Hopf equation

In the next four sections we will inspect only the development of the initial
condition before the second interaction. After the first interaction we will have
the analogous problem as in the start of our considerations or the problem will be
deduced to some of situations we have already analyzed (more precisely, equation
is the same while initial condition is analogous to one of those we have already
considered). Using same methods as before one can prove that the functions which
describe the solution of appropriate problem from the k-th till the k + 2-nd inter-
action and from the k +1-st till the k +3-rd interaction match in the common part
of the intervals (t∗k, t∗k+1 + δk), δk < t∗k+2 − t∗k+1, k ∈ N, where, as usual, t∗k is the
time of k-th interaction. Therefore, we will be able to write the uniform solution
using partition of unity of the time axis.

In what follows, functions φ which we were using for “smoothing” functions
describing moving of points ai will depend not only on the “fast” variable τ but on
the variable t, too. Therefore, we will need the following lemma:

Lemma 4.1. Suppose that for the functions ϕ(t, τ) and F (t, τ) where τ = ψ0(t)
ε ,

ψ0 a smooth increasing function which has unique zero in t = t∗, we have

(ϕ(t, τ))t = F (t, τ), (25)

as well as F (·, τ) − F (·,−∞) ∈ S(R) and F (·, τ) − F (·,∞) ∈ S(R). Then there
exist functions φ(t, τ), t ∈ R+, τ ∈ R such that

ϕ(t, τ) = ϕ−(t) + ψ0(t)φ(t, τ) + O(ε), (26)

where ϕ−(t) = ϕ(t,−∞), t ∈ R+. Furthermore, we have

φ =
1

ψ′
0τ

∫ τ

0

(
F (t, τ) − ϕ−(t) − ψ0(t)φ+

t (t)ω(τ)
)
dτ ′, (27)

where φ+ is given by

ψ0(t)φ+(t) =
∫ t

t∗

(
F (t,+∞) − ϕ−

t (t)
)
dt′

while ω is such that lim
z→∞w(z) = 1, limz→−∞ w(z) = 0, and dω

dz ∈ S(R).

Proof. Substituting (26) in (25) we obtain

ϕ−
t + ψ0t(τφ)τ + ψ0

∂φ

∂t
= F.

So, for proving that (27) is the function satisfying the lemma, we have to prove
that

ϕ−
t +

(
F − ϕ−

t − ψ0ωφ+
t

)
+ ψ0

∂φ

∂t
= F + O(ε),

i.e. that,

ε
∂

∂t

(
τφ − τωφ+

)
= O(ε).
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Substituting (27) in the above equation we have

ε
∂

∂t

(
1
ψ′

0

∫ τ

0

(
F (t, τ̃) − ϕ−

t (t) − ψ0(t)φ+
t (t)ω(τ̃) − ψ′

0(t)φ
+(t)ω(τ̃)

)
dτ̃

)
= O(ε).

Using the fact that ϕ− solves the equation ϕt = F− = F ( : · : ,−∞) and that
ϕ−

t + ψ0φ
+
t + ψ′

0φ
+ = (ϕ−ψ0φ

+)t = F+ = F ( : · : ,∞) we have,

ε
∂

∂t

(
1
ψ′

0

∫ τ

−∞

(
F (t, τ̃) − F+(t)ω(τ̃) − F−(t)(1 − ω(τ̃))

)
dτ̃

)
= O(ε). (28)

Since we have F (·, τ) − F (·,−∞) ∈ S(R) and F (·, τ) − F (·,∞) ∈ S(R), for every
t ∈ R+, we also have ∂

∂t (F (·, τ) − F (·,−∞)) ∈ S(R) and ∂
∂t (F (·, τ) − F (·,∞))

∈ S(R). Furthermore, since in (28) we have partial derivative in t (derivative does
not affect τ), we conclude that the last integral is bounded and, consequently, that
equality given by (28) is correct.

In what follows we will need the following functions:

τ ij =
ϕj0(t) − ϕi0(t)

ε
,

ρij =
∆ijϕ(t)

ε
=

ϕj(t) − ϕi(t)
ε

,

Bij
k = Bk(ρij), t ∈ R+.

4.1. Confluence of weak discontinuities and the shock wave, four
point case; the first possibility

In this section we will search asymptotic solution of equation (10) with the
initial condition which has three weak discontinuities and one shock wave. We will
analyze the transformation of the initial condition till the second interaction. The
initial condition is:

u(x, 0) = h + u0
1(a1 − x) − u0

1(a2 − x)+ + u0
0θ(a2 − x)

+ u0
2(a2 − x)+ − u0

2(a3 − x)+ + u0
3(a3 − x)+ − u0

3(a4 − x)+, (29)

where a1 > a2 > a3 > a4 as well as v0
0 , v0

1 , v0
2 , h > 0, u0

0 > 0, u0
1 > 0, u0

2 > 0
and u0

3 are constants in R such that (a1 − a2)u0
1 = v0

0 , (a2 − a3)u0
2 = v0

1 and
(a3 − a4)u0

3 = v0
2 . The weak asymptotic solution of problem (10), (29) we have in

the form:

uε(x, t) = h + u1(ϕ1 − x)θε(ϕ1 − x) − u1(ϕ2 − x)θε(ϕ2 − x)

+ u0θε(ϕ2 − x) + u2(ϕ2 − x)θε(ϕ2 − x) − u2(ϕ3 − x)θε(ϕ3 − x)

+ u3(ϕ3 − x)θε(ϕ3 − x) − u3(ϕ4 − x)θε(ϕ4 − x), (30)

where ϕi(0) = ai, i = 1, 2, 3, 4, and ui(0) = u0
i , i = 0, 1, 2, 3. Like in the previous

section we will just write down the equations for the unknown functions ϕi and
ui−1, i = 1, 2, 3, 4, in the interval [0, t∗1 + δ). Here, we will assume that the first
interaction will happen between the points a2 and a3.
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Accordingly, system of equations determining unknown functions in (30) in the
interval [0, t∗1), δ < t∗2 − t∗1, where t∗2 is time of the second interaction, is:

