
MATEMATIQKI VESNIK

56 (2004), 1–12
UDK 515.122.2

originalni nauqni rad
research paper

A UNIFIED THEORY OF CONTINUITY

T. Hatice Yalvaç

Abstract. This paper further develops the theory of operations on a topological space with
the aim of producing a uniform framework for the study of generalized forms of continuity. To
illustrate the utility of this approach the results obtained are used to obtain many new and known
characterizations of strong Θ-semi-continuity, weak continuity and almost continuity.

1. Introduction

Various unification theories in topological spaces have been studied by sever-
al authors [1, 5–11, 14, 15]. This paper develops the theory of operations on a
topological space with the aim of producing a uniform framework for the study of
generalized forms of continuity.

In a topological space (X, τ), int, cl, scl, etc. will stand for interior, closure,
semi-closure operations etc. and Ao, A will also stand for the interior of A, the
closure of A for a subset A of X respectively.

Definition 1.1. Let (X, τ) be a topological space. A mapping ϕ : P (X) →
P (X) is called an operation on (X, τ) if Ao ⊂ ϕ(A) for all A ∈ P (X) and ϕ(∅) = ∅.

The class of all operations on a topological space (X, τ) will be denoted by
O(X, τ).

The operations ϕ, ϕ̃ are said to be dual if ϕ(A) = X \ (ϕ̃(X \A)) (equivalently
ϕ̃(A) = X \ (ϕ(X \ A))) for each A ∈ P (X).

A partial order “≤” on O(X, τ) is defined by ϕ1 ≤ ϕ2 ⇔ ϕ1(A) ⊂ ϕ2(A) for
each A ∈ P (X).

An operation ϕ ∈ O(X, τ) is called monotonous if ϕ(A) ⊂ ϕ(B) whenever
A ⊂ B (A,B ∈ P (X)).

Definition 1.2. Let ϕ ∈ O(X, τ), U ⊂ P (X) and U(x)= {U : U ∈ U , x ∈ U }
for x ∈ X. Then ϕ is called:
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a) regular with respect to (shortly, w.r.t.) U if for each x ∈ X and U, V ∈ U(x),
there exists a W ∈ U(x) such that ϕ(W ) ⊂ ϕ(U) ∩ ϕ(V ).

b) weakly finite intersection preserving (shortly, W.F.I.P.) w.r.t U if whenever
U ∈ U , A ∈ P (X), we have U ∩ ϕ(A) ⊂ ϕ(U ∩ A).

Remark 1.3. Monotonicity of ϕ ∈ O(X, τ) is not sufficient for regularity of
ϕ w.r.t. any family U ⊂ P (X).

Definition 1.4. Let ϕ ∈ O(X, τ) and A,B ⊂ X. Then A is called ϕ-open if
A ⊂ ϕ(A) and B is called ϕ-closed if X \ B is ϕ-open.

X and ∅ are both ϕ-open and ϕ-closed sets for any ϕ ∈ O(X, τ).
Let (X, τ) be a topological space, ϕ ∈ O(X, τ), U ⊂ P (X), x ∈ X. We will use

the following notations.

ϕO(X) = {U : U ⊂ X,U is ϕ-open }, ϕO(X,x) = {U : U ∈ ϕO(X), x ∈ U }
N (U , x) = {N : N ⊂ X and there exists a U ∈ U(x) such that U ⊂ N }
Definition 1.5. Let ϕ1, ϕ2 ∈ O(X, τ),X ∈ U ⊂ P (X), A ⊂ X.

a) x ∈ (U-ϕ2) closure A ⇔ ϕ2(U) ∩ A �= ∅ for each U ∈ U(x).
x ∈ U- closure A ⇔ x ∈ (U-ı) cl A (here ı is the identity operation).
x ∈ ϕ1,2 cl A ⇔ x ∈ (ϕ1O(X)-ϕ2) cl A.

b) x ∈ ϕ1,2 int A ⇔ there exists a U ∈ ϕ1O(X,x) such that ϕ2(U) ⊂ A.
c) A is ϕ1,2- open ⇔ A ⊂ ϕ1,2 int A.
d) A is ϕ1,2-closed ⇔ ϕ1,2 cl A ⊂ A.

Clearly, for any set A,X \ ϕ1,2 int A = ϕ1,2 cl(X \ A) and A is ϕ1,2-open iff
X \ A is ϕ1,2-closed.

For ϕ1, ϕ2 ∈ O(X, τ), let ϕ1,2O(X) = {U : U ⊂ X, U is ϕ1,2-open }.
Many preliminary results and the following theorem can be obtained for topo-

logical spaces from [8].

