MEAN VALUE THEOREMS IN q-CALCULUS

Predrag M. Rajković, Miomir S. Stanković, Sladan D. Marinković

Abstract. In this paper, some properties of continuous functions in q-analysis are investigated. The behavior of q-derivative in a neighborhood of a local extreme point is described. Two theorems are proved which are q-analogs of the fundamental theorems of the differential calculus. Also, two q-integral mean value theorems are proved and applied to estimating remainder term in q-Taylor formula. Finally, the previous results are used in considering some new iterative methods for equation solving.

1. Introduction

At the last quarter of the XX century, q-calculus appeared as a connection between mathematics and physics ([5], [6]). It has a lot of applications in different mathematical areas, such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences—quantum theory, mechanics and theory of relativity.

Let $q \in \mathbb{R}^+ \setminus \{1\}$. A q-natural number $[n]_q$ is defined by

$$[n]_q := 1 + q + \cdots + q^{n-1}, \quad n \in \mathbb{N}.$$

Generally, a q-complex number $[a]_q$ is $[a]_q := \frac{1 - q^a}{1 - q}$, $a \in \mathbb{C}$. The factorial of a number $[n]_q$ is $[0]_q! := 1$, $[n]_q! := [n]_q[n-1]_q\cdots[1]_q$, $n \in \mathbb{N}$.

Let q-derivative of a function $f(z)$ be

$$(D_q f)(z) := \frac{f(z) - f(qz)}{z - qz}, \quad z \neq 0, \quad (D_q f)(0) := \lim_{z \to 0} (D_q f)(z),$$

and high q-derivatives are

$$D_q^0 f := f, \quad D_q^n f := D_q(D_q^{n-1} f), \quad n = 1, 2, 3, \ldots$$

Notice, that a continuous function on an interval, which does not include 0, is continuous q-differentiable.

AMS Subject Classification: 26A99

Keywords and phrases: q-calculus.

Communicated at the 5th International Symposium on Mathematical Analysis and its Applications, Niška Banja, Yugoslavia, October 2 - 6, 2002.

Supported by Ministry of Sci. & Techn. Rep. Serbia, the projects No. 1409/1379.

171
2. Extreme values and q-derivative

We will consider relations between, on one side, extreme value of a continuous function and, on the other side, derivatives and q-derivatives.

Theorem 2.1. Let $f(x)$ be a continuous function on a segment $[a, b]$ and let $c \in (a, b)$ be a point of its local maximum.

(i) If $0 < a < b$, then there exists $\hat{q} \in (0, 1)$ such that

$$
(D_q f)(c) \begin{cases}
\geq 0, & \forall q \in (\hat{q}, 1) \\
\leq 0, & \forall q \in (1, \hat{q}^{-1}).
\end{cases}
$$

(ii) If $a < b < 0$, then there exists $\hat{q} \in (0, 1)$ such that

$$
(D_q f)(c) \begin{cases}
\leq 0, & \forall q \in (\hat{q}, 1) \\
\geq 0, & \forall q \in (1, \hat{q}^{-1}).
\end{cases}
$$

Furthermore, $(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) \big(\exists \xi \in (a, b) \big) (D_q f)(\xi) = 0$.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the first one. Since c is a point of local maximum of the function $f(x)$, there exists $\varepsilon > 0$, such that $f(x) \leq f(c)$, for all $x \in (c - \varepsilon, c + \varepsilon) \subset (a, b)$. Let $q_0 \in (0, 1)$ such that $c - \varepsilon < q_0 c < c$. Now, for all $q \in (q_0, 1)$, it is valid $qc < c$ and $f(qc) \leq f(c)$, wherefrom $(D_q f)(c) \geq 0$. In a similar way, there exists $q_1 \in (0, 1)$ such that $c < c/q_1 < c + \varepsilon$ and for all $q \in (1, q_1^{-1})$ it holds $(D_q f)(c) \leq 0$. At last, denote by $\hat{q} = \max\{q_0, q_1\}$.

