SPECTRAL STATES OF COMMUTATIVE L.M.C. ALGEBRAS

A. K. Gaur

Abstract. We characterize the commutative locally multiplicative convex (l.m.c.) algebras in terms of the spectral states. We also give a characterization of spectral states in terms of commutative semisimple l.m.c. algebras. Further, with the help of radicals of l.m.c. algebras we give a necessary and a sufficient condition for an algebra to be commutative modulo its radical.

1. Introduction

Let X be a locally m-convex (l.m.c.) algebra with unit e. We will follow the notations and terminologies of [4] and [6]. It is sufficient for our purpose to note that, for a given l.m.c. algebra X with unit e there exists a separating family of submultiplicative seminorms $\{P_{\alpha}\}$ on X which generates the topology and is such that $P_{\alpha}(e) = 1$ for all α in the index set I. Given such an aglebra, we denote by P(X) the class of all such families of seminorms on X, and by $(X, \{P_{\alpha}\})$ the algebra X with a particular family of seminorms $\{P_{\alpha}\} \in P(X)$.

For every $\alpha \in I$, let X_{α} denote the unital Banach algebra. Using Bonsall and Duncan's notation [2], the spectral state of X_{α} is denoted by $\Omega(X_{\alpha})$ and $\Omega(X_{\alpha}) = \{f \in X_{\alpha}^* : f(e) = 1, |f(x)| \leq \rho_{\alpha}(x), x \in X_{\alpha}\}$, where $\rho_{\alpha}(\cdot)$ is the spectral radius of x_{α} and $||x_{\alpha}||_{\alpha} = P_{\alpha}(x)$. (See Michael [6]). $\Omega(X_{\alpha})$ is a weak*-compact convex subset of the complex plane. The set of all spectral states of X is denoted by $\Omega(X)$. If $q_{\alpha}^* : X \to X_{\alpha}$ is the quotient map and q_{α}^* is the adjoint of q_{α} , then we define $\Omega(X) = \bigcup q_{\alpha}^*(\Omega(X_{\alpha}))$.

Given $(X, \{P_{\alpha}\})$, we define the set $D_{\alpha}(X, P_{\alpha}; e) = \{f \in X' : f(e) = 1 \text{ and } |f(x)| \le P_{\alpha}(X) \text{ for all } x \in X\}$ and we write

$$D(X, \{P_{\alpha}\}; e) = \bigcup \{D_{\alpha}(X, P_{\alpha}; e)\}.$$

Note that $D_{\alpha}(X, P_{\alpha}; e)$ is isomorphic to $D(X_{\alpha}, \|\cdot\|_{\alpha}; e_{\alpha})$ and $D(X, \{P_{\alpha}\}; e)$ depends upon the particular family of seminorms $\{P_{\alpha}\} \in P(X)$ chosen to associate with X.

AMS Subject Classification: 46 J 99, 46 J 15, 46 K 99

 $Keywords\ and\ phrases:$ Spectral states, probability measure, l.m.c. algebra, commutative modulo.

A. K. Gaur

2. Spectral states and commutative l.m.c. algebras

Using the idea in Giles and Koehler [4], we can say that $\Omega(X)$ is the state space of $(X, \{P_{\alpha}\})$ and $\Omega(X) = D(X, \{P_{\alpha}\}; e)$. Note that $\Omega(X)$ does not depend on the particular family of seminorms $\{P_{\alpha}\}$ chosen to generate the topology.

THEOREM 2.1. Let $D_X = \bigcap \{ D(X, \{P_\alpha\}; e) : \{P_\alpha\} \in P(X) \}$. Then $\Omega(X) = D_X$.

