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MEAN VALUE THEOREMS IN ¢-CALCULUS
Predrag M. Rajkovié¢, Miomir S. Stankovié, Sladana D. Marinkovié

Abstract. In this paper, some properties of continuous functions in g-analysis are investi-
gated. The behavior of ¢g-derivative in a neighborhood of a local extreme point is described. Two
theorems are proved which are g-analogons of the fundamental theorems of the differential cal-
culus. Also, two g-integral mean value theorems are proved and applied to estimating remainder
term in ¢-Taylor formula. Finally, the previous results are used in considering some new iterative
methods for equation solving.

1. Introduction

At the last quarter of the XX century, g-calculus appeared as a connection
between mathematics and physics ([5], [6]). It has a lot of applications in different
mathematical areas, such as number theory, combinatorics, orthogonal polynomials,
basic hyper-geometric functions and other sciences—quantum theory, mechanics
and theory of relativity.

Let ¢ € RT\ {1}. A g-natural number [n], is defined by
[n],:=1+q+---+¢"* neN.

1 _ a
Generally, a g-complex number [a], is [a], := ? , a € C. The factorial of a

l—gq
number [n], is [0],':=1, [n]g! = [n]gn—1]4---[1], n € N.
Let g-derivative of a function f(z) be

(D))= LI o (D, 1)(0) = lim (Do) (2),

z—qz
and high g¢-derivatives are
DYf:=f,  DIf:=Dg(D;'f)

Notice, that a continuous function on an interval, which does not include 0, is
continuous g-differentiable.

n=1,2,3,....

AMS Subject Classification: 26 A 99

Keywords and phrases: g-calculus.

Communicated at the 5th International Symposium on Mathematical Analysis and its
Applications, Niska banja, Yugoslavia, October, 2—6, 2002.

Supported by Ministry of Sci. & Tcchn. Rep. Serbia, the projects No. 1409/1379.

171



172 P. M. Rajkovié, M. S. Stankovié, S. D. Marinkovié¢
2. Extreme values and ¢-derivative

We will consider relations between, on one side, extreme value of a continuous
function and, on the other side, derivatives and g-derivatives.

THEOREM 2.1. Let f(x) be a continuous function on a segment [a,b] and let
¢ € (a,b) bea point of its local mazimum.

(i) If 0 < a < b, then there exists ¢ € (0,1) such that

>0, VYge(41)
1,

@l 2 Vg € (1,47,

(it) If a < b < 0, then there exists G € (0,1) such

<0, VYge(41)

(qu)(c){ >0, VYge(l,41).

Furthermore, (Yg € (4,1)U (1,47 1)) (3¢ € (a,b)) (Dyf)(€) =0.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the
first. one. Since ¢ is a point of local maximum of the function f(z), there exists
g > 0, such that f(z) < f(c), forall z € (¢ —e,¢+¢) C (a,b). Let go € (0,1) such
that ¢ — e < goc < ¢. Now, for all ¢ € (go,1), it is valid gc¢ < ¢ and f(gc) < f(c),
wherefrom (D,f)(¢) > 0. In a similar way, there exists ¢; € (0,1) such that
c<c/q < c+eand forall ¢ € (1,¢7%) it holds (Dgf)(c) < 0. At last, denote by
¢ = max{qo, q1}-

Let g € (¢,1) be an arbitrary rcal number. Thenn = ¢/g € (¢, ¢+¢), wherefrom

f(e) > f(n), i-e.. f(gn) > f(n). From gn < 1 we conclude (D, f)(n) < 0. As f(z)
is a continuous function, (D, f)(x) is continuous in (a,b), too. Since (D, f)(c) >

0, (Dgf)(n) < 0, where ¢, € (a,b), there exists £ (c n) C (a,b), such that
(D, f)(&) = 0. Analogously, for an arbitrary ¢ € (1,47 ), the number n = ¢/q €
(¢ — €,¢), wherefrom (D,f)(n) > 0. Since (D,f)(c) < 0, we have proved the

existence of a zero of (D, f)(z) for g € (1,47 1). m

ExAMPLE 2.1. Let us cousider f(z) = (z — 1)(3 — z) + 2. Its maximum is
at ¢ = 2, but ¢-derivative is (D, f)(z) = —[2]z + 4 and it vanishes at the point
£ =4/(1+gq). So, here is ¢ =1/3. For ¢ = 3/4, we have (D3,4f)(2) =1/2,n=22
and £ = 22,

In a similar way, we can prove the next theorem.

THEOREM 2.2. Let f(z) be a continuous function on a segment [a,b] and let
¢ € (a,b) be a point of its local minimum.

(i) If 0 < a < b, then there exists G € (0,1) such that

<0, Vge(g,1)
1,

(qu)(C){ >0, Vge(l,§).
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(i) If a < b < 0, then there exists G € (0,1) such that
>0, Vge(¢,1)

<0, Vge(1,471).
Moreover, (Yq € (§,471))(3€ € (a,b)) (Dyf)(€) = 0.