Theorem 1.6. Let ϕ1, ϕ2 ∈ O(X, τ).
a) ϕ1,2O(X) is a supratopology on X (U ⊂ P (X) is a supratopology iff ∅ ∈ U ,

X ∈ U and U is closed under arbitrary unions, [2]).
b) If ϕ2 is regular w.r.t. ϕ1O(X) then ϕ1,2O(X) is a topology on X.
c) If ϕ2 ≥ ı or ϕ2 ≥ ϕ1, and if ϕ2 is regular w.r.t. ϕ1O(X), then A is closed

(open) in the topology ϕ1,2O(X) iff A = ϕ1,2 cl A (A = ϕ1,2 int A).

Example 1.7. Let ϕ1, ϕ2 ∈ O(X, τ).
1. If ϕ1 = int, ϕ2 = cl, then ϕ1,2O(X) is the topology of all Θ-open sets.
2. If ϕ1 = int, ϕ2 = int ◦ cl, then ϕ1,2O(X) is the topology τs having a base which

is the family of all regular-open sets.
3. If ϕ1 = int ◦ cl ◦ int, ϕ2 = ı, then ϕ1,2O(X) = τα, the topology of all α-open

sets (A is α-open means that A ⊂ (Ao)o).
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2. The W.F.I.P. Property

For ϕ1, ϕ2 ∈ O(X, τ), if ϕ2 ≥ ı or ϕ2 ≥ ϕ1, then ϕ1O(X) ⊂ ϕ2O(X).

Theorem 2.1. Let (X, τ) be a topological space, X ∈ U ⊂ P (X), A ⊂ P (X),
ϕ1, ϕ2 ∈ O(X, τ). The following are valid:

1. A ⊂ U-cl A for each A ∈ P (X).
2. A ⊂ ϕ1O(X)-cl A for each A ∈ P (X).
3. If A ⊂ B then U-clA ⊂ U-clB.
4. If ϕ2 is W.F.I.P. w.r.t. A, then ϕ2 is W.F.I.P. w.r.t. any subfamily of A.
5. If ϕ2 is W.F.I.P. w.r.t. A, then (U-ϕ2) cl A ⊂ U-cl A for each A ∈ A.
6. If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), then ϕ1,2 cl A ⊂ ϕ1O(X)-cl A for each A ∈

ϕ1O(X).
7. If ϕ2 ≥ ı, then U-cl A ⊂ (U-ϕ2) cl A for each A ∈ P (X).
8. If ϕ2 ≥ ı or ϕ2 ≥ ϕ1, then ϕ1O(X)-cl A ⊂ ϕ1,2 cl A for each A ∈ P (X).
9. If ϕ2 ≥ ı or ϕ2 ≥ ϕ1, and if ϕ2 is W.F.I.P. w.r.t. A then ϕ1 O(X)-cl A =

ϕ1,2 cl A for each A ∈ A.
10. If ϕ2 is W.F.I.P. w.r.t. A and ϕ2 ≥ ı then U-clA = (U-ϕ2) cl A for each

A ∈ A.

Proof. 5) Let ϕ2 be W.F.I.P. w.r.t. A, A ∈ A and x ∈ (U-ϕ2) cl A.

x ∈ U ∈ U ⇒ ϕ2(U) ∩ A �= ∅
⇒ ϕ2(U) ∩ A ⊂ ϕ2(U ∩ A) �= ∅
⇒ U ∩ A �= ∅.

So x ∈ U-cl A.
8) Let A ∈ P (X) and x ∈ ϕ1O(X)-cl A.

U ∈ ϕ1O(X,x) ⇒ U ∩ A �= ∅
⇒ ϕ2(U) ∩ A �= ∅ (since U ⊂ ϕ2(U) or U ⊂ ϕ1(U) ⊂ ϕ2(U)).

So x ∈ ϕ1,2 cl A.
For a topological space (X, τ), RO(X), SO(X), PO(X) and τα will stand

for the family of regular open sets, semi-open sets, pre-open sets, α-open sets,
respectively.

Example 2.2. Let (X, τ) be a topological space.
1. ϕ2 = cl is W.F.I.P. w.r.t. τ and ϕ2 ≥ ı.

So for any ϕ1 ∈ O(X, τ) and for any U ∈ τ , we have ϕ1,2 cl U = ϕ1O(X)-cl U .
(a) If we take ϕ1 = int, ϕ1,2 cl A = Θ-cl A, ϕ1O(X)-cl A = τ -cl A for each A ∈

P (X). So Θ-cl U = U for each U ∈ τ .
(b) If we take ϕ1 = cl ◦ int, then for each U ∈ τ , ϕ1,2 cl U = {x : x ∈ V ∈

SO(X) ⇒ V ∩ U �= ∅} = Θ-semi-cl U = scl U .
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2. Let ϕ1 = int, ϕ2 = int ◦ cl (or ϕ2 = int ◦ cl ◦ int).

