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MIXED NORM SPACES OF DIFFERENCE SEQUENCES
AND MATRIX TRANSFORMATIONS

A. M. Jarrah and E. Malkowsky

Abstract. In this paper, we generalise the definition of mixed norm spaces, define mixed
norm spaces of difference sequences, determine their S-duals, and characterise matrix transforma-
tions on them. We obtain many known results as special cases.

1. Introduction

Let 1 < p < 0o. By w we denote the set of all complex sequences & = (z)72 ;.
In 1968, Maddoz [5] introduced and studied the sets

12 1 2
wg:{wa: lim EZ|mk|p:0} andwg’c:{wa:supEZ|mk|p<oo}
k=1

n—oc m k=1

of sequences that are strongly summable and bounded, respectively, with index p
by the Cesaro method of order 1. He also observed that the sections 1/n >, _, can

be replaced by the blocks 1/2v+1 zz:;fl, and that the section and block norms

1 n 1/p 1 v+1l_ g 1/p
z|| = sup| — T p) and ||z ’:sup(— Tk, p)
ol = sup((£ 35 fru Jelr =sup( s 32 e

n
are equivalent.

In 1974, Jagers [3] studicd the Cesdaro sequence spaces

it~ {rews £ (£ ) <)

n=1

which are Banach spaces with the norm

0o 1 n o\ 1/p
fellasi = ( (3 S 1eul) )
n=1\T k=1
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Tt can be found in [1] that an equivalent norm on ces(p) is

oo 2vtl_g P\ 1/p
fell = (£ 20-n ("5 "))

k=2v

In 1969, Hedlund [2] introduced the mized norm spaces

co 2Vt 1 a/p
£p,q) = {J,‘ Ew: Y < > |mk|p> < oo} see also Kellogg [4];

v=0\ k=2¥
obviously the Cesaro sequence spaces ces(p) are weighted £(p, 1) mixed norm spaces.
Results on the equivalence of block and section norms on mixed norm spaces can
also be found in [1].

In this paper, we generalise the definition of mixed norm spaces, define mixed
norm spaces of difference sequences, determine their 8-duals, and characterise ma-
trix transformations on them. We obtain many known results as special cases.

2. Notations and Definitions

Let £, ¢, ¢g and ¢ be the sets of all bounded, convergent, null and finite
sequences, cs and bs be the sets of all convergent and bounded series, and £, =
{zew: Y - |zeP <oo}forl <p<oo.

By e and ™ (n =1,2,...), we denotc the sequences with e, = 1 for all &,
and esln) =1 and eén) =0 for k # n.

An FK space X is a complete lincar metric sequence space with continuous
coordinates P, : X — C where Pi(z) = z for all z € X and & = 1,2,...; a
BK space is a normed FK space. We say that an FK space X D ¢ has AK if
zlm =57 zpet®) — 2 (m — oo) for every sequence z = (z3)52, € X; zl™ is
called the m-section of the sequence x.

If X and Y are subsets of w, and z is a sequence, we write 271 «Y = {z €
w:az = (zrze)fe, € Y and M(X,Y) = Mexao ' *Y ={z € w: 2z €
Y for all z € X} for the multiplier of X and Y. In the special cases when Y = ¢,
or Y = cs, we write 2& = 271« £, or 2% = 27! x ¢s, and the sets X* = M(X,£;)
and X% = M(X,cs) are called the a- or Kéthe-Toeplitz- and 8-duals of X.

Let A = (ank)5x=; be an infinite matrix of complex numbers, = be a sequence

and X bc a subsct of w. Then we write 4, = (an4)S2, and A% = (an4)2,
for the sequences in the n-th row and the k-th column of A, respectively, AT for
the transpose of A, A,(z) = Y 70 jankar (n =1,2,...) and A(z) = (An(2))32,
provided A,, € z? for all n. The set X4 = {z € w: A(2) € X} is called the matriz
domain of A in X. Given any subsets X and Y of w, then (X,Y") denotes the class
of all matrices A that map X into Y, that is for which A, € X# for all n and

A(z) €Y for all x € X, or equivalently A € (X,Y) if and only if X C Ya.