Let $q \in (\hat{q}, 1)$ be an arbitrary real number. Then $\eta = c/q \in (c, c + \varepsilon)$, wherefrom $f(c) \geq f(\eta)$, i.e., $f(q \eta) \geq f(\eta)$. From $q \eta < \eta$ we conclude $(D_q f)(\eta) \leq 0$. As $f(x)$ is a continuous function, $(D_q f)(x)$ is continuous in (a, b), too. Since $(D_q f)(c) \geq 0$, $(D_q f)(\eta) \leq 0$, where $c, \eta \in (a, b)$, there exists $\xi \in (c, \eta) \subset (a, b)$, such that $(D_q f)(\xi) = 0$. Analogously, for an arbitrary $q \in (1, q_1^{-1})$, the number $\eta = c/q \in (c - \varepsilon, c)$, wherefrom $(D_q f)(\eta) \geq 0$. Since $(D_q f)(c) \leq 0$, we have proved the existence of a zero of $(D_q f)(x)$ for $q \in (1, q_1^{-1})$.

Example 2.1. Let us consider $f(x) = (x - 1)(3 - x) + 2$. Its maximum is at $c = 2$, but q-derivative is $(D_q f)(x) = (2|x - 1| + 4) x$ and it vanishes at the point $\xi = \frac{4}{1 + q}$. So, here is $\hat{q} = 1/3$. For $q = 3/4$, we have $(D_{3/4} f)(2) = 1/2, \eta = 22/3$ and $\xi = 22/7$.

In a similar way, we can prove the next theorem.

Theorem 2.2. Let $f(x)$ be a continuous function on a segment $[a, b]$ and let $c \in (a, b)$ be a point of its local minimum.

(i) If $0 < a < b$, then there exists $\hat{q} \in (0, 1)$ such that

$$
(D_q f)(c) \begin{cases}
\leq 0, & \forall q \in (\hat{q}, 1) \\
\geq 0, & \forall q \in (1, \hat{q}^{-1}).
\end{cases}
$$
(ii) If $a < b < 0$, then there exists $\hat{q} \in (0,1)$ such that

$$
\begin{align*}
(D_q f)(c) &\geq 0, \quad \forall q \in (\hat{q}, 1) \\
&\leq 0, \quad \forall q \in (1, \hat{q}^{-1}).
\end{align*}
$$

Moreover, $(\forall q \in (\hat{q}, \hat{q}^{-1})) \left(\exists \xi \in (a,b) \right) (D_q f)(\xi) = 0.$

Remark. If $f(x)$ is differentiable for all $x \in (a,b)$, then $\lim_{q \uparrow 1} D_q f(x) = f'(x)$. So, if $c \in (a,b)$ is a point of local extreme of $f(x)$, we have $f'(c) = D_1 f(c) = 0.$

3. Some q-mean value theorems

By using the previous results, we can establish and prove analogons of well-known mean value theorems in q-calculus.

Theorem 3.1. (q-Rolle) Let $f(x)$ be a continuous function on $[a,b]$ satisfying $f(a) = f(b)$. Then there exists $\hat{q} \in (0,1)$ such that

$$
(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) \left(\exists \xi \in (a,b) \right) : (D_q f)(\xi) = 0.
$$

Proof. If $f(x)$ is not a constant function on $[a,b]$, then it attains its extreme value in some point in (a, b). But, according to Theorems 2.1–2, $(D_q f)(x)$ vanishes at a point $\xi \in (a,b).$ ■

Theorem 3.2 (q-Lagrange) Let $f(x)$ be a continuous function on $[a,b]$. Then there exists $\hat{q} \in (0,1)$ such that

$$
(\forall q \in (\hat{q}, 1) \cup (1, \hat{q}^{-1})) \left(\exists \xi \in (a,b) \right) : f(b) - f(a) = (D_q f)(\xi)(b-a).
$$

Proof. The statement follows by applying the previous theorem to the function $f(x) - x(f(b) - f(a))/(b-a).$ ■

4. Mean value theorems for q-integrals

In q-analysis, we define q-integral by

$$
I_q(f) = \int_0^a f(t) d_q(t) := a(1-q) \sum_{n=0}^{\infty} f(aq^n)q^n.
$$

Notice that

$$
I(f) = \int_0^a f(t) dt = \lim_{q \uparrow 1} I_q(f).
$$

Theorem 4.1 Let $f(x)$ be a continuous function on a segment $[0,a]$ ($a > 0$). Then

$$
(\forall q \in (0,1)) \left(\exists \xi \in [0,a] \right) : I_q(f) = \int_0^a f(t) d_q(t) = a f(\xi).
$$
Proof. Since \(f(x) \) is a continuous function on the segment \([0,q]\), it attains its minimum \(m \) and maximum \(M \) and takes all values between. According to assumption \(0 < q < 1 \), we have \(0 < aq^n < a \) and \(M \leq f(aq^n) \leq M \). Now,

\[
a(1-q) \sum_{n=0}^{\infty} mq^n \leq a(1-q) \sum_{n=0}^{\infty} f(aq^n)q^n \leq a(1-q) \sum_{n=0}^{\infty} Mq^n,
\]

wherefrom \(m \leq \frac{1}{a} I_0(f) \leq M \). So, there exists \(\xi \in [0,a] \) such that \(a^{-1} I_0(f) = f(\xi) \).