ϕ2 is W.F.I.P. w.r.t. ϕ1O(X) = τ , ϕ2 ≥ ϕ1. For any A ⊂ X, ϕ1,2 cl A = τs cl A,
ϕ1O(X)-cl A = τ cl A.

So if U ∈ τ , τs cl U = τ cl U . We know that if a family A ⊂ P (X) is a
supratopology, then

τA = {U ⊂ X : A ∈ A ⇒ U ∩ A ∈ A}

is a topology on X [17].

If ϕ ∈ O(X, τ) is monotonous then ϕO(X) is a supratopology. But the converse
is not true.

Example 2.3. Let τ be the usual topology on R and ϕ : P (R) → P (R) be
defined as follows:

ϕ(A) = A if Ao = ∅ and ϕ(A) = A if Ao �= ∅.
Then ϕ ∈ O(R, τ), ϕO(R) = P (R). But ϕ is not monotonous. For example,

for the sets A = (0, 1) ∩ Q, B = (0, 1) we have A ⊂ B but ϕ(A) �⊂ ϕ(B).

If ϕO(X) is a supratopology for ϕ ∈ O(X, τ) and if ϕ is W.F.I.P. w.r.t. τ then
we have τ ⊂ τϕO(X).

Let (X, τ) be a topological space and let A be a supratopology on X containing
τ . If we define the mapping ϕ : P (X) → P (X) as ϕ(A) = A-intA (i.e, ϕ is the
interior operation with respect to A) then ϕ ∈ O(X, τ), ϕ is monotonous and
ϕO(X) = A. In this case if ϕ = A-int is W.F.I.P. w.r.t. some subfamily W of
P (X) then W ⊂ τA = τϕO(X).

For any A ⊂ P (X) containing X, the mapping ϕ : P (X) → P (X) defined by
ϕ(A) = A-cl A is an operation on (X, τ) for any topology τ on X.

Theorem 2.4.Let A be a supratopology on X and τA, the topology mentioned
above. If we take ϕ2 = A-cl, then ϕ2 is W.F.I.P. w.r.t. τA and ϕ2 ≥ ı.

Proof. Straightforward.

Corollary 2.5.Let ϕ ∈ O(X, τ). If ϕO(X) is a supratopology and if we take
ϕ2 = ϕO(X)-cl, then for any ϕ1 ∈ O(X, τ) and for any U ∈ τϕO(X) we have
ϕ1,2clU = ϕ1O(X)-cl U .

Example 2.6. Take ϕ1, ϕ2 ∈ O(X, τ).

1. If we take ϕ1 = cl ◦ int, then ϕ1O(X) = SO(X) and τSO(X) = τα. For
ϕ2 = ϕ1O(X)-cl = scl, we get ϕ1,2 cl U = semi-Θ- cl U = scl U for each α-open
set U (so for U ∈ τ, U ∈ τs, U ∈ τθ).

2. If we take ϕ1 = int ◦ cl, ϕ2 = ϕ1O(X)-cl = pcl, we get

ϕ1,2 cl U = {x : x ∈ V ∈ PO(X) ⇒ (pcl V ) ∩ U �= ∅ }
= ϕ1O(X)- cl U = pcl U for each U ∈ τPO(X).
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3. If we take A = SO(X), ϕ2 = SO(X)-cl = scl, then ϕ2 ≥ ı, ϕ2 is W.F.I.P.
w.r.t. τα. If we take ϕ1 = int, we get

ϕ1,2 cl A = {x ∈ X : x ∈ U ∈ τ ⇒ scl U ∩ A �= ∅ }
= {x ∈ X : x ∈ U ∈ τ ⇒ U

o ∩ A �= ∅ }
= τs cl A = ϕ1O(X)- cl A = τ - cl A

for each A ∈ τα by using Theorem 2.1(9) and the property sclU = U∪U
o

= U
o

for U ∈ τ [3].
4. Let ϕ1 = int ◦ cl ◦ int, ϕ2 = scl. Then ϕ2 is W.F.I.P. w.r.t. ϕ1O(X) = τα. For

each A ∈ τα = ϕ1O(X) we have
ϕ1,2 cl A = {x ∈ X : x ∈ U ∈ τα ⇒ (scl U) ∩ A �= ∅} = {x ∈ X : x ∈ U ∈
τα ⇒ U

o ∩ A �= ∅} = {x ∈ X : x ∈ U ∈ τ ⇒ U
o ∩ A �= ∅} = τs- cl A =

ϕ1O(X)- cl A = τα cl A.
5. If we take ϕ2 = pcl, then ϕ2 ≥ ı, ϕ2 is W.F.I.P. w.r.t. τPO(X) (and w.r.t.