ϕ1t = 2h

ϕ2t = u0 + 2h + 2v0
0 − 2u2∆23ϕB23

1 + 2u3∆23ϕB23
1 = 0

ϕ3t = 2h + 2v0
0 + 2u1∆23ϕ + 2u0B

23
2 − 2u1∆23ϕB23

2 − 2u2∆23ϕB23
2 = 0

ϕ4t = 2h + 2v0
0 + 2v0

1 + v0
2 + 2u0 (31)

u0t − u0(u2 + u1) + 2u0u2B
23
1 − 2u0u3B

23
1 = 0

u1t − u2
1 = 0

u2t − 2u2
2 − 4u1u2B

23
1 + 4u1u3B

23
1 − 4u2u3B

23
1 − 4u2

2B
23
1 = 0

u3t − 2u2
3 = 0.

The solutions of the system are:

ϕ1(t) = 2ht + a1, ϕ4(t) = 2(h + v0
0 + v0

1 + v0
2)t + 2

∫ t

0

u0(t′)dt′ + a4

u1(t) =
u0

1

1 − 2u0
1t

, u3(t) =
u0

3

1 − 2u0
3t

u0(t) = exp
(∫ t

0

(
u2 + u1 − 2u2B

23
1 + 2u3B

23
1

)
dt′ + u0

0

)
,

ϕ2(t) = ϕ20(t) + ψ23
0 (t)φ2(t, τ23) (32)

ϕ3(t) = ϕ30(t) + ψ23
0 (t)φ3(t, τ23)

u2(t) = u20(t) + ψ23
0 (t)κ(t, τ),

where ψ23
0 = ϕ30 − ϕ20, τ23 = ψ23

0
ε and

ϕ20(t) = (2h + 2v0
0)t +

∫ t

0

2u0(t)dt + a2,

ϕ30(t) = 2(h + v0
0 + v0

1)t +
∫ t

0

2u0(t)dt + a3,

u20(t) =
u0

2

1 − 2u0
2t

,

ρ̇23ψ23
0t = (u0 − 2u2∆23)(1 − 2B23

1 ) + 2u1∆23ϕB23
1 − 2u3∆23ϕB23

1 .

Functions ρ23(τ23), φ2(t, τ23), φ3(t, τ23) and κ(t, τ) are such that

ρ23(τ23)
τ23

∣∣
τ23→−∞ = 1,

Bi(ρ23(t, τ23)
∣∣
τ23→+∞) = 1/2, i = 1, 2,

φi(t, τ23)
∣∣
τ23→−∞ = 0,
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dφi(t, τ23

dτ23

∣∣
τ23→−∞ = o((τ23)−1), i = 2, 3,

κ(t, τ23)
∣∣
τ23→−∞ = 0,

dκ(t, τ23)
τ23

= o((τ23)−1).

Expressions for functions φ2(t, τ23), φ3(t, τ23) and κ(t, τ) we obtain from system
(31) and Lemma 4.1.

Remark 4.2. While we obtain expressions for φ2(t, τ23) and φ3(t, τ23) explic-
itly from Lemma 4.1, for κ(t, τ) we have u2t = F (t, τ, u2) wherefrom we obtain the
relation

a(t, τ)κ2 + b(t, τ)κ + c(t, τ) = 0,

for appropriate C1(R+ × R) functions a, b and c. From here, using boundary
condition for the function κ we find the unknown function κ.

4.2. Confluence of weak discontinuities and the shock wave, four
point case; the second possibility

The disposure of discontinuities in the initial data is here different than in the
previous section. Here, we want to explore interaction of weak discontinuity and
the shock wave in the case when the shock wave is above the weak discontinuity.
We will analyze the evolution of the initial condition till the second interaction.
The initial condition is:

u(x, 0) = h + u0
1(a1 − x) − u0

1(a2 − x)+ + u0
2(a2 − x)+

+ u0
0(a3 − x)+ − u0

2(a3 − x)+ + u0
3(a3 − x)+ − u0

3(a4 − x)+, (33)

where a1 > a2 > a3 > a4 are constants in R, u0
0, u0

1, u0
2 and u0

3 are positive
constants such that (a1 − a2)u0

1 = v0
0 , (a2 − a3)u0

2 = v0
1 and (a3 − a4)u0

3 = v0
2 . The

weak asymptotic solution of problem (10), (33) we will search in the form:

uε(x, t) = h+u1(ϕ1−x)θε(ϕ1−x)−u1(ϕ2−x)θε(ϕ2−x)+u2(ϕ2−x)θε(ϕ2−x)

− u2(ϕ3 − x)θε(ϕ3 − x) + u0θε(ϕ3 − x) + u3(ϕ3 − x)θε(ϕ3 − x)

− u3(ϕ4 − x)θε(ϕ4 − x), (34)

where ϕi(0) = ai, i = 1, 2, 3, 4, and ui(0) = u0
i , i = 0, 1, 2, 3. Here, we will assume

that the first interaction will happen between the points a2 and a3.
Accordingly, system of equations determining unknown functions in (34) in the

interval [0, t∗1 + δ), δ < t∗2 − t∗1, where t∗2 is time of the second interaction, is:

ϕ1t = 2h

ϕ2t = 2h + 2v0
0 + 2u0B

23
1 − 2u2∆23ϕB23

1 + 2u3∆23ϕB23
1

ϕ3t = 2h + u0 + 2v0
0 − 2u1∆23ϕ + 2u1∆23ϕB23

2 − 2u2∆23ϕB23
2 = 0

ϕ4t = 2h + 2v0
0 + 2v0

1 + v0
2 + 2u0
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u0t − u0(u2 + u1) + 2u0u2B
23
1 − 2u0u3B

23
1 = 0

u1t − u2
1 = 0

u2t − 2u2
2 − 4u1u2B

23
1 + 4u1u3B

23
1 − 4u2u3B

23
1 = 4u2

2B
23
1 = 0

u3t − 2u2
3 = 0.