Throughout, let (k(v))22, be a strictly increasing sequence of integers with
k(0) = 1 and I, be the set of all integers & with k(v) < bk < k(r+1)—1 (v =
0,1,...). Given any sequence z, then, for each v =0,1,..., 2t = Zkebxke(k) is
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the v-block of the sequence x. Let X, Y D ¢ be sequence spaces, normed with || - ||x
and || - |ly. We define the generalised mized norm spaces

Z=, X" ={zew: (J:)x )iﬂ ey}

and put
9@ = (1:"1x) |, e2. (2.1)
Since ¢ C X, ||| x is defined for every z €wand for all v = 0,1,.... Hence the
sequence y = (1,)°%, with 4, = [|[2"||x (v = 0,1,...) is defined. Furthermore,
since ¢ C X,Y, we obviously have ¢ C Z.
Finally, let A = (6nk)$;’k:1 be the matrix with §,, = 1, §pn—1 = —1 and

Ont = 0 otherwise. Then we define the mized norm spaces of difference sequences
78 = (1%.X1)
A

We consider a few special cases.
EXAMPLE 2.1. (a) Let 1 < p < oc and 1 <7 < co. Then we obtain

o0 r/p
b :{ze E(Z ) <)
v=0\kel,
[l oo = {z Ew VZ[](%E})VCVH) < oo},
[cos £p) =qz€ lim |zk|P =0¢ and
= m,g,y }
[locs £p] :{ tsup Y. |zP < oo}.
v>0kel,
In the special case of r=p and 1 < p < o0, we have [£,,¢ ] BO) = ={,.
Ifk{v)=2"forv=0,1,..., then [{,, Ep] = {(r,p), the mixed norm spaces
in [2, 4].
If k(v) =v+1for v = 0,1,..., then we also obtain the classical sequence

spaces [(,,£1] k( V)> =/, [co,fl]<k(y)> = ¢ and [Koc,fl]<k(y)> =/l
() Let 1 < p < oc and k(v) = 2¥ for all v. If d, = (1/k(v + 1))V/? for
r=0,1,... then
[d™ % co, ) ¥ = and A7 # Lo, £,]FP) = wE_ [5].
If d, = 2v(/P=1 for v = 0,1,... then we obtain the Cesaro sequence spaces or
weighted mixed norm spaces [d~! * £,/ ] RO = = ces(p) [3]
EXAMPLE 2.2. (a) Let 1 < p < oc and 1 < r < co. Then we obtain

([gr’gp]%(u)))A - {z Cw: yi::(](kg |2k — zk71|p)r/P - oo} cte.

If k(v) = v+1 for v = 0,1,... then we obtain the sets of sequences of bounded
variation
buP = ([Zp,€1]<k(”)>)A = {z cw: Y |l —zlP < oo} [12],

v=0
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and the sets of difference sequences that are convergent to zero or bounded
(leo, 11" = (co)a = o(A) and ([foe, 1] ) = (fao)a = leo(D) [9):

(b) Let (ux)52, be an increasing sequence of positive rcals tending to infinity
and d, = 1/pg(v41) for v =0,1,.... Then we obtain the sets of sequences that are
pu-strongly convergent to zero or bounded, respectively, with index p

colp) =p~ L= ([d_1 * co,fp]<k(”)>)

= {z €w: lim > Mkze — pr—12k-1]P = 0}
V—roc l’[’k(y+1) kel,,

and coo (1) = =t # (Jd=1 % Lo, £, ) A [10].

A

3. The topological properties of the spaces Z and Zx

Here we study the topological properties of Z = [Y, X]<k('/)> and Zp =
(. X157
A norm || - || on a sequence space X is said to be monotonous if |zg| < |Zg]

(k=1,2,...) for z,Z € X implies ||z|| < ||Z||. A subset X of w is called normal if
z € X and |yg| < |zk] (k=1,2,...) for a sequence y together imply y € X.

Given z € w, we write y = (y,)5%, for the sequence with y, = ||z*|x
(r=0,1,...).

PROPOSITION 3.1. Let X D ¢ and Y D ¢ be normed sequence spaces and
(a) If Y is normal and || - || x is monotonous then Z is normal.

(6) If || - ||y is monotonous then Z is normed with respect to g defined in (2.1).
If, however, ||- ||y is not monotonous, then g does not satisfy the triangle inequality
in general.

Proof. (a) If z € Z and Z € w with |Z;| < |z for all k, then the monotony of
| - [|x implies |§,| < |y, | for all ». Since Y is normal, it follows that Z € Z.