τ, τs, τθ).
If we take ϕ1 = int, we get ϕ1,2 cl A = {x ∈ X : x ∈ T ∈ τ ⇒ (pcl T ) ∩ A �=
∅} = {x ∈ X : x ∈ T ∈ τ ⇒ T o ∩ A �= ∅} = {x ∈ X : x ∈ T ∈ τ ⇒
T ∩ A �= ∅} = Θ- cl A = ϕ1O(X)- cl A = τ cl A for each A∈ τPO(X) (so for
A∈ τ,A ∈ τs, A ∈ τθ). We used here the property pclA = A ∪ Ao for any
A ⊂ X [3].
It can be seen from the above examples that we may obtain many equalities

for many different types of closure.

Lemma 2.7. Let ϕ1, ϕ2 ∈ O(X, τ). If for each U∈ ϕ1O(X) we have ϕ2(U) ∈
ϕ1O(X) and ϕ2(ϕ2(U)) ⊂ ϕ2(U), then for each U ∈ ϕ1O(X), ϕ2(U) is ϕ1,2-open.

The definition of a base of a supratopology, given in [2], is similar to that of a
base of a topology.

Theorem 2.8.Take ϕ1, ϕ2 ∈ O(X, τ). If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if ϕ2(U) is
ϕ1,2-open for each U ∈ ϕ1O(X), then the family B = {ϕ2(U) : U ∈ ϕ1O(X)} is a
base for the supratopology ϕ1,2O(X).

Proof. Firstly, B ⊂ ϕ1,2O(X) by hypothesis. Let A be a ϕ1,2-open set. Then

x ∈ A ⇒ x ∈ ϕ1,2 intA

⇒ there exists a Ux ∈ ϕ1O(X,x) such that ϕ2(Ux) ⊂ A

⇒ x ∈ ϕ2(Ux) ⊂ A.

Hence, A =
⋃{ϕ2(Ux) : x ∈ A}.

Example 2.9. Take ϕ1, ϕ2 ∈ O(X, τ).
1. If ϕ1 = int, ϕ2 = int ◦ cl, then A is ϕ1,2-open ⇔ A ∈ τs.

For U ∈ ϕ1O(X) = τ , ϕ2(U) = U
o ∈ τs.

B = {ϕ2(U) : U ∈ ϕ1O(X)} = {Uo
: U ∈ τ} = RO(X).

This gives us the known result that RO(X) is a base for τs.
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2. If ϕ1 = cl ◦ int, ϕ2 = scl, then ϕ1O(X) = SO(X). For U ∈ SO(X), ϕ2(U) =
scl U ∈ SO(X), ϕ2 ≥ ı.
Thus A is ϕ1,2-open iff A is semi-Θ-open.
Hence, B = {scl U : U ∈ SO(X)} = SR(X) is a base for the supratopology of
semi-Θ-open sets.

3. ϕ1,2ψ1,2-continuities

We accept throughout that the operations ϕi (i = 1, 2, 3, 4), (ψi (i = 1, 2, 3, 4))
are defined on a topological space (X, τ)((Y, ϑ), resp.), and that f is a function
from (X, τ) to (Y, ϑ).

The following definition, Theorem 3.2 and Theorem 3.3 are given for fuzzy
topological spaces in [6].

Definition 3.1. A function f : (X, τ) → (Y, ϑ) is called ϕ1,2ψ1,2-continuous
if for each x ∈ X and for each V∈ ψ1O(Y, f(x)), there exists a U ∈ ϕ1O(X,x) such
that f(ϕ2(U)) ⊂ ψ2(V ).

Theorem 3.2.For a function f : (X, τ) → (Y, ϑ) the following are equivalent:
(a) f is ϕ1,2ψ1,2 continuous.
(b) For each V ∈ ψ1O(Y ) we have f−1(V ) ⊂ ϕ1,2 int f−1(ψ2(V )).
(c) For each x ∈ X and for each V ∈ ψ1O(Y, f(x)), x ∈ ϕ1,2 int f−1(ψ2(V )).
(d) For each A ∈ P (X) we have f(ϕ1,2 cl A) ⊂ ψ1,2 cl f(A).
(e) For each B ∈ P (Y ) we have ϕ1,2 cl f−1(B) ⊂ f−1(ψ1,2 cl(B)).
(f) For each B ∈ P (Y ) we have f−1(ψ1,2 int B) ⊂ ϕ1,2 int f−1(B).