The solutions of the system are:

ϕ1(t) = 2ht + a1, ϕ4(t) = 2(h + v0
1 + v0

2 + v0
3)t + 2

∫ t

0

u0(t′)dt′ + a4

u1(t) =
u0

1

1 − 2u0
1t

, u3(t) =
u0

3

1 − 2u0
3t

ϕ2(t) = ϕ20(t) + ψ23
0 (t)φ2(t, τ23) (35)

u0(t) = exp
(∫ t

0

(
u2 + u1 − 2u2B

23
1 + 2u3B

23
1

)
dt′ + u0

0

)
,

ϕ3(t) = ϕ30(t) + ψ23
0 (t)φ3(t, τ23)

u2(t) = u20(t) + ψ23
0 (t)κ(t, τ),

where ψ23
0 = ϕ30 − ϕ20, τ23 = ψ23

0
ε and

ϕ20(t) = 2(h + v0
0)t +

∫ t

0

2u0(t)dt + a2

ϕ20(t) = 2(h + v0
1 + v0

0)t +
∫ t

0

2u0(t)dt + a3

u20(t) =
u0

2

1 − 2u0
2t

,

ρ̇23ψ23
0t = (u0 − 2u2∆23)(1 − 2B23

1 ) − 2u1∆23ϕB23
1 − 2u3∆23ϕB23

1 .

Functions ρ23(τ23), φ2(t, τ23), φ3(t, τ23) and κ(t, τ23) have the same properties as
in the previous section and we obtain them in the completely same manner.

4.3. Confluence of weak discontinuities, four point case
In this section we will search asymptotic solution of equation (10) with the

initial condition which has four weak discontinuities. We will analyze the trans-
formation of the initial condition till the second interaction. The initial condition
is:

u(x, 0) = h + u0
1(a1 − x) − u0

1(a2 − x)+ + u0
2(a2 − x)+

− u0
2(a3 − x)+ + u0

3(a3 − x)+ − u0
3(a4 − x)+, (36)

where a1 > a2 > a3 > a4 are constants in R, u0
1, u0

2 and u0
3 are positive constants

such that (a1 − a2)u0
1 = v0

0 , (a2 − a3)u0
2 = v0

1 and (a3 − a4)u0
3 = v0

2 . The weak
asymptotic solution of problem (10), (36) we will search in the form:

uε(x, t) = h+u1(ϕ1−x)θε(ϕ1−x)−u1(ϕ2−x)θε(ϕ2−x)+u2(ϕ2−x)θε(ϕ2−x)

− u2(ϕ3 − x)θε(ϕ3 − x) + u3(ϕ3 − x)θε(ϕ3 − x) − u3(ϕ4 − x)θε(ϕ4 − x), (37)
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where ϕi(0) = ai, i = 1, 2, 3, 4, and ui(0) = u0
i , i = 1, 2, 3. Like in the previous

section we will just write down the equations for the unknown functions ϕi and ui−1,
i = 1, 2, 3, 4, in the interval [0, t∗1 + δ). We will assume that the first interaction will
happen between the points a2 and a3.

Accordingly, system of equations determining unknown functions in (37) in the
interval [0, t∗1 + δ), δ < t∗2 − t∗1, where t∗2 is time of the second interaction, is:

ϕ1t = 2h

ϕ2t = 2(h + v0
0) − 2u2∆23ϕB23

1 + 2u3∆23ϕB23
1

ϕ3t = 2(h + v0
0) − 2u1∆23ϕ + 2u1∆23ϕB23

2 − 2u2∆23ϕB23
2 = 0

ϕ4t = 2h + 2v0
0 + 2v0

1 + v0
2

u1t − u2
1 = 0

u2t − 2u2
2 − 4u1u2B

23
1 + 4u1u3B

23
1 − 4u2u3B

23
1 = 4u2

2B
23
1 = 0

u3t − 2u2
3 = 0.

The solutions of the system are:

ϕ1(t) = 2ht + a1, ϕ4(t) = 2(h + v0
1 + v0

2 + v0
3)t + 2

∫ t

0

u0(t′) dt′ + a4

u1(t) =
u0

1

1 − 2u0
1t

, u3(t) =
u0

3

1 − 2u0
3t

ϕ2(t) = ϕ20(t) + ψ23
0 (t)φ2(t, τ23) (38)

ϕ3(t) = ϕ30(t) + ψ23
0 (t)φ3(t, τ23)

u2(t) = u20(t) + ψ23
0 (t)κ(t, τ),

where ψ23
0 = ϕ30 − ϕ20, τ23 = ψ23

0
ε and

ϕ20(t) = 2(h + v0
0)t + a2

ϕ20(t) = 2(h + v0
1 + v0

0)t + a3

u20(t) =
u0

2

1 − 2u0
2t

,

ρ̇23 = 1 − 2B23
1

Functions ρ23(τ23), φ2(t, τ23), φ3(t, τ23) and κ(t, τ23) have the same properties as
in the previous section and we obtain them in the completely same manner.