REMARK. If f(z) is differentiable for all z € (a,b), then limg4 D, f(z) = f'(z).
So, if ¢ € (a,b) is a point of local extreme of f(z), we have f/'{(¢) = D, f(c) = 0.

0.0

3. Some g-mean value theorems

By using the previous results, we can establish and prove analogons of well-
known mean value theorems in g-calculus.

THEOREM 3.1. (¢-Rolle) Let f(x) be a continuous function on [a,b] satisfying
f(a) = f(b). Then there exists ¢ € (0,1) such that

(Ve € (@ DU (L) (FE € (a,b) 1 (DyS)(E) =0

value in some point in (a, ). But, according to Theorems 2.1-2, (D,) f(x) vanishes
at a point £ € (a,b). m

Proof. If f(zx) is not a constant function on [a,b], then it attains its extreme

THEOREM 3.2 (g-Lagrange) Let f(x) be a continuous function on [a,b]. Then
there exists ¢ € (0,1) such that

(Vee (@)U, ) (K e (@b): f(b)—fa)=(Def)E)(b~a).
Proof. The statement follows by applying the previous theorem to the function
f(@) —z(f(b) — f(a))/(b—a).m
4. Mean value theorems for g-integrals

In g-analysis, we define g-integral by

L0 = [ 10 d0=a(-0) 5 flar)

Notice that

1= [ 50 =tm1(0)

THEOREM 4.1 Let f(z) be a continuous function on a segment [0,a] (a > 0).
Then

g€ O.0)GE € b.a): 1,0 = [ "I dyty=a 1(6).
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Proof. Since f(x) is a contimious function on the segment [0,a], it attains

its minimum m and maximum M and takes all values between. According to
assumption 0 < ¢ < 1, we have 0 < aq™ < a and m < f(ag™) < M. Now,

a(l-9) & ma" <a(l—q) 3 flog")q" < a(1- ) 3 Mq",

wherefrom m < L I(f) < M. So, there exists £ € [0,a] such that a=! I,(f) =
f(§). m

Moreover, if we define

/abf(t) dy(t) := /Obf(t) d,(t) — /Oaf(t) d, (1),

then the next theorem is valid.

THEOREM 4.2. Let f(z) be a continuous function on a segment [a,b]. Then
there exists ¢ € (0,1) such that

b
(Vge @G1)EEE (@b): I(f) = / F(0) dy(t) = F(E)(b— a).

Proof. 1t is easy to prove that limg+1 I,(f) = I(f), i.e.

(Ve > 0)(3q0 € (0.1))(Vg € (90, 1)) = I(f) —& < Lo(f) < I(f) +e.

According to the well known mean value theorem for integrals, we have

(Fc € (a:0)): I(f) = f(c)(b—a).

Let ¢ < (b—a) min{M — f(c), f(c) — m}, where m and M are the minimum and

maximum of f(z) on [a,b]. Now,

5 1 €

b*ﬂ<mlq(f)<f(0)+b—(]’

(33 € (0,1))(Vg € (¢:1)) = f(c) -
hence m < I,(f)/(b—a) < M. Since f(z) is a continuous function on the segment
[a, b], it takes all values between m and M, i.e.

1

(3¢ € (a,)) : 7—

1,(f) = 1(8),

what we wanted to prove. m

THEOREM 4.3 Let f(z) and g(z) be some continuous functions on a segment
[a,b]. Then there exists ¢ € (0,1) such that

(Vg € (¢ 1)(3E € (a,0)) : Ig([g) = 9(O) Lo (/])-
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Proof. According to the second mean value theorem for integrals, we have

(o€ (@) (/o) =g(I(f)
. _ _ . . I(fg)
Honce i I, (f9) = g(0(1) = (0 lim (). - i T2 — g(c). Now,
G € O.1)( € (1) 9(c) e < AL < go) 4

Since g(z) is a continuous function on the segment [a, b], it attains its minimum

%

mg and maximum M. Let ¢ < min{M, — g(c), g(c) — my}. Hence

Iq(fg)
1,(f)

Since f(z) takes all values between m, and My, we conclude that

. Iq(fg)
L (f)

(3¢ € (0,1))(Vg € (¢:1)) : my <

< M,.

(3¢ € (a;0)) =9(8)-

5. Estimation of remainder term in g-Taylor formula

Let f(z) be a continuous function on some interval (a,b) and ¢ € [a,b]. Jack-
son’s g-Taylor formula (see [3], [4] and [2]) is given by

= (Dgf)(e)

z) = z—c)®) 2 € (a,b),
10 = £ 20— a0, ze b
where 1
(z— )@ =1, (z—c)(k):H(z—cqi) (k e N).
i=0

T. Ernst [2] have found the next ¢-Taylor formula
ol (Dgf)(c)

f(Z) = Z (Z_C)(k)+Rn(f=Z:C=Q)= (51)
=0 [Klg!
where R, (f, 2, ¢, q) is the remainder term determined by
=2 (z =)™ (D f)(®)
Rulfize)= [ E0= S a0, (52)