Theorem 3.3.Let f : (X, τ) → (Y, ϑ). The following are valid:
(a) If f is ϕ1,2ψ1,2-continuous then the inverse image of each ψ1,2-open set is

ϕ1,2-open.
(b) The inverse image of each ψ1,2-open set is ϕ1,2-open iff the inverse image of

each ψ1,2-closed set is ϕ1,2-closed.
(c) If ϕ1 ≤ ϕ3, ϕ2 ≥ ϕ4, ψ1 ≥ ψ3, ψ2 ≤ ψ4 and f is ϕ1,2ψ1,2-continuous then f

is ϕ3,4ψ3,4-continuous.
(d) If for each x ∈ X and for each V ∈ ψ1O(Y, f(x)), there exists a ϕ1,2-open set

U containing x such that f(U) ⊂ ψ2(V ), then f is ϕ1,2ψ1,2-continuous.

Theorem 3.4. If ψ̃2 is the dual operator of ψ2, then f : (X, τ) → (Y, ϑ) is
ϕ1,2ψ1,2-continuous iff ϕ1,2 cl(f−1(ψ̃2(K))) ⊂ f−1(K) for each ψ1-closed subset K
of Y .

Theorem 3.5. If ψ1 is the dual operator of ψ2, then f : (X, τ) → (Y, ϑ) is
ϕ1,2ψ1,2-continuous iff ϕ1,2 cl f−1(ψ1(K)) ⊂ f−1(K) for each ψ1-closed set K of Y
iff for each ψ1-open set U , f−1(U) ⊂ ϕ1,2 int f−1(ψ2(U)).
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Theorem 3.6. If ψ2 ≥ ψ1 or ψ2 ≥ ı, and if ψ2(V ) is ψ1,2-open for each
V ∈ ψ1O(Y ), then the following are equivalent for a function f : (X, τ) → (Y, ϑ).
(a) f is ϕ1,2ψ1,2-continuous.
(b) The inverse image of each ψ1,2-open set is ϕ1,2-open.
(c) f−1(ψ2(V )) is ϕ1,2-open for each V ∈ ψ1O(Y ).

Proof. (a) ⇒ (b). Known from Theorem 3.3.
(b) ⇒ (c). Obvious from the hypothesis.
(c) ⇒ (a). Let x ∈ X and V ∈ ψ1O(Y, f(x)). Since ψ1 ≤ ψ2 or ı ≤ ψ2 we have

f(x) ∈ V ⊂ ψ2(V ) so x ∈ f−1(ψ2(V )) and f−1(ψ2(V )) is ϕ1,2-open. There exists
an U ∈ ϕ1O(X,x) such that ϕ2(U) ⊂ f−1(ψ2(V )). Hence f(ϕ2(V )) ⊂ ψ2(V ), so f
is ϕ1,2ψ1,2-continuous.

Theorem 3.7.If ψ2 = ı, then a function f : (X, τ) → (Y, ϑ) is ϕ1,2ψ1,2-
continuous iff f−1(V ) is ϕ1,2-open for each V ∈ ψ1O(Y ).

Theorem 3.8.If ψ1 is the dual of ψ2 and ψ1(B) ∈ ψ1O(Y ), ψ1,2 cl(ψ1(B)) ⊂
ψ2(B) for each B ⊂ Y , then the following are equivalent.
(a) f is ϕ1,2ψ1,2-continuous.
(b) ϕ1,2 cl(f−1(V )) ⊂ f−1(ψ1,2 cl(V )) for each V ∈ ψ1O(Y ).
(c) f−1(ψ1,2 int(K)) ⊂ ϕ1,2 int f−1(K) for each ψ1-closed set K.

Theorem 3.9. If ϕ2 and ψ2 are monotonous then the following are equivalent
for a function f : (X, τ) → (Y, ϑ).
(a) f is ϕ1,2ψ1,2-continuous.
(b) For each x ∈ X and for each N ∈ N (ψ1O(Y ), f(x)), there exists an M ∈

N (ϕ1O(X), x) such that f(ϕ2(M)) ⊂ ψ2(N).
(c) For each x ∈ X and for each N ∈ N (ψ1O(Y ), f(x)), x ∈ ϕ1,2 int f−1(ψ2(N)).

Theorem 3.10 If ψ2 is monotonous and ϕ2 = ı, then any function f : (X, τ) →
(Y, ϑ) is ϕ1,2ψ1,2-continuous iff for each x ∈ X and for each N ∈ N (ψ1O(Y ), f(x))
we have f−1(ψ2(N)) ∈ N (ϕ1O(X), x).