Proof. Let $f \in \Omega(x)$ and $\{P_{\alpha}\} \in P(X)$. If $x \in X$ and $\alpha \in I$ with $|f(x)| \leq \rho_{\alpha}(x_{\alpha}) \leq P_{\alpha}(x)$, then there exists M > 0 and $\beta \in I$ such that $P_{\alpha}(x) \leq MP_{\beta}(x)$ and $|f(x)| \leq \sqrt[n]{P_{\alpha}(x^n)} \leq \sqrt[n]{M}P_{\beta}(x)$ for every natural number n and every $x \in X$. This shows that $f \in D_X$. Conversely, suppose that $f \in X'$ is not a spectral state and f(e) = 1. Then for each α , there exists $x_{\alpha} \in X_{\alpha}$ such that $|f(x_{\alpha})| > \rho_{\alpha}(q_{\alpha}(x_{\alpha}))$. By Lemma 2.8, [2], there exist seminorms v_{α} on X_{α} equivalent to the usual norm $\|\cdot\|_{\alpha}$ such that $|f(x_{\alpha})| > v_{\alpha}(q_{\alpha}(x_{\alpha}))$. Let $P_{\alpha} = v_{\alpha}, \alpha \in I$. Then $P_{\alpha} \in P(X)$, but $f \notin D(X, \{P_{\alpha}\}; e)$. This implies that $f \notin D_X$ and hence $\Omega(X) = D_X$.

Let X be a commutative l.m.c. algebra. Let Φ_X be the set of all multiplicative linear functionals on X and let Φ_{α} be the set of all multiplicative linear functionals on X_{α} . Also, suppose that $\psi_{\alpha} = q_{\alpha}^*(\Phi_{\alpha})$. This means that for each α , Φ_{α} is homeomorphic to ψ_{α} . Let \hat{X} and \hat{X}_{α} be the Gelfand transformations on X and X_{α} , respectively. Denote a compact Hausdorff space by E and suppose $\mu(E)$ denotes the set of all probability measures on E. (For more on these measures, see [1]).

PROPOSITION 2.1. For a commutative l.m.c. algebra X with unit and for $f \in X'$, the following are equivalent.

(a) For $\alpha \in I$ and $\mu \in \mu(E)\psi_{\alpha}$, $f(x) = \int \hat{X}(x) d\mu$, $x \in X$.

(b) There exists a probability measure μ on Φ_X with compact (equicontinuous) support K, (see [7]), with $f(x) = \int \hat{X}(x) d\mu$, $x \in X$.

Proof. If K is a compact subset of Φ_X , then K is contained in some ψ_{α} . Hence, (b) implies (a). The implication (a) \implies (b) follows by the definitions involved.

PROPOSITION 2.2. There exists $\alpha \in I$ such that $|e^{f(x)}| \leq ||e^{x_{\alpha}}||_{\alpha}$, $x \in X$ if and only if

$$\operatorname{Re} f(x) \le \sup\{\operatorname{Re} \eta_{\alpha}(x_{\alpha}) : \eta_{\alpha} \in \Phi_{\alpha}\}.$$
(*)

Proof. For $\alpha \in I$, $|e^{f(x)}| \leq ||e^{x_{\alpha}}||_{\alpha} \Leftrightarrow \operatorname{Re} f(x) \leq \frac{1}{n} \ln ||e^{nx_{\alpha}}||_{\alpha}$, where ln is the natural log function, n is a natural number, and $x \in X$. If $\operatorname{sp}(X_{\alpha}, x_{\alpha})$ denotes the spectrum of x_{α} , see [4], then by Theorem 8, page 32 of [2], we have $\sup \{\operatorname{Re} \lambda : \lambda \in \operatorname{sp}(X_{\alpha}, x_{\alpha})\} = \inf \{\frac{1}{n} \ln ||e^{nx_{\alpha}}||_{\alpha} : n \text{ is a natural number}\}$ and hence $||e^{f(x)}|| \leq ||e^{x_{\alpha}}||_{\alpha}$ is equivalent to condition (*).

REMARK 2.1. The above propositions provide us with a characterization for spectral states of l.m.c. algebras. Further, these characterizations also show that $\Omega(X)$ does not depend on the particular family of seminorms.

It is clear that $\Omega(X)$ contains all non-zero multiplicative linear functionals. Also, if X is a commutative l.m.c. algebra, then every probability measure on the Carrier space [8, p. 261] of X provides a spectral state on X.

For commutative X, $\Omega(X)$ is nonempty, but if H is an infinite dimensional complex Hilbert space and B(H) is the set of all bounded linear operators on H, $\Omega(B(H)) = \emptyset$, see example 5, page 115, [2]. In fact for C^{*}-algebra X, $\Omega(X) = \emptyset$. On the other hand, if B(H) is the set of all compact operators on H, then $\Omega(B(H)) = \{0\}$.