4.4. Confluence of two shock waves connected with the straight line
We will analyze the transformation of the initial condition till the second in-

teraction. The initial condition is:

u(x, 0) = h + u0
1(a1 − x)+ − u0

1(a2 − x)+u0
1(a2 − x)+ + u0

2(a2 − x)+
+ u0

2(a3 − x)+ − u0
2(a3 − x)+ + u0

3(a3 − x)+ − u0
3(a4 − x)+, (39)
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where a1 > a2 > a3 > a4 are constants in R, u0
0, u0

1, u0
2 and u0

3 are positive
constants such that (a1 − a2)u0

1 = v0
0 , (a2 − a3)u0

2 = v0
1 and (a3 − a4)u0

3 = v0
2 . The

weak asymptotic solution of problem (10), (39) we have in the form:

uε(x, t) = h + u1(ϕ1 − x)θε(ϕ1 − x) − u1(ϕ2 − x)θε(ϕ2 − x) + u01θε(ϕ2 − x)

+ u2(ϕ2 − x)θε(ϕ2 − x) + −u2(ϕ3 − x)θε(ϕ3 − x) + u02θε(ϕ3 − x)

+ u3(ϕ3 − x)θε(ϕ3 − x) − u3(ϕ4 − x)θε(ϕ4 − x), (40)

where ϕi(0) = ai, i = 1, 2, 3, 4, and ui(0) = u0
i , i = 0, 1, 2, 3. Like in the previous

section we will just write down the equations for the unknown functions ϕi and
ui−1, i = 1, 2, 3, 4, in (40) in the interval [0, t∗1 + δ). Here, we will assume that the
first interaction will happen between the points a2 and a3.

System of equations determining unknown functions in (40) in the interval
[0, t∗1 + δ), δ < t∗2 − t∗1, where t∗2 is time of the second interaction, is:

ϕ1t = 2h

ϕ2t = 2h + 2v0
0 + u01 + 2u02B

23
1 − 2u2∆23ϕB23

1 + 2u3∆23ϕB23
1

ϕ3t = 2h + u02 − 2u01B
23
2 + 2v0

0 − 2u1∆23ϕB23
1 − 2u2∆23ϕB23

2

ϕ4t = 2h + 2v0
0 + 2v0

1 + v0
2 + 2u01 + 2u02

u01t − u01(u2 + u1) + 2u01u2B
23
1 − 2u01u3B

23
1 = 0

u02t − u02(u3 + u2) + 2u02u1B
23
1 − 2u02u2B

23
1 = 0

u1t − u2
1 = 0

u2t − 2u2
2 − 4u1u2B

23
1 + 4u1u3B

23
1 − 4u2u3B

23
1 = 4u2

2B
23
1 = 0

u3t − 2u2
3 = 0.

The solutions of the system are:

ϕ1(t) = 2ht + a1, ϕ4(t)=2(h + v0
1 + v0

2 + v0
3)t+2

∫ t

0

(u01(t′) + u02(t′))dt′ + a4

u1(t) =
u0

1

1 − 2u0
1t

, u3(t) =
u0

3

1 − 2u0
3t

u0(t) = exp
(∫ t

0

(
u2 + u1 − 2u2B

23
1 + 2u3B

23
1

)
dt′ + u0

0

)
,

ϕ2(t) = ϕ20(t) + ψ23
0 (t)φ2(t, τ23)

ϕ3(t) = ϕ30(t) + ψ23
0 (t)φ3(t, τ23)

u2(t) = u20(t) + ψ23
0 (t)κ(t, τ),

where ψ23
0 = ϕ30 − ϕ20, τ23 = ψ23

0
ε and

ϕ20(t) = 2(h + v0
0)t +

∫ t

0

2u0(t)dt + a2
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ϕ20(t) = 2(h + v0
1 + v0

0)t +
∫ t

0

2u0(t)dt + a3

u20(t) =
u0

2

1 − 2u0
2t

,

ρ̇23ψ23
0t = (u0 − 2u2∆23)(1 − 2B23

1 ) − 2u1∆23ϕB23
1 − 2u3∆23ϕB23

1 .

Functions ρ23(τ23), φ2(t, τ23), φ3(t, τ23) and κ(t, τ) have the same properties and
we obtain them in the same way as before.

5. Interaction of weak discontinuities and generation of shock waves;
n-point case.

In this section we will solve equation (10) with the polygon with n knots as
an initial condition. First, we will write down the solution of the problem in the
interval [0, t∗1 + δ1), where, as usual, t∗i is the time of the i-th interaction and
δi < t∗i+1 − t∗i . Using results from Section 4 we will then recursively write down the
solutions in the intervals [t∗i , t

∗
i+1 + δi+1), i = 1, . . . , n − 2, and [t∗n−1,∞).

In the beginning we will introduce some auxiliary notations.

ul,0(t) =
u0

l

1 − 2u0
l t

, l = 1, 2, . . . , n,

v0
0 = 0, v0

k = (ak−1 − ak)u0
k−1, k = 2, . . . , n + 1,

ϕ1,0(t) = a1, ϕl−1,0(t) = 2
l−1∑
k=1

v0
kt + al, l = 2, . . . , n + 1,

ψl−1,0 = ϕl,0 − ϕl−1,0, τ l−1,l =
ψl,0

ε
, l = 2, . . . , n + 1,

ρ
[i]
l (τ l−1,l) =

ϕ
[i]
l − ϕ

[i]
l−1

ε
, l = 2, . . . , n + 1

Bl−1,l
[i]k = Bk(ρ[i]

l ), k = 1, 2, l = 2, . . . , n + 1, i = 1, . . . , n,

u[i]
s ≡ 0, s ∈ Z0

−, i = 1, . . . , n + 1.