Remark 3.11. Clearly if a family B is a base for the supratopology ψ1,2O(Y ),
then f−1(V ) ∈ ϕ1,2O(X) for each V ∈ ψ1,2O(Y ) iff f−1(V ) ∈ ϕ1,2O(X) for each
V ∈ B iff f−1(Y \ V ) is ϕ1,2-closed for each V ∈ B.

Theorem 3.12. If ϕ2 ≥ ϕ1 or ϕ2 ≥ ı, and if ϕ2(U) is ϕ1,2-open for each
U ∈ ϕ1O(X) then (noting that B = {ϕ2(U) : U ∈ ϕ1O(X)} is a base of the
supratopology ϕ1,2O(X) by Theorem 2.8.), the following are equivalent.
(a) f is ϕ1,2ψ1,2-continuous.
(b) For each x ∈ X and for each V ∈ ψ1O(Y, f(x)), there exists a B ∈ B containing

x such that f(B) ⊂ ψ2(V ).
(c) For each x ∈ X and for each V ∈ ψ1O(Y, f(x)), there exists a ϕ1,2-open set

W containing x such that f(W ) ⊂ ψ2(V ).
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Proof. (b) ⇒ (c) ⇒ (a). Clear from the hypotheses and Theorem 3.3(d).

(a) ⇒ (b). Let x ∈ X and V ∈ ψ1O(Y, f(x)). Then there exists a U ∈
ϕ1O(X,x) such that f(ϕ2(U)) ⊂ ψ2(V ) and x ∈ ϕ2(U). Since ϕ2(U) ∈ B, we
obtain the desired result.

Example 3.13. Let ϕ1 = cl ◦ int, ϕ2 = scl on (X, τ) and ψ1 = int, ψ2 = ı on
(Y, ϑ). Then:

f : (X, τ) → (Y, ϑ) is ϕ1,2ψ1,2-continuous iff f is strongly Θ-semi-continuous
(strong Θ-semi-continuity was defined in [4], and called s-Θ-continuity in [13]).

ϕ2 ≥ ı, ϕ2(U) = sclU ∈ ϕ1O(X) = SO(X) and ϕ2(ϕ2(U)) = scl(scl U) =
scl U = ϕ2(U) for each U ∈ ϕ1O(X).

B = {ϕ2(U) : U ∈ ϕ1O(X)} = {sclU : U ∈ SO(X)}
= SR(X) = the family of sets which are semi-open and semi-closed.

ψ2 ≥ ı, ψ1,2O(Y ) = ϑ, ψ2(V ) is ψ1,2-open for each V ∈ ψ1O(Y ), ψ̃2 = ı is the
dual of ψ2, ψ1,2 cl B = B for each B ∈ P (Y ) and ϕ1,2 cl A = semi-Θ- cl A [13].

Now, by using Lemma 2.7, Theorems 2.8, 3.2, 3.3(b), 3.4, 3.6, 3.7, 3.9 and
3.12, we get the following result which generalizes Theorem 2.1 in [4].

Theorem 3.14. For any function f : (X, τ) → (Y, ϑ), the following are equiv-
alent:

(a) f is strongly Θ-semi-continuous.

(b) For each x ∈ X and for each V ∈ ϑ(f(x)) we have x ∈ semi-Θ- int f−1(V ).

(c) For each B ∈ P (Y ) we have f−1(Bo) ⊂ semi-Θ- int f−1(B).

(d) Semi-Θ- cl(f−1(K)) ⊂ f−1(K) for each closed subset K of Y .

(e) f−1(V ) is semi-Θ-open for each open subset V of Y .

(f) f−1(K) is semi-Θ-closed for each closed subset K of Y .

(g) f(semi-Θ- cl A) ⊂ f(A) for each A ⊂ X.

(h) Semi-Θ- cl(f−1(B)) ⊂ f−1(B) for each B ⊂ Y .

(i) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a semi-regular set U
containing x such that f(U) ⊂ V .

(j) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a semi-Θ-open set W
such that f(W ) ⊂ V .

(k) For each x ∈ X and for each N ∈ N (ϑ, f(x)), there exists an M ∈
N (SO(X), x) such that f(scl M) ⊂ N .

(l) For each x ∈ X and for each N ∈ N (ϑ, f(x)) we have x ∈ semi-θ- int(f−1(N)).

Example 3.15. Let ϕ1 = int, ϕ2 = ı on (X, τ) and ψ1 = int, ψ2 = cl on (Y, ϑ).
Then:

f is ϕ1,2ψ1,2-continuous iff f is weakly continuous (weak-continuity was defined
by Levine [12]).
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ϕ2 and ψ2 are monotonous, ψ1 is the dual of ψ2, ψ2 ≥ ı and ψ2 is W.F.I.P.
w.r.t. ψ1O(Y ) = ϑ.