(b) We show that g satisfies the triangle inequality, since it obviously satisfies

the other properties of a norm. Let 2,7 € Z. Then ||(z + 2)<v”||x = ||z +
73y < 1Ex FIE<lx = v + 9. (v =10,1,...),850 2+ % € Z, since Y is
normal. Furthermore, by the monotony of || - |y, we have g(z + 2) < ||y + §lly <

llly +llglly = g(2) + 9(2).

To prove the last part, we choose Y = (£1)a. [[yllow = |AW)|1, k(v) =v+1
(v =0,1,...) and X = {; with its natural norm. Then obviously || - ||y is not
monotonous. If we choose z = e() 4 (2 4 e and 2 = e — (2 4 3 then
g(z+2) =2g(eM +eB)=8>4=g(2) +g(3).m

THEOREM 3.2. Let X D ¢ be a normed sequence space, Y O ¢ be a normal
BEK space and || - ||y be monotonous. Then Z is a BK space with || - ||z = g where
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g is defined in (2.1). Furthermore, if Y has AK and || - ||x is monotonous then Z
also has AK.

Proof. By Proposition 3.1, || - ||z = ¢ is a norm. We write || - || = || - ||z for
short. First, since Y is a BK space, ||2(™ —z|| = 0 (m — oc) implies ||(2(™))<¥> —
2|x — 0 (m = oo) for each v, and it follows that |z,gm) -zl 2 0 (m > x)
foreach k€I, (v =0,1,...), since for each v there are only finitely many k € I,,.
Thus the norm || - || is stronger than the metric of w on Z.

To show that Z is complete with || - ||, let (2(™)2%°_, be a Cauchy sequence in
Z, hence in w by what we have just shown. Thus there exists z € w such that

2M 5 2 (m = o0) in w. (3.1)
Furthermore, by the completeness of Y, there is ¥ € Y such that
Y = <||(Z<m>)<v>||X)V:0 —y (m— o0) in Y. (3.2)

From (3.1), we conclude zlim) — 2, (m = o) for each k, hence (z(™)<¥> & ()

(m — o) for cach v, and so

ylm) = ||(z(m))<”>||X — ||z<”>||X (m — o) or each v. (3.3)
Since Y is a BK space, (3.2) implies y,(,m) — y, (m — o0) for each v, and so, by
(3.3), ¥, = ||2"]|x for cach v and y = (||2<">||x)S%, € Y, hence z € Z. This
shows that 7 is complete.

Finally, let Y have AK and ||-||x be monotonous. We show that Z as AK. Let
z=(z1)32, € Z and € > 0 be given. For cach m € IN let v, be the uniquely defined
integer for which m € I, . We define the sequence y = (v,)5%, by v, = ||z x
for v = 0,1,..., and write yl*- = >*_ 9, for p =0,1,.... Since ¥ has AK,
there exists an integer 119 such that |jy — yl*||y < e for all y > po.We choose
mo = k(ug + 1). Let m > mgq be given. Then v, > po + 1 and

G =l(z=2Zm)Y|x =0=y, —glrUforo<v <y, -1
G, = 102 = YO = (0,0, 2y ) O < 50 |x = i,
since || - || x is monotonous, and
Gy = ||(z = 2™ |x = |2l x =y for all v > v, + 1.

Thus |7,| < |y, — yl[,um_1:| for all v, and so

(=== )

since || - ||y is monotonous. Therefore 2™ — 2z (m — o). m

19lly = < ly =y Uy <e,

As an immediate consequence of Theorem 3.2 and [14, Theorem 4.3.12, p. 63]
we obtain

%

COROLLARY 3.3. Let X D ¢ be a normed sequence space, Y O ¢ be a normal
BK space and || ||y be monotonous. Then Za is a BK space with ||z||a = g(A(z))
(z € ZA) where g is defined in (2.1).
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We close this section with a few examples.