Moreover, if we define

\[
\int_a^b f(t) \, dq(t) := \int_0^b f(t) \, dq(t) - \int_0^a f(t) \, dq(t),
\]

then the next theorem is valid.

Theorem 4.2. Let \(f(x) \) be a continuous function on a segment \([a,b]\). Then there exists \(\tilde{q} \in (0,1) \) such that

\[
(\forall \tilde{q} \in (\tilde{q},1))(\exists \xi \in (a,b)) : \quad I_0(f) = \int_a^b f(t) \, dq(t) = f(\xi)(b-a).
\]

Proof. It is easy to prove that \(\lim_{q \uparrow 1} I_0(f) = I(f) \), i.e.

\[
(\forall \varepsilon > 0)(\exists q_0 \in (0,1))(\forall \tilde{q} \in (q_0,1)) : \quad I(f) - \varepsilon < I_0(f) < I(f) + \varepsilon.
\]

According to the well known mean value theorem for integrals, we have

\[
(\exists c \in (a,b)) : \quad I(f) = f(c)(b-a).
\]

Let \(\varepsilon \leq (b-a) \min\{M - f(c), f(c) - m\} \), where \(m \) and \(M \) are the minimum and maximum of \(f(x) \) on \([a,b]\). Now,

\[
(\exists \tilde{q} \in (0,1))(\forall \tilde{q} \in (\tilde{q},1)) : \quad f(c) - \frac{\varepsilon}{b-a} < \frac{1}{b-a} I_0(f) < f(c) + \frac{\varepsilon}{b-a},
\]

hence \(m < I_0(f)/(b-a) < M \). Since \(f(x) \) is a continuous function on the segment \([a,b]\), it takes all values between \(m \) and \(M \), i.e.

\[
(\exists \xi \in (a,b)) : \quad \frac{1}{b-a} I_0(f) = f(\xi),
\]

what we wanted to prove.

Theorem 4.3 Let \(f(x) \) and \(g(x) \) be some continuous functions on a segment \([a,b]\). Then there exists \(\tilde{q} \in (0,1) \) such that

\[
(\forall \tilde{q} \in (\tilde{q},1))(\exists \xi \in (a,b)) : \quad I_0(fg) = g(\xi)I_0(f).
\]
Proof. According to the second mean value theorem for integrals, we have

\[(\exists c \in (a, b)) : I(fg) = g(c)I(f). \]

Hence \(\lim_{q \uparrow 1} I_q(fg) = g(c)I(f) = g(c)\lim_{q \uparrow 1} I_q(f), \) i.e., \(\lim_{q \uparrow 1} \frac{I_q(fg)}{I_q(f)} = g(c) \). Now,

\[(\exists q_0 \in (0, 1)) (\forall q \in (q_0, 1)) : g(c) - \varepsilon < \frac{I_q(fg)}{I_q(f)} < g(c) + \varepsilon. \]

Since \(g(x) \) is a continuous function on the segment \([a, b]\), it attains its minimum \(m_g \) and maximum \(M_g \). Let \(\varepsilon \leq \min\{M_g - g(c), g(c) - m_g\} \). Hence

\[(\exists q \in (0, 1)) (\forall q \in (q_0, 1)) : m_g < \frac{I_q(fg)}{I_q(f)} < M_g. \]

Since \(f(x) \) takes all values between \(m_g \) and \(M_g \), we conclude that

\[(\exists \xi \in (a, b)) : \frac{I_q(fg)}{I_q(f)} = g(\xi). \quad \blacksquare \]

5. Estimation of remainder term in \(q \)-Taylor formula

Let \(f(x) \) be a continuous function on some interval \((a, b)\) and \(c \in [a, b] \). Jackson’s \(q \)-Taylor formula (see [3], [4] and [2]) is given by

\[f(z) = \sum_{k=0}^{\infty} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)}, \quad z \in (a, b), \]

where

\[(z - c)^{(0)} = 1, \quad (z - c)^{(k)} = \prod_{i=0}^{k-1} (z - cq^i), \quad (k \in \mathbb{N}). \]