ψ1,2 cl V = Θ- cl V = ψ1O(Y )- cl V = ϑ cl V = V = ψ2(V ) for each V ∈
ψ1O(Y ) = ϑ.

For each B ∈ P (Y ) we have ψ1(B) = Bo ∈ ψ1O(Y ) = ϑ and ψ1,2 cl(ψ1(B)) =
Θ- cl Bo = Bo ⊂ B = ψ2(B).

Now, by using Theorems 2.1(9), 3.2, 3.5, 3.8 and 3.9 we obtain the following
result.

Theorem 3.16. For any function f : (X, τ) → (Y, ϑ), the following are equiv-
alent:
(a) f is weakly continuous.
(b) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists an U ∈ τ(x) such that

f(U) ⊂ Θ- cl V .

(c) f−1(V ) ⊂ (f−1(V ))o for each V ∈ ϑ.
(d) f−1(V ) ⊂ (f−1(Θ- cl V ))o for each V ∈ ϑ.

(e) For each x ∈ X and for each V ∈ ϑ(f(x)), we have x ∈ (f−1(V ))o.
(f) For each x ∈ X and for each V ∈ ϑ(f(x)), we have x ∈ (f−1(Θ- cl V ))o.

(g) f(A) ⊂ Θ- cl(f(A)) for each A ⊂ X.

(h) f−1(B) ⊂ f−1(Θ- cl B) for each B ⊂ Y .
(i) f−1(Θ- int B) ⊂ (f−1(B))o for each B ⊂ Y .

(j) f−1(Ko) ⊂ f−1(K) for each closed subset K of Y .

(k) f−1(V ) ⊂ f−1(V ) for each V ∈ ϑ.

(l) f−1(V ) ⊂ f−1(Θ- cl V ) for each V ∈ ϑ.
(m) For each x ∈ X and for each N ∈ N (ϑ, f(x)), there exists an M ∈ N (τ, x)

s.t. f(M) ⊂ N .

(n) For each x ∈ X and for each N ∈ N (ϑ, f(x)) we have x ∈ (f−1(N))o.

If we use the properties:
Θ- cl V = V = ϑs cl V = ϑα cl V for each V ∈ ϑ (Examples 2.2 and 2.6),
Θ- int K = Ko = ϑs int K = ϑα int K for each closed subset K of Y ,

then we obtain some other characterizations of weak continuity.

Theorem 3.17. The following are equivalent for any function f : (X, τ) →
(Y, ϑ):
(a) f is weakly continuous.
(b) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a U ∈ τ(x) such that

f(U) ⊂ ϑs cl V .
(c) f−1(V ) ⊂ (f−1(ϑsclV ))o for each V∈ ϑ.
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(d) For each x ∈ X and for each V ∈ ϑ(f(x)), we have x ∈ (f−1(ϑs cl V ))o.

(e) f−1(Θ- int K) ⊂ f−1(K) for each closed subset K of Y .

(f) f−1(ϑs int K) ⊂ f−1(K) for each closed subset K of Y .

(g) f−1(V ) ⊂ f−1(ϑs cl V ) for each v ∈ ϑ.
(h) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a U ∈ τ(x) such that

f(U) ⊂ ϑα cl V .
(i) f−1(V ) ⊂ (f−1(ϑαclV ))o for each V ∈ ϑ.
(j) For each x ∈ X and for each V ∈ ϑ(f(x)), we have x ∈ (f−1(ϑα cl V ))o.

(k) f−1(ϑα int K)) ⊂ f−1(K) for each closed subset K of Y .

Example 3.18. Let ϕ1 = int, ϕ2 = ı on (X, τ) and ψ1 = int, ψ2 = int ◦ cl on
(Y, ϑ). Then:

f : (X, τ) → (Y, ϑ) is ϕ1,2ψ1,2-continuous iff f is almost-continuous (almost-
continuity was defined in [16]);

ϕ1,2 int A = τ - int A = Ao, ϕ1,2 cl A = A for any A ⊂ X;

ψ̃2 = cl ◦ int is the dual operation of ψ2, ϕ2, ψ2 are monotonous and ψ2 ≥ ψ1;
ψ2 is W.F.I.P. w.r.t. ψ1O(Y ) = ϑ;

ψ2(V ) = V
o

is ψ1,2-open for each V ∈ ψ1O(Y ), B = {ψ2(V ) : V ∈ ϑ} =
RO(Y ) and RO(Y ) is a base for the supratopology ψ1,2O(Y ) = ϑs;

ψ1,2 int B = δ- int B = ϑs- int B and ψ1,2 cl V = δ- cl V = ϑs cl V for any
B ⊂ Y .