EXAMPLE 2.1. Let E be a compact Hausdorff space and C(E) be the l.m.c. algebra of all complex-valued continuous functions on E. The topology on C(E)is of the uniform convergence. Then $\Phi_{C(E)}$ is isomorphic to E. The countable compact subsets of E are the compact subsets of $\Phi_{C(E)}$. Let $\phi \in C(E)$ and for each natural number $n, a_n \in E$. Suppose $\lambda_n \in [0, 1]$, then a linear functional fon C(E) is given by $f(\phi) = \sum_{n=1}^{\infty} \lambda_n \phi(a_n)$. These linear functionals define the spectral states of C(E). Let μ be a probability measure on E which vanishes at singletons. Then f is defined by integration with respect to μ such that f(e) = 1. Further, $|f(\phi)| \leq \rho_{C(E)}(\phi)$ and $f(\phi) \in \cos p(C(E), \phi)$ for each $\phi \in C(E)$, where cois the convex hull. Since f is defined by integration with respect to a probability measure μ with an uncountable support, f is not a spectral state.

REMARK 2.2. If A is a finite dimensional complex Banach algebra with unit and Wedderburn decomposition $A = A_1 \oplus A_2 \oplus \cdots \oplus A_m \oplus R$ (where R is the radical of A and each A_i is a subalgebra of A that is isomorphic to a matrix algebra over the complex numbers), then $\Omega(A)$ is the convex hull of the normalized traces $T_i(i = 1, 2, \ldots, m)$, see Theorem 11, p. 119 [2]. Also, if R is the Jacobsen radical of A, then $f(R) = \{0\}$ for each f in $\Omega(A)$.

3. Commutative semisimple algebra and spectral states

DEFINITION 3.1. X_{α} is semisimple if the Gelfand transformation on X_{α} is one-to-one.

A commutative Banach algebra A is simple if $Rad(A) = \{0\}$.

So if we have a semisimple l.m.c. algebra, then a rich supply of spectral states is possible. We prove the following theorem which characterizes such algebras.

THEOREM 3.1. Let X be an l.m.c. algebra with unit. Then X is commutative and semisimple if and only if $\Omega(X)$ separates the points of X.

Proof. Let X be a commutative semisimple l.m.c. algebra with unit. Then the complex homomorphisms of X separate the points of X, see Corollary 3.5.1, [5]. Hence, $\Omega(X)$ separates the points of X.

Conversely, suppose that $\Omega(X)$ separates the points of X. If $f \in \Omega(X)$, then $f(ab) = f(ba), a, b \in X$, by Theorem 4, p. 114 [2]. Hence, X is commutative. Since every $f \in \Omega(X)$ vanishes on the kernel of the Gelfand transformation \hat{X} on X,

Proposition 2.1 proves that \hat{X} is one-to-one and X is semisimple by Definition 3.1 above.

In [4], it is shown that if X is a complex l.m.c. algebra with unit, then for each $x \in X$,

$$\cos \operatorname{sp}(X, x) \subseteq \bigcap \{ V(X, \{P_{\alpha}\}; x) : \{P_{\alpha}\} \in P(X) \} \subseteq \overline{\operatorname{co}} \operatorname{sp}(X, x)$$

where $V(X, \{P_{\alpha}\}; x)$ is the numerical range of x in X.

If X is commutative modulo its radical, then $\cos p(X, x) = \{f(x) : f \in \Omega(X)\}$. This follows from the fact that the following condition in [4]

$$\bigcap \{ f(x) : f \in D(X, \{P_{\alpha}\}; e) \}$$

can be replaced by

$$\left\{ f(x): f \in \bigcap D(X, \{P_{\alpha}\}; e) \right\}$$

Inspired by this observation, we have the following theorem.

THEOREM 3.2. Let X be a complete l.m.c. algebra with unit. Then X is commutative modulo Rad(X) if and only if $cosp(X, x) = \{f(x) : f \in \Omega(X)\}$ for every $x \in X$.

Proof. Let X be commutative modulo Rad(X). By Proposition 24.16 in [3], it follows that for $a, x, y \in X$, a(xy - yx) is quasi-regular or quasi-invertible, see [5, p.13]. This implies that $\rho_X(xy - yx) = 0$. Thus, for each $\alpha \in I$, $\rho_\alpha(x_\alpha y_\alpha - y_\alpha x_\alpha) = 0$, which proves that X_α is commutative modulo $Rad(X_\alpha)$.