THEOREM 5.1. Let f(x) be a continuous function on [a,b] and R,(f, 2, ¢, q),
z,c € (a,b) be the remainder term in q-Taylor formula. Then there exists G € (0,1)
such that for all g € (4,1), € € (a,b) can be found between ¢ and z, which satisfies

(DgHE) (=% (z—t)™
Bn(f,2.0,0) = [n—l]q!/ : z—)t

d,(t). (5.3)

t=c
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%

g-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions
(z — )™ o

— =[]z —td)

i=1

Proof. Since f(z) is a continuous function on [a,b], it can be expanded by

and (D7 f)(t)/[n — 1],! are continuous on the segment between ¢ and z which is
contained in (a,b). According to Theorem 4.3., there exists ¢ € (0,1), such that
for all ¢ € (¢,1) can be found £ between ¢ and z such that (5.3) is valid. m

THEOREM 5.2. Let f(z) be a continuous function on [a,b] and z.c € (a,b).
Then there exists ¢ € (0,1) such that for all ¢ € (§,1), £ € (a,b) can be found
between ¢ and z, which satisfies

=5 PN PENE e
1@ = 2 gy G g G

Proof. Applying (Z;t)(n) =—-Dy, ((z—t)(")> to the integral in (5.3) we
have z=t [)q
[ RO TR W (S 8 PO
_ =™ [T (g™
[n]q e (g
(D))

So, Rp(f,2,¢.q) = (z—c)™. =

[n]q!

THEOREM 5.3 Let f(z) be a continuous function on [a,b] and R,(f,z,c,q),
z,c € (a,b) be the remainder term in q-Taylor formula. Then there exists G € (0,1)
such that for all g € (4,1), € € (a,b) can be found between ¢ and z, which satisfies

Ro(f,2.0,0) = %

Proof. Since f(z) is a continuous function on [a,b], it can bc expanded by

%

g-Taylor formula (5.1) with the remainder term (5.2). Notice that the functions

Ly ol .
%:H(Z—tql)

i=1

(z—c)™,

contained in (a,b). According to Theorem 4.3., there exists ¢ € (0,1), such that

and (D7 f)(t)/[n — 1],! are continuous on the segment between ¢ and z which is
for all ¢ € (¢,1

), € between ¢ and 2 can be found such that

— (Dgf)(f) /tzz (Z — t)(n) dq(t).

Bulfoz.000) = 19 oy

t=c
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(z — )™ _ D, ((Z - t)(n)>’

z—1 [nlq

Applying

to the previous integral we have

=T oW
B [n]q o B (g .
So, Rp(f,2,¢,q) = %(z—c)(”). L]

6. Application

Here we will apply the previous theorems in analyzing an iterative method for
solving equations.
Suppose that an equation f(z) = 0 has a unique isolated solution z = r. If x,,

is an approximation for the exact solution 7, using Jackson’s ¢-Taylor formula, we
have

0=f(r) = f(zn) + (D /) @n)(T — z0),

hence 7 ~ x,, — M So, we can construct g-Newton method
(Dyf)(zn)
Tyl = Ty — T 6.1
B Dy f) ) (01

1—
More simply, it looks like z,,41 = xy, { 1-— % } This mcthod written in the
form - Say

flzn)
Tn — dTn

f(@n) = fgzn)

reminds to the method of chords (secants).

Tntl = Tn —

THEOREM 6.1. Suppose that a function f(x) is continuous on a segment [a, b]
and that the cquation f(z) = 0 has a unique isolated solution T € (a,b). Let the
conditions

[(Dgf)()| > My >0,  [(Dif)(z)| < M,
are satisfied for all = € (a,b). Then there exists § € (0,1), such that for all
q € (§,1), the iterations obtained by g-Newton method satisfy

M
|T*$k+1|§( | (r — ) ).

1 + q)M1
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Proof. From the formulation of g-Newton method (6.1), we have

[ (@)
(Dyf) (@)’
hence f{xp)+ (D, f)(zr)(T—21) = (D f)(@k)(T—2k41)- By using g-Taylor formula
at the point z; of order n = 2 for f(r) we have

f(7) = f(r) + (Do f) (@) (T — k) + Ra(f 7, Tk, 9)-

Since f(7) =0, we obtain (D, [)(zk)(7 — 2ky1) = —Ra2(f, 7,2k, q), i.e.
|R2(f, 7, %k, q)|

|(Dg f)(xr)]

According to Theorem 5.1., there exists ¢ € (0,1) such that for all ¢ € (g,1),
€ € (a,b) can be found such that

Ltl — T =T —T —

|7 — @p1| =

Rxﬁmm4y=9%£5%7—mﬂ”

D2NE | —2)?|

(Def)xr)|  1+q

Using the conditions which function f(z) and its g-derivatives satisfy we obtain the
statement of the theorem. m

Now,

|T7$k+1| = |

REMARK. In our papers [7] and [8] we have discussed g¢-iterative methods in
details.
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