For V ∈ ϑ, ψ1,2 cl V = δ- cl V = ϑs cl V = ψ1O(Y )- cl V = ϑ cl V = V .
Now, by using Theorems 2.1, 2.8, 3.2, 3.3(b), 3.4, 3.6, 3.9, 3.10, and Remark

3.11, we get the following result.

Theorem 3.19. The following are equivalent for any function f : (X, τ) →
(Y, ϑ):
(a) f is almost continuous.

(b) f−1(V ) ⊂ (f−1(V
o
))

o
for each V ∈ ϑ.

(c) For each x ∈ X and each V ∈ ϑ containing f(x) we have x ∈ (f−1(V
o
))

o
.

(d) f(A) ⊂ ϑs- cl f(A) for each A ∈ P (X).

(e) f−1(B) ⊂ f−1(ϑs- cl B) for each B ∈ P (Y ).
(f) f−1(ϑs- int B) ⊂ (f−1(B))o for each B ∈ P (Y ).

(g) f−1(Ko) ⊂ f−1(K) for each closed subset K of Y .
(h) f−1(V ) is open for each V ∈ ϑs.

(i) f−1(V
o
) is open for each V ∈ ϑ.

(j) f−1(V ) is open for each V ∈ RO(Y ).
(k) f−1(K) is closed for each regular-closed subset K of Y .
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(l) f−1(K) is closed for each ϑs-closed subset K of Y .
(m) For each x ∈ X and for each N ∈ N (ϑ, f(x)), there exists an M ∈ N (τ, x)

s.t. f(M) ⊂ N
o
.

(n) For each x ∈ X and for each N ∈ N (ϑ, f(x)) we have x ∈ (f−1(N
o
))o.

For V ∈ ϑ, V
o

= V ∪V
o

= scl V 3. So, for V ∈ ϑ, V
o

= scl V = Θ-semi- cl V =
semi-Θ- cl V (from Examples 2.2 and 2.6).

For any closed subset K of Y , Ko = semi- int K = Θ-semi- int K =
semi-Θ- int K.

Now, by using the above equalities, we obtain some other characterizations of
almost continuity.

Theorem 3.20. The following are equivalent for any function f : (X, τ) →
(Y, ϑ):
(a) f is almost continuous.
(b) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a U ∈ τ(x) such that

f(U) ⊂ scl V .
(c) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a U ∈ τ(x) such that

f(U) ⊂ Θ-semi- cl V .
(d) For each x ∈ X and for each V ∈ ϑ(f(x)), there exists a U ∈ τ(x) such that

f(U) ⊂ semi-Θ- cl V .
(e) f−1(V ) ⊂ (f−1(scl V ))o for each V ∈ ϑ.
(f) f−1(V ) ⊂ (f−1(Θ-semi- cl V ))o for each V ∈ ϑ.
(g) f−1(V ) ⊂ (f−1(semi-Θ- cl V ))o for each V ∈ ϑ.
(h) For each x ∈ X and each V ∈ ϑ containing f(x) we have x ∈ (f−1(scl V ))o.
(i) For each x ∈ X and each V ∈ ϑ containing f(x) we have

x ∈ (f−1(Θ-semi- cl V ))o.
(j) For each x ∈ X and each V ∈ ϑ containing f(x) we have

x ∈ (f−1(semi-Θ- cl V ))o.

(k) f−1(semi-intK) ⊂ f−1(K) for each closed subset K of Y .

(l) f−1(Θ-semi-intK) ⊂ f−1(K) for each closed subset K of Y .

(m) f−1(semi-Θ- int K) ⊂ f−1(K) for each closed subset K of Y .
(n) f−1(scl V ) is open for each V ∈ ϑ.
(p) f−1(Θ-semi- cl V ) is open for each V ∈ ϑ.
(q) f−1(semi-Θ- cl V ) is open for each V ∈ ϑ.

Example 3.21. Let ϕ1 = int, ϕ2 = ı, ϕ3 = int and ϕ4 = ı be operations on
(X, τ), and ψ1 = int, ψ2 = int ◦ cl, ψ3 = int and ψ4 = cl. Then

ϕ1 ≤ ϕ3, ϕ2 ≥ ϕ4, ψ1 ≥ ψ3 and ψ2 ≤ ψ4.
By using Theorem 3.3 and Example 3.15 it is seen that almost-continuity

implies weak-continuity.
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Continuing in this manner, we may obtain the definitions of many types of
continuity as well as many equivalent conditions.
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