T. Ernst [2] have found the next \(q \)-Taylor formula

\[f(z) = \sum_{k=0}^{n-1} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)} + R_n(f, z, c, q), \quad (5.1) \]

where \(R_n(f, z, c, q) \) is the remainder term determined by

\[R_n(f, z, c, q) = \int_{t=c}^{t=z} \frac{(z - t)^{(n)}}{z - t} \frac{(D_q^n f)(t)}{[n-1]_q!} d_q(t). \quad (5.2) \]

Theorem 5.1. Let \(f(x) \) be a continuous function on \([a, b]\) and \(R_n(f, z, c, q) \), \(z, c \in (a, b) \) be the remainder term in \(q \)-Taylor formula. Then there exists \(\hat{q} \in (0, 1) \) such that for all \(q \in (\hat{q}, 1), \xi \in (a, b) \) can be found between \(c \) and \(z \), which satisfies

\[R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n-1]_q!} \int_{t=c}^{t=z} \frac{(z - t)^{(n)}}{z - t} d_q(t). \quad (5.3) \]
Proof. Since \(f(x) \) is a continuous function on \([a, b]\), it can be expanded by \(q \)-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions
\[
\frac{(z - t)^{(n)}}{z - t} = \prod_{i=1}^{n-1} (z - tq^i)
\]
and \((D_q^n f)(t)/[n - 1]_q!\) are continuous on the segment between \(c\) and \(z\) which is contained in \((a, b)\). According to Theorem 4.3., there exists \(\hat{q} \in (0, 1) \), such that for all \(q \in (\hat{q}, 1) \) can be found \(\xi \) between \(c\) and \(z\) such that (5.3) is valid. ■

Theorem 5.2. Let \(f(x) \) be a continuous function on \([a, b]\) and \(z, c \in (a, b)\). Then there exists \(\hat{q} \in (0, 1) \) such that for all \(q \in (\hat{q}, 1) \), \(\xi \in (a, b) \) can be found between \(c\) and \(z\), which satisfies
\[
f(z) = \sum_{k=0}^{n-1} \frac{(D_q^k f)(c)}{[k]_q!} (z - c)^{(k)} + \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}.
\]

Proof. Applying \(\frac{(z - t)^{(n)}}{z - t} = -D_q(t) \left(\frac{(z - t)^{(n)}}{[n]_q} \right) \) to the integral in (5.3) we have
\[
\int_{t=e}^{t=z} \frac{(z - t)^{(n)}}{z - t} d_q(t) = - \int_{t=e}^{t=z} D_q(t) \left(\frac{(z - t)^{(n)}}{[n]_q} \right) d_q(t)
\]
\[
= - \left. \frac{(z - t)^{(n)} (z - c)^{(n)}}{[n]_q} \right|_{t=e}^{t=z}.
\]
So, \(R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)} \). ■

Theorem 5.3 Let \(f(x) \) be a continuous function on \([a, b]\) and \(R_n(f, z, c, q) \), \(z, c \in (a, b) \) be the remainder term in \(q \)-Taylor formula. Then there exists \(\hat{q} \in (0, 1) \) such that for all \(q \in (\hat{q}, 1) \), \(\xi \in (a, b) \) can be found between \(c\) and \(z\), which satisfies
\[
R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n]_q!} (z - c)^{(n)}.
\]

Proof. Since \(f(x) \) is a continuous function on \([a, b]\), it can be expanded by \(q \)-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions
\[
\frac{(z - t)^{(n)}}{z - t} = \prod_{i=1}^{n-1} (z - tq^i)
\]
and \((D_q^n f)(t)/[n - 1]_q!\) are continuous on the segment between \(c\) and \(z\) which is contained in \((a, b)\). According to Theorem 4.3., there exists \(\hat{q} \in (0, 1) \), such that for all \(q \in (\hat{q}, 1) \), \(\xi \) between \(c\) and \(z\) can be found such that
\[
R_n(f, z, c, q) = \frac{(D_q^n f)(\xi)}{[n - 1]_q!} \int_{t=c}^{t=z} \frac{(z - t)^{(n)}}{z - t} d_q(t).
\]
Applying
\[
\frac{(z - t)^{(n)}}{z - t} = -D_{q,t} \frac{(z - t)^{(n)}}{[n]_q}
\]

we have
\[
\int_{t=c}^{z} \frac{(z - t)^{(n)}}{z - t} d_q(t) = -\int_{t=c}^{z} D_{q,t} \frac{(z - t)^{(n)}}{[n]_q} d_q(t)
\]
\[
= -\frac{(z - t)^{(n)} |_{t=c}^{z}}{[n]_q} = \frac{(z - c)^{(n)}}{[n]_q}.
\]

So, \(R_n(f, z, c, q) = \frac{(D^q f)(\xi)}{[n]_q!} (z - c)^{(n)} \). \(\blacksquare \)

6. Application

Here we will apply the previous theorems in analyzing an iterative method for solving equations.