Let the initial condition for Hopf equation be:

u|t=0 = u0
1(a1 − x)+ + (u0

2 − u0
1)(a2 − x)+ + (u0

3 − u0
2)(a3 − x)+ + · · ·

+ (u0
n−1 − u0

n−2)(an−1 − x)+ + (u0
n − u0

n−1)(an − x)+ − u0
n(an+1 − x)+ (41)

We know that after certain time point ai will reach point aj or oppositely. Let us
suppose that the moments of interactions are t∗1 < t∗2 < · · · < t∗n and that in the
moment t = t∗i points al(i−1) and al(i) will interact. By an induction argument, we
can write the uniform formula which describes propagation of initial wave. Like
before, we will analyze behavior of solution in the intervals [0, t∗1 + δ1), [t∗1, t

∗
2 + δ2),

. . . , [t∗n−2,∞) where t∗0 = 0 and δi < t∗i+1 − t∗i , i = 1, . . . , n − 2. The weak
asymptotic solution in the interval [t∗i , t

∗
i+1 + δi) we will denote with u

[i]
ε .
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As earlier, we assume that the approximate solution in the interval [0, t∗1 + δ1)
is in the form

u[1]
ε (x, t) = u

[1]
1 (ϕ[1]

1 − x)θ1,ε(ϕ
[1]
1 − x) − u

[1]
1 (ϕ[1]

2 − x)θ2ε(ϕ
[1]
2 − x)

+ · · ·+u
[1]
l(1)−1(ϕ

[1]
l(1)−1 −x)θl(1)−1,ε(ϕ

[1]
l(1)−1 −x)−u

[1]
l(1)−1(ϕ

[1]
l(1) −x)θl(1),ε(ϕ

[1]
l(1) −x)

+ u
[1]
l(1)(ϕ

[1]
l(1)−1 − x)θl(1),ε(ϕ

[1]
l(1) − x) − · · · + u[1]

n (ϕ[1]
n − x)θn,ε(ϕ[1]

n − x)

− u[1]
n (ϕn+1 − x)θn+1,ε(ϕn+1 − x). (42)

Since in the first step only the interaction of weak discontinuities is possible, by the
analogy with Section 4.3 we have:

ϕ[1]
s (t) = ϕs,0(t) s �= l(1) and s �= l(0), s = 1, . . . , n + 1,

ϕl(0)(t, ε) = ϕl(0),0(t) + ψl(0),0(t)φ
[1]
1 (τ l(0),l(1), t)

ϕl(1)(t, ε) = ϕl(1),0(t) + ψl(0),0(t)φ
[1]
2 (τ l(0),l(1), t)

u[1]
s (t) = us,0(t), s �= l(1) − 1, s = 1, . . . , n,

ul(0)(t, ε) = ul(0),0(t) + κ[1](τ l(0),l(1), t),

where functions φ
[1]
k (τ l(0),l(1), t), k = 1, 2, and κ[1](τ l(0),l(1), t) for every fixed t

satisfy (τ23 is independent variable here),

(
ϕl(0)

)
t
=

l(0)∑
k=0

v0
k + 2u

[1]
0 B

l(0),l(1)
[1]1

(
ϕl(1)

)
t
=

l(0)∑
k=0

v0
k + 2u

[1]
0 B

l(0),l(1)
[1]1 + 2u

[1]
0 B

l(0),l(1)
[1]2 ,

u
[1]
0 = u

[1]
l(0)

(
ϕ

[1]
l(0) − ϕ

[1]
l(1)

)

u
[1]
0t = −2u

[1]
l(0)−1u

[1]
0 B23

[1]1 + 2u
[1]
l(1)u

[1]
0 B23

[1]1.

with the initial conditions κ[1](τ, t) = φ
[1]
j (τ) = O(τ−N ), j = l(0) and j = l(1),

τ → −∞, N ∈ N arbitrary.
Now, we will analyze the Hopf equation in the intervals [t∗i , t

∗
i+1 + δi+1), i =

2, . . . , n−2, and [t∗n−1,+∞). By an induction argument, from previous sections we
conclude that after i-th interaction we have:

ϕ1 = · · · = ϕj(1),

ϕj(1)+1 = · · · = ϕj(2)

. . .

ϕj(s−1)+1 = · · · = ϕj(s),

where j(s) = n + 1. Let us assume that in the moment t = t∗i+1 the points aj(k)

and aj(k+1) interact. Then we have the following possibilities:
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a) ϕj(k)(t) �= ϕm(t) for every m ∈ {1, 2, . . . , n + 1}\{j(k)} and ϕj(k+1)(t) �=
ϕm(t) for every m ∈ {1, 2, . . . , n + 1}\{j(k + 1)} in the interval [t∗i , t

∗
i + δi). In

this case we have the interaction of weak discontinuities (notice that therefore
j(k + 1) = j(k) + 1). The solution will have the form:

1. x ≤ ϕj(k+2) and x ≥ ϕj(k−1). In this case we take u
[i+1]
ε (x, t) = u

[i]
ε (x, t).

2. ϕj(k+2) ≥ x ≥ ϕj(k−1). In this interval the solution looks like:

u[i+1]
ε (x, t) =

j(k−1)∑
p=1

v0
p + u

[i+1]
j(k−1)(ϕ

[i+1]
j(k−1) − x)θε(ϕ

[i+1]
j(k−1) − x)

− u
[i+1]
j(k−1)(ϕ

[i+1]
j(k) − x)θε(ϕ

[i+1]
j(k) − x) + u

[i+1]
j(k) (ϕ[i+1]

j(k) − x)θε(ϕ
[i+1]
j(k) − x)

− u
[i+1]
j(k) (ϕ[i+1]

j(k+1) − x)θε(ϕ
[i+1]
j(k+1) − x) + u

[i+1]
j(k+1)(ϕ

[i+1]
j(k+1) − x)θε(ϕ

[i+1]
j(k+1) − x)

− u
[i+1]
j(k+1)(ϕ

[i+1]
j(k+2) − x)θε(ϕ

[i+1]
j(k+2) − x).

This is the situation as in Section 4.3. The difference is in the fact that here
we do not begin from the moment t = 0 but from t = t∗i . Therefore, for initial
condition here we will have:

ϕ
[i+1]
j(k−1)(t

∗
i ) = ϕ

[i]
j(k−1)(t

∗
i ) ϕ

[i+1]
j(k) (t∗i ) = ϕ

[i]
j(k)(t

∗
i )

ϕ
[i+1]
j(k+1)(t

∗
i ) = ϕ

[i]
j(k+1)(t

∗
i ) ϕ

[i+1]
j(k+2)(t

∗
i ) = ϕ

[i]
j(k+2)(t

∗
i )

u
[i+1]
j(k−1)(t

∗
i ) = u

[i]
j(k−1)(t

∗
i ) u

[i+1]
j(k) (t∗i ) = u

[i]
j(k)(t

∗
i )

u
[i+1]
j(k+1)(t

∗
i ) = u

[i]
j(k+1)(t

∗
i ).