For each $x \in X$, $\{f_{\alpha}(x_{\alpha}) : f_{\alpha} \in \Omega(X_{\alpha})\} \subset \cos p(X_{\alpha}, x_{\alpha})$ and since X_{α} is commutative modulo $Rad(X_{\alpha})$, we have $\operatorname{sp}(X_{\alpha}, x_{\alpha}) = \{\phi_{\alpha}(x_{\alpha}) : \phi_{\alpha} \in \Phi_{\alpha}\}$. Further, since $\Phi_{\alpha} \subset \Omega(X_{\alpha})$, and $\Omega(X_{\alpha})$ is convex, we have $\operatorname{cosp}(X_{\alpha}, x_{\alpha}) \subset \{f_{\alpha}(x_{\alpha}) : f_{\alpha} \in \Omega(X_{\alpha})\}$. Hence we have established that if X is commutative modulo Rad(X), then $\operatorname{cosp}(X_{\alpha}, x_{\alpha}) = \{f_{\alpha}(x_{\alpha}) : f_{\alpha} \in \Omega(X_{\alpha})\}$.

Since the family of spectra is a well directed family, we have $\cos p(X, x) = \bigcup \cos p(X_{\alpha}, x_{\alpha})$, see Theorem 1 [4]. By the definition of $\Omega(X)$, we prove that $\cos p(X_{\alpha}, x_{\alpha}) = \{ f_{\alpha}(x_{\alpha}) : f_{\alpha} \in \Omega(X_{\alpha}) \}$ implies that $\cos p(X, x) = \{ f(x) : f \in \Omega(X) \}$ for every $x \in X$.

Conversely, suppose that for each $x \in X$, $\cos p(X, x) = \{f(x) : f \in \Omega(X)\}$. Since $\operatorname{sp}(X, xy - yx) = \{0\}$, we have the commutativity of each X_{α} modulo its radical. Hence, a(xy - yx) is quasi-regular in X. This shows that xy - yx belongs to $\operatorname{Rad}(X)$ and hence X is commutative modulo $\operatorname{Rad}(X)$.

COROLLARY 3.1. If X is a complete l.m.c. algebra with unit and X is commutative modulo Rad(X), then

$$\Gamma_X = \{ x \in X : \{ \sup |f(x)| : f \in \Omega(X) \} < \infty \}$$

= $\{ x \in X : V(X, \{P_\alpha\}; x) \text{ is bounded} \} = U_X$
= $\{ x \in X : \rho_X(x) < \infty \} = R_X.$

18

Proof. $\Gamma_X = U_X$ follows from Theorem 4, [4]. By Theorem 3.2, $\{f(X) : f \in \Omega(X)\} = \cos p(X, x)$, hence $U_X = R_X$.

COROLLARY 3.2. $\Omega(X)$ is weak^{*}-bounded.

Proof. The result follows from Corollary 3.1 and the fact that $\Omega(X)$ is weak*bounded if and only if $\operatorname{sp}(X, x)$ is bounded for each $x \in X$.

ACKNOWLEDGEMENTS. The author thanks the referee for his or her constructive comments and suggestions which clearly have improved the clarity of the paper.

REFERENCES

- [1] Billingsley, P., Probability and Measure, John Wiley and Sons, 1985.
- [2] Bonsall, F.F., Duncan J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Vol. I, London Math. Soc, Lect. Notes 2, Cambridge Univ. Press, Cambridge, 1971.
- [3] Bonsall, F.F., Duncan, J., Complete Normed Algebras, Ergebnisse der Mathematik 80, Springer Verlag, Berlin, 1973.
- [4] Giles, J.R., Koehler, D.O., On Numerical Ranges of Elements of Locally m-convex Algebras, Pac. J. Math. 49 (1973), 79-91.
- [5] Larsen, R., Banach Algebras. An Introduction, Marcel Dekker, Inc., N.Y., 1973.
- [6] Michael, E.A., Locally Multiplicatively Convex Topological Algebras, Amer. Math. Soc. Mem., 11 (1952).
- [7] Royden, H.L., Real Analysis, Macmillian Publishing Co., 1968.
- [8] Wilansky, A., Functional Analysis, Blaisdell Publishing Co., 1964.

(received 15.03.2001, in revised form 13.06.2003)

Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA 15282, U.S.A.

E-mail: gaur@mathcs.duq.edu