EXAMPLE 3.4. (a) Let 1 < p < oo and 1 < r < co. Then [f,,,]**? and
[co, £,] " are BK spaces with AK with

o r/p\ 1/7 1/p
||z||<r,p>=<z<2|zk|p) ) andnzn(w,p):sup(z|zk|p) ,

v=0\kel, v>0 \kel,
and [éoc,ﬁp]<k(y)> is a BK space with || - [|(s,p); moreover, [co,Ep]<k(V)>
subspace of [Eoc,ﬁp]<k('/)> by [14, Corollary 4.2.4, p. 56]. The spaces [lT,Eoo]<k(V)>

are BK spaces with AK with

00 r\ 1/7
Izl ¢r,00) = <VZ=:U<IkIéaI>Vc|zk|> ) X

(b) Let 1 < p < oc and the sequences (k(¢))52, and d = (d,)52, be defined
as in Example 2.1(b). Since ¢y and £, are BK spaces and ¢g has AK, and since
d, # 0 for all v, the sets Yy = d™ ! *¢g and Yoo = d! * £, are BK spaces with
lylly.. = llyd|loc, and Yy has AK (cf. [14, Theorems 4.3.6 and 4.3.12, pp. 62 and
63]. Furthermore, obviously || - ||y.. and || - ||, are monotonous. Therefore w} and

wP_ are BK spaces with

is a closed

1 ovt+l_q 1/p
!
ot =sup (i 5 )
and w) has AK; moreover w} is a closed subspace of w?, by [14, Corollary 4.2.4,
p. 56].
EXAMPLE 3.5. (a) Let 1 < p < oc and 1 < 7 < oo. Then ([£,6,] ¥4,
(Ico, €] ¥ M) A and ([fo, £,] ) a are BK spaces with

0o r/p\ 1/r
1ol irpra = (z ( 5 | —zk1|p) ) and

v=0\kel,

1/p
e =sup( £ = sal?)
v>0 \kel,

and ([co,ﬁp]<k('/)>)A is a closed subspace of ([éoc,ﬁp]<k(y)>)A by Example 3.4(a) and
[14, Theorem 4.3.14, p. 64].

(b) Let the sequences (u )52, and d = (d,. )52, be as in Example 2.2(b). Then,
by a similar argument as that used in Example 3.4(b), co(u) and co.(p) are BK
spaces with

1/p
2]y = 5D ( S e — uk_lxk_np) ,
v>0 Hk(v+1) \kel,

and cf(p) is a closed subspace of ¢£_(u) by Example 3.4 and [14, Theorem 4.3.14,
p. 64].
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4. The -duals of the spaces Z and matrix transformations

In this section, we determine the 8-duals of the spaces Z and characterise some
classes of matrix transformations between them.

We denote the closed unit ball in a normed space X by Bx = {z € X :
lz]| < 1}. If X is a normed sequence space and a € w, we write ||a||x,o =
SUP,epy Doneolaktr| and |lallx s = sup,cp, |2 aeo@kr| Provided the expressions
exist and are finite which is the case whenever X is a BK space and a € X* or
a € XP (cf. [14, Theorcms 4.3.15 and 7.2.9, pp. 64 and 107].

A norm on a sequence space X is said to be KB if the set P = {P, : X —
C: Py(z) =z (z € X) k=1,2,...} of coordinates is equicontinuous, that is if
there is a constant K such that |zgx| < K|z|| (k =1,2,...)forallz € X. If X is a
Banach sequence space with a norm which is KB then it is obviously a BK space.
Conversely the norm of a BK space nced not be KB in general. To see this, we
choose X = (boo)a with ||z|| = supy, |xx — 21—1], @ BK space, and the sequence z
withxy =kfork=1,2,....

If X is a normed sequence space then we write X° = {a € w: ||a]|x o < o0}

THEOREM 4.1. Let X and Y be normed sequence spaces with X, Y O ¢ and
|| - lly be monotonous.

(a) Then [Y(S’Xé](k(V)) c (v, X]<k(1f)>)5‘

(b) If, in addition, the norms ||-||x and ||-||y are both KB, ||-||x is monotonous
and Y is normal then ([Y, X]*0)8 c [ys x8)*E)

Proof. We write Z = [, X]"*" and W = [Y?, X*]**”". Since || - ||x,o and
|| - |y, are norms on X® and Y?°, respectively, and ¢ C X,Y, the set W = {w €
w: (Jw®|x.0)5% € Y} is defined.