The unknown functions are given by set of formulas (38) with an obvious difference
in indexing.

b) ϕj(k)(t) �= ϕm(t) for every m ∈ {1, 2, . . . , n + 1}\{j(k)} and ϕj(k+1)(t) =
ϕm(t) for some m ∈ {1, 2, . . . , n + 1}\{j(k + 1)} in the interval (t∗i , t

∗
i + δ)i).

In this case we have interaction of weak discontinuity and the shock wave
whose disposure is analogous to the one from Section 4.1. The solution we have in
the form:

1. x ≤ ϕj(k+2) and x ≥ ϕj(k−1). In this case we take u
[i+1]
ε (x, t) = u

[i]
ε (x, t).

2. ϕj(k+2) ≥ x ≥ ϕj(k−1). In this interval the solution looks like:

u[i+1]
ε (x, t) =

j(k−1)−1∑
p=1

v0
p + u

[i+1]
j(k−1)(ϕ

[i+1]
j(k−1) − x)θε(ϕ

[i+1]
j(k−1) − x)

− u
[i+1]
j(k−1)(ϕ

[i+1]
j(k) − x)θε(ϕ

[i+1]
j(k) − x) + u

[i+1]
0,j(k)θε(ϕ

[i+1]
j(k) − x)

+ u
[i+1]
j(k) (ϕ[i+1]

j(k) − x)θε(ϕ
[i+1]
j(k) − x) − u

[i+1]
j(k) (ϕ[i+1]

j(k+1) − x)θε(ϕ
[i+1]
j(k+1) − x)

+ u
[i+1]
j(k+1)(ϕ

[i+1]
j(k+1) − x)θε(ϕ

[i+1]
j(k+1) − x) − u

[i+1]
j(k+1)(ϕ

[i+1]
j(k+2) − x)θε(ϕ

[i+1]
j(k+2) − x).
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The difference from the situation from Section 4.1 is in the fact that for initial
condition here we will have:

ϕ
[i+1]
j(k−1)(t

∗
i ) = ϕ

[i]
j(k−1)(t

∗
i ) ϕ

[i+1]
j(k) (t∗i ) = ϕ

[i]
j(k)(t

∗
i )

ϕ
[i+1]
j(k+1)(t

∗
i ) = ϕ

[i]
j(k+1)(t

∗
i ) ϕ

[i+1]
j(k+2)(t

∗
i ) = ϕ

[i]
j(k+2)(t

∗
i )

u
[i+1]
j(k−1)(t

∗
i ) = u

[i]
j(k−1)(t

∗
i ) u

[i+1]
j(k) (t∗i ) = u

[i]
j(k)(t

∗
i )

u
[i+1]
j(k+1)(t

∗
i ) = u

[i]
j(k+1)(t

∗
i ) u

[i+1]
0,j(k)(t

∗
i ) =

j(k)−1∑
p=j(k−1)+1

v0
p.

The unknown functions are given by (35) with an obvious difference in indexing.
c) ϕj(k)(t) = ϕm(t) for some m ∈ {1, 2, . . . , n + 1}\{j(k)} and ϕj(k+1)(t) �=

ϕm(t) for every m ∈ {1, 2, . . . , n + 1}\{j(k + 1)} in the interval (t∗i , t
∗
i + δi). In this

case we have interaction of weak discontinuity and the shock wave whose disposure
is analogous to the one from Section 4.2. The solution we have in the form:

1. x ≤ ϕj(k+2) and x ≥ ϕj(k−1). In this case we take u
[i+1]
ε (x, t) = u

[i]
ε (x, t).

2. ϕj(k+2) ≥ x ≥ ϕj(k−1). In this interval the solution will look like:

u[i+1]
ε (x, t) =

j(k−1)−1∑
p=1

v0
p

+ u
[i+1]
j(k−1)(ϕ

[i+1]
j(k−1) − x)θε(ϕ

[i+1]
j(k−1) − x) − u

[i+1]
j(k−1)(ϕ

[i+1]
j(k) − x)θε(ϕ

[i+1]
j(k) − x)

+ u
[i+1]
j(k) (ϕ[i+1]

j(k) − x)θε(ϕ
[i+1]
j(k) − x) − u

[i+1]
j(k) (ϕ[i+1]

j(k+1) − x)θε(ϕ
[i+1]
j(k+1) − x)

+ u
[i+1]
0,j(k+1)θε(ϕ

[i+1]
j(k+1) − x) + u

[i+1]
j(k+1)(ϕ

[i+1]
j(k+1) − x)θε(ϕ

[i+1]
j(k+1) − x)

− u
[i+1]
j(k+1)(ϕ

[i+1]
j(k+2) − x)θε(ϕ

[i+1]
j(k+2) − x).

The difference from the situation from Section 4.2 is in the fact that for initial
condition here we will have:

ϕ
[i+1]
j(k−1)(t

∗
i ) = ϕ

[i]
j(k−1)(t

∗
i ) ϕ

[i+1]
j(k) (t∗i ) = ϕ

[i]
j(k)(t

∗
i )

ϕ
[i+1]
j(k+1)(t

∗
i ) = ϕ

[i]
j(k+1)(t

∗
i ) ϕ

[i+1]
j(k+2)(t

∗
i ) = ϕ

[i]
j(k+2)(t

∗
i )

u
[i+1]
j(k−1)(t

∗
i ) = u

[i]
j(k−1)(t

∗
i ) u

[i+1]
j(k) (t∗i ) = u

[i]
j(k)(t

∗
i )

u
[i+1]
j(k+1)(t

∗
i ) = u

[i]
j(k+1)(t

∗
i ) u

[i+1]
0,j(k)(t

∗
i ) =

j(k+1)−1∑
p=j(k)+1

v0
p.