Suppose that an equation \(f(x) = 0 \) has a unique isolated solution \(x = \tau \). If \(x_n \)
is an approximation for the exact solution \(\tau \), using Jackson’s \(q \)-Taylor formula, we have
\[
0 = f(\tau) \approx f(x_n) + (D_q f)(x_n) (\tau - x_n),
\]
hence \(\tau \approx x_n - \frac{f(x_n)}{(D_q f)(x_n)} \). So, we can construct \(q \)-Newton method
\[
x_{n+1} = x_n - \frac{f(x_n)}{(D_q f)(x_n)}. \tag{6.1}
\]

More simply, it looks like \(x_{n+1} = x_n \left\{ 1 - \frac{1 - q}{1 - q f(x_n)} \right\} \). This method written in the form
\[
x_{n+1} = x_n - \frac{x_n - q f(x_n)}{f(x_n) - f(q x_n)} f(x_n)
\]
reminds to the method of chords (secants).

Theorem 6.1. Suppose that a function \(f(x) \) is continuous on a segment \([a, b]\) and that the equation \(f(x) = 0 \) has a unique isolated solution \(\tau \in (a, b) \). Let the conditions
\[
|(D_q f)(x)| \geq M_1 > 0, \quad |(D_q^2 f)(x)| \leq M_2
\]
are satisfied for all \(x \in (a, b) \). Then there exists \(\bar{q} \in (0, 1) \), such that for all \(q \in (\bar{q}, 1) \), the iterations obtained by \(q \)-Newton method satisfy
\[
|\tau - x_{n+1}| \leq \frac{M_2}{(1 + q)M_1} |(\tau - x_n)^{(2)}|.
\]
\begin{proof}
From the formulation of q-Newton method (6.1), we have
\[x_{k+1} - \tau = x_k - \tau - \frac{f(x_k)}{(D_q f)(x_k)}, \]
hence \(f(x_k) + (D_q f)(x_k)(\tau - x_k) = (D_q f)(x_k)(\tau - x_{k+1}). \) By using q-Taylor formula at the point \(x_k \) of order \(n = 2 \) for \(f(\tau) \) we have
\[f(\tau) = f(x_k) + (D_q f)(x_k)(\tau - x_k) + R_2(f, \tau, x_k, q). \]
Since \(f(\tau) = 0 \), we obtain \((D_q f)(x_k)(\tau - x_{k+1}) = -R_2(f, \tau, x_k, q) \), i.e.
\[|\tau - x_{k+1}| = \frac{|R_2(f, \tau, x_k, q)|}{|(D_q f)(x_k)|}. \]
According to Theorem 5.1., there exists \(\bar{q} \in (0, 1) \) such that for all \(q \in (\bar{q}, 1), \) \(\xi \in (a, b) \) can be found such that
\[R_2(f, \tau, x_k, q) = \frac{(D_q^2 f)(\xi)}{2! q} (\tau - x_k)^2. \]
Now,
\[|\tau - x_{k+1}| = \frac{|(D_q^2 f)(\xi)|}{|(D_q f)(x_k)|} \frac{|(\tau - x_k)^2|}{1 + q}. \]
Using the conditions which function \(f(x) \) and its q-derivatives satisfy we obtain the statement of the theorem. \(\blacksquare \)

Remark. In our papers [7] and [8] we have discussed q-iterative methods in details.

References

(received 23.12.2002)

Predrag M. Rajković, Faculty of Mechanical Engineering, University of Niš, 18000 Niš, Yugoslavia
E-mail: pecar@masfak.ni.ac.yu

Miomir S. Stanković, Faculty of Occupational Safety, University of Niš, 18000 Niš, Yugoslavia
E-mail: mstan@zrufak.zrufak.ni.ac.yu

Sladjana D. Marinković, Faculty of Electrical Engineering, University of Niš, 18000 Niš, Yugoslavia
E-mail: sladjana@elfak.ni.ac.yu