(a) First we obscrve that Z is a normed space with || - || = ¢ by Proposition
3.1. Let a € W and z € By. Then 2! € X for v =0,1,..., and, by the definition
of the norm || - || x o, we have
lag” 257 < a8 ||xa |27 ||x for all v =0,1,.... (4.1)
k=1

We define the sequences y and b by ,, = ||2{*||x and b, = [|a®!||x.e (v =0,1,...).
Then y € By and b € Y?, and it follows from (4.1) that Y oo |agzk| =
o omelastT 27 < Y0l olbuyy] < |Bllv,e by the definition of the norm
| - [lv,a- Therefore ||a|z,a = sup.cp, D perlakzi] < [|bllv,a < oo, that is a € Z°.

(b) First we observe that Z is a BK space by Theorem 3.2. Let a € Z° be
given. Then

> lakzk] < llallz,e = Ky < oc for all z € By. (4.2)
k=1
We have to show a € W, that is

sup > [la!Ix 0 [y | < oo (4.3)
yEBy v=0
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We note that [|a"!||x , is defined for each v. For if z € Bx is given then
Sreilag?? ekl = Yper lag”” k|, and since || - ||x is KB, there is a constant
K5 such that

oC

S 0l < Ko 3 lai el < Ko 5 Jait),

k=1 kel, kel
hence [|a{?||x,0 = sup,ep, Yopeslar” ok < K2d ey lag””| < oo for all v. Now
let ¥y € By be given. By the definition of || - ||Xa for every v, we can choose
a sequence z(v) = (z(r))$2, € Bx such that ||a¥||x o < Yoo, e zi(v)| +
2=+ whence

o0 o0 e 1
5 e lxalnl < 5 (S laiatmnl + pelnd ). (@)

Since || - ||y is KB, there is a constant K3 such that |y, | < Kslly|ly < K3 for all
v =20,1,..., and it follows from (4.4) that

5 e lxalnl < 5 ( £ lai>atnl) + Ka (45)
We define the sequence z by 2, = 4 (v)y, (k€ I; v=0,1,...). Then ||z x =
lyo [[(x(¥))<*>||x for all v = 0,1,.... Siuce, for each v, we have |(zp(v))<"”| <
|zi ()| (k=1,2,...), the monotony of || || x implies ||(z(+))**"|lx < |[lz(v)|lx =1
(v =0,1,...), hence ||2||x <|y.| (v =0,1,...). Since Y is normal, this implies
(||| x)s2o € Y, that is z € Z. Furthermore, ||y.|| < |y.| for v = 0,1,...
implies (Jy,|)52y € Y, since Y is normal, and the monotony of || - ||y yields ||z]|z <
(g )PZolly < llylly- Now (4.5) and (4.2) together imply

S eMxelye] < X0 3 lag” 2|+ Kz = Y |akzi| < Kil|2||z+ K3 < K1+ K.
=0 v=0kel, k=1

Since y € By was arbitrary, condition (4.3) follows. m

If X is a BK space then X* = X? by [14, Theorem 4.3.15, p. 64], and if X is
normal then X® = X%, Therefore we obtain from Proposition 3.1 and Theorems
3.2 and 4.1

COROLLARY 4.2. Let X be a normed sequence space, Y be a normal BK
space and the norms || - ||x and || - ||y be monotonous and KB. Then Z% =
([v, X]*¥Mye = [ye xe)*0 1 n addition, X is normal then 78 =
[Yﬂ’X,B]U“(V))‘

ExAMPLE 4.3. (a) Let 1 < p < 00, 1 < r < o0, ¢ and s be the conjugate
numbers of p and r, that isg=oc forp=1and ¢ =p/(p—1) for 1 < p < o
and s defined similarly. Since the norms || - [|¢, 3 and || - ||q and I lews,c and || - |1
are equivalent on ¢ and on 5, = &, we have ([ET,Ep]< ) = [€s,¢ ] *) and

(feas o] F = ([bos, €] FMNE = [0, £,
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(b) Let U denote the set of all sequences u with ug # 0 for all k. If u € U then
we write 1/u = (1/ug)2,, and it is obvious that (u™! % X)# = (1/u)~! x X for
arbitrary subsets X of w. Let the sequences k(v) and d be defined as in Example
2.1(b). Then

. SN el _
{aew.y=02 ggflak|<oo} p=1)

{aem:yi:jo?“(z \ak|q)1/q<oo} (1 <p < o0).

k€T,

Now we characterise some classes of matrix transformations between mixed
norm spaces.