The unknown functions are given by (35) with an obvious difference in indexing.
d) ϕj(k)(t) = ϕm(t) for some m ∈ {1, 2, . . . , n + 1}\{j(k)} and ϕj(k+1)(t) =

ϕm(t) for some m ∈ {1, 2, . . . , n + 1}\{j(k + 1)} in the interval [t∗i , t
∗
i + δ)i − 1). In

this case we have the situation analogous to one from Section 4.4. The solution we
have in the form:

1. x ≤ ϕj(k+2) and x ≥ ϕj(k−1). In this case we take u
[i+1]
ε (x, t) = u

[i]
ε (x, t).
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2. ϕj(k+2) ≥ x ≥ ϕj(k−1). In this interval the solution will look like:

u[i+1]
ε (x, t) =

j(k−1)−1∑
p=1

v0
p

+ u
[i+1]
j(k−1)(ϕ

[i+1]
j(k−1) − x)θε(ϕ

[i+1]
j(k−1) − x) − u

[i+1]
j(k−1)(ϕ

[i+1]
j(k) − x)θε(ϕ

[i+1]
j(k) − x)

+ u
[i+1]
0,j(k)θε(ϕ

[i+1]
j(k) − x) + u

[i+1]
j(k) (ϕ[i+1]

j(k) − x)θε(ϕ
[i+1]
j(k) − x)

− u
[i+1]
j(k) (ϕ[i+1]

j(k+1) − x)θε(ϕ
[i+1]
j(k+1) − x) + u

[i+1]
0,j(k+1)θε(ϕ

[i+1]
j(k+1) − x)

+ u
[i+1]
j(k+1)(ϕ

[i+1]
j(k+1) − x)θε(ϕ

[i+1]
j(k+1) − x)

− u
[i+1]
j(k+1)(ϕ

[i+1]
j(k+2) − x)θε(ϕ

[i+1]
j(k+2) − x).

The difference from the situation from Section 4.4 is in the fact that for initial
condition here we will have:

ϕ
[i+1]
j(k−1)(t

∗
i ) = ϕ

[i]
j(k−1)(t

∗
i ) ϕ

[i+1]
j(k) (t∗i ) = ϕ

[i]
j(k)(t

∗
i )

ϕ
[i+1]
j(k+1)(t

∗
i ) = ϕ

[i]
j(k+1)(t

∗
i ) ϕ

[i+1]
j(k+2)(t

∗
i ) = ϕ

[i]
j(k+2)(t

∗
i )

u
[i+1]
j(k−1)(t

∗
i ) = u

[i]
j(k−1)(t

∗
i ) u

[i+1]
j(k) (t∗i ) = u

[i]
j(k)(t

∗
i )

u
[i+1]
j(k+1)(t

∗
i ) = u

[i]
j(k+1)(t

∗
i ) u

[i+1]
0,j(k)(t

∗
i ) =

j(k+1)−1∑
p=j(k)+1

v0
p

u
[i+1]
0,j(k+1)(t

∗
i ) =

j(k+2)−1∑
p=j(k+1)+1

v0
p

The unknown functions are given by (40) with an obvious difference in indexing.

Since in the intervals (t∗i , ti + δi) we have u
[i]
ε = u

[i+1]
ε , the uniform solution of

equation (10) with the initial condition (41) we have in the form:

uε =
n∑

i=1

ηiu
[i]
ε (43)

where {η1, . . . , ηn} is the partition of unity of the nonnegative part of real line such
that

η1(t) = 1, for t ∈ [0, t∗1),

η1(t) = 0, for t ∈ [t∗1 + δ1,+∞),

ηi(t) = 1, for t ∈ [t∗i−1 + δi−1, t
∗
i ),

ηi(t) = 0, for t /∈ [t∗i−1, t
∗
i + δi), i = 2, . . . , n − 1,

ηn(t) = 1, for t ∈ [t∗n−1 + δn−1,∞),

ηn(t) = 0, for t ∈ [0, t∗n−1).
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6. Arbitrary decreasing initial condition

In this section we will solve Hopf equation (10) with initial condition (2) where
u0(x), x ∈ R, is an arbitrary decreasing Lipschitz continuous function which takes
values in some compact subset of real line. The process of solving will be as follows.

First, we approximate given initial data with a sequence of polygons and then
for each of these polygons as initial data we write down the solution of the Hopf
equation (we use the results from the previous sections). In choosing the snags
of the polygon we have to take care that any three consecutive points must not
interact simultaneously (the proof that such a choice is possible one can find in [6]
in the case of more general equation ut + (f(u))x = 0, f ′′ > 0). We will obtain a
sequence of solutions and we will prove that it converges in the weak sense to the
solution of Hopf equation with the original initial condition. More precisely, we will
prove the following theorem:

Theorem 6.1. For problem (10), (2) there exists a function ûε = û(x, t, ε) ∈
C∞(R × R+ × (0, 1)) given by (45) such that we have∫

Lûε · φdx = O(ε1/3), φ ∈ D(R),

‖ûε(x, 0) − u0(x)‖L1(X) = O(ε1−µ), x ∈ R,

for every compact X � R, some µ ∈ (0, 1) and every t > 0.
Furthermore, the weak entropy admissible solution û(x, t)1 of problem (10), (2)

satisfies
‖ûε(·, t) − û(·, t)‖L1(|x|<R) = O(ε1−µ).

Proof. Denote by û(x, t) weak entropy admissible solution of the given problem.
Divide the interval (− 1

εµ1 , 1
εµ1 ) by points ai, i ∈ N, to subintervals of length ∆ai =

ai−1 − ai = Mε1−µ, 0 < µ < 1, M ∈ (1, 2). Then we approximate initial condition
(2) by the polygon u0,ε(x) with the edges u0(ai), i = 1, 2, . . . , [ 2

ε1−µ−µ1 ]+1, ai < aj

for i < j. For x > 1
εµ1 we define u0,ε(x) = u0,ε( 1

εµ1 ) and for x < − 1
εµ1 we

define u0,ε(x) = u0,ε(− 1
εµ1 ). We select µ1 and µ from the interval (0, 1) such that

1+µ1−µ < 1/3. We select points ai, i ∈ N, in a such way that no three consecutive
points interact simultaneously. In other words, we do not have ϕi−1(t) = ϕi(t) =
ϕi+1(t) for any t < t∗i , i = 2, . . . , n − 1, where ϕi describes moving of the point
ai while t∗i denotes the time of interaction of the points ai and ai+1 (we repeat
that the proof that this can be done is given in [6]). According to the previous,
approximate solution of the Hopf equation with the initial condition

u|t=0 = u0ε(x), (44)

will be of the form

ûε(x, t) =
+∞∑
−∞

ηi(t)uiε(x, t), (45)

1For the proof that there exists a weak entropy admissible solution of the considered problem
see [1].
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where {ηi : i ∈ N} is partition of unity of real line such that supp ηi ∩ supp ηj = ∅,
|i − j| > 1. We will prove that ûε(x, t) is the weak asymptotic solution of problem
(10), (2) with the accuracy ε1−µ.

Accordingly, we have to check:

a)
∫ +∞
−∞

[
(ûε)t + (û2

ε)x

]
φ(x)dx = O(ε1/3) for every φ ∈ C∞

0 (R,

b) ‖ûε(·, 0) − u0(·)‖L1(R) = O(ε1/3),

To prove a) we substitute solution (45) in equation (2). We obtain O( 1
ε2(1+µ1−µ) )

products of the form θε(x − ϕi)θε(x − ϕj), i �= j. Using the results from Section 2
we see that each of these products generates remainder equal to O(ε). According-
ly, summing all remainders we get that the total remainder is O(ε1−2(1+µ1−µ)) =
O(ε1/3). So, expression given in a) is of order ε1/3 what we wanted to prove.

Concerning initial condition (2) on a bounded subset X of R we have,∫
X

(u0ε(·) − u0(·))dx = sup
x∈X

|u0ε(x) − u0(x)| · diam X · ε1−µ = O(ε1−µ). (46)

This proves b) and finishes the proof that ûε is a weak asymptotic solution of
(10), (2).

At the end, we will prove that our weak asymptotic solution is in the sense of
L1(R) convergence “close” to the admissible weak solution of (10), (2). For that
reason we will prove that the weak asymptotic solution constructed in the first part
of the proof weakly converges to a weak solution of (10), (2). We have for every
ψ ∈ C∞

0 ([0, T ) × R)∫
R

[ut + (u2)x]ψ(x, t)dx = O(ε), t is fixed.

If we apply
∫ T

0
dt to the last relation we see that

∫ T

0

∫
R

[ut + (u2)x]ψ(x, t)dxdt = O(ε).

If we apply the same procedure to the initial condition we conclude that
w-lim

ε→0
uε(x, t) = u(x, t), x ∈ R, t ∈ R+ is the weak solution of problem (10), (2). If

we prove that the function u is piecewise continuous, from its construction we see
that it satisfies Oleinik admissibility condition (see [7]) since the initial condition
is decreasing. From [1] one can see that the Oleinik admissibility condition and
entropy admissibility condition:∫ T

0

∫
R

[∂tψη(u) + ∂xψq(u)] dxdt +
∫
R

ψ(x, 0)η(u0(x)) dx ≥ 0, (47)

where q(u) =
∫

η′(u) and η ∈ C1(R) is an arbitrary convex function. Since
w-limε→0 uε(x, t) = u(x, t) it is not difficult to conclude that we have

∫ T

0

∫
R

[∂tψη(uε) + ∂xψq(uε)] dx dt +
∫
R

ψ(x, 0)η(uε0(x)) dx ≥ ε1−µO(1), (48)
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where q(u) =
∫

2uη′(u)du, are equivalent in the case of piecewise continuous func-
tions.

If we revisit Theorem 6.2.2 in [1] using (48) instead of Definition 6.2.1 of the
same book, we obtain

‖ǔε(·, t)−ûε(·, t)‖L1(|x|<R) ≤ ‖ǔε(·, 0)−ûε(·, 0)‖L1(|x|<R+st) + O(ε1−µ) = O(ε1−µ),

since in this case ǔε(x, 0) = ûε(x, 0). This implies

‖ûε(·, t) − û(·, t)‖L1(|x|<R) ≤ ‖ǔε(·, t) − û(·, t)‖L1(|x|<R)

+ ‖ǔε(·, t) − ûε(·, t)‖L1(|x|<R) = O(ε1−µ),

which implies what we wanted.
Remark 6.2. For additional explanation see [1], Chapter 6.
So, it remains to prove that the function u is piecewise continuous. According

to definition we know that two points interacted if they were distanced for the
quantity O(ε). In every finite interval for fixed ε ∈ (0, 1) and t ∈ R+ we have finite
number of points, in the interactions of which we are interested (the points of the
partition of the x-axis). Therefore, number of formed “shocks” is finite for every
fixed t ∈ R+ (we put here the quotation marks since in the case of the functions uε,
ε ∈ (0, 1) we cannot have proper shocks due to smoothness of appropriate functions;
here we have only very steep parts of graphs of the functions uε, ε ∈ (0, 1) from
which, when we let ε → 0, become shocks). When we let ε → 0 the parts between
the shocks will become continuous since those points originates from the initial
condition. More precisely, since they do not form any shock, they reached the
appropriate state by moving along the characteristics which makes them the points
of continuity. So, it is obvious that u must be piecewise continuous.
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