Let (m ()52 be a strictly increasing sequence of integers with m(0) = 1 and
M,={meN:m(p) <m < m(p+1)—1} (¢ =0,1,...). Furthermore, lct T
denote the set of all sequences (£,)5%, of integers such that for each y there is one
and only one t, € M,.

First we give a result that characterises the classes (X,Y) where X is any
BK space and Y is any of the spaces £oc, co, £1, [oc, €)™, 01, 0] or
[co, gﬂ(m(u))_

THEOREM 4.4. Let X be a BK space, or a BK space with AK in the cases
marked x. We write supy for the supremum taken over all finite subsets N of
No. Then the conditions for A € (X,Y) when'Y is any of the spaces £u, co, £,

[Eoc,fl]m(“)), [El,ﬁoo]m(“)) or [co,fl]<m(“)> can be read from the table

To
From O | co 0 [gm’€1]<m(u)> [ghgoo]ﬁn(u)) [CO:El]<m(u)>

X (1) *(2)|(3) (4-) (5.) *(6.)

where
(1) (1.1) where (1.1) sup||A,||x g <
(2.) (1.1) and (2.1) where (2.1) lim an, =0 for each k
n—oc
3.) (3.1 where (3.1) sup|| A”HX,B < 0o
N nenN o
4. 1 where (4.1} su max A < oc
(4) (1) (1) sup( x| 32 Amlly )
(5.) (5.1) where (5.1) sup(sup|| > AtuHXﬂ) < 0o
N t€T peN ’
(6.) (4.1) and (6.1) where (6.1) lim > |ank| =0 for each k.
K= neM,

Proof. (1.) is [11, Theorem 1.23, p. 155], (2.) follows from (1.) and [14,
8.3.6, p. 123], since ¢p is a closed subspace of 4., and (3.) is [8, Satz 1].
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(4.) We have A € (X, [loo, 1)) if and only if A,, € X# for all n and
(I(A(z)) ™ 1)52 € Lo for all = € X. (4.6)
Since by a well-known inequality [13]

max | Y An@)|< T [Aw@)] = I(A@)S] <

M(u)CMul e (p) meEM,,

<4. max A, ()| for all and all 2 € X,
M(p)C My me%(u) (@) g

it follows by condition (1.1) that (4.6) holds if and only if condition (4.1) is satisfied.
(5.) First we assume that condition (5.1) holds. Then obviously 4,, € X#

for all n. Let # € X be given. For cach = 0,1,..., let m, € M, be such that
| Am, ()] = max;mens, |[Am(z)|. Let po be an arbitrary nonnegative integer. Then
we have by the definition of the norm || - ||x g

Ho (m()) ko

$ NAEN e = § (A, @ <4 s | D An, @)

n=0 n=0 NCNg 'penN

Nfinite
<t s | S Am | )l <4 s (sup| © | Yl < e
IzvvﬁcNo HEN X.,B ]ZVVCNO teT!lyeN X.,B
nite finite

Since g was arbitrary, it follows that (||(A(z))™ (=) lloo)iz0 € €1, that is A(z) €
[01,¢ ]M(u>

Conversely we assume A € [f1, £oo]™") . Since X and [f1, €)™ are BK
spaces, the map fa : X — [f1, 0] ™" with fa(z) = A(z) (z € X) is continuous
(cf. [14, Theorem 4.2.8, p. 57]. Hence there is a constant K such that

| fa(x)|l(1,00) = 1A(Z) ]| (1,00) < K||z|| for all z € X. (4.7)

We observe that A,, € X? for all m implies ) pen Ai, € X# for all finite sub-
sets IV of INg and for all sequences t € T, and so by (4.7), |>,cn 4, (z)] <
Yoneo 1A, (@) < [Ifa(@)|l1,00) < Kllzl|. Now condition (5.1) follows from the
definition of the norm || - || x g.

(6.) By Example 3.4(a), [co, 1] is a closed subspace of [fs, 1] ™).
Thus (6.) is an immediate consequence of (4.) and [14, 8.3.6, p. 123]. m

We obtain as an immediate consequence of Example 4.3 and Theorem 4.4

COROLLARY 4.5. Let 1l <r <oc and 1 < p < oc and s and g be the conjugate
numbers of r and p. Then the conditions for A € ([ET,EP]<k(V)>,Y) where Y is any
of the spaces in Theorem 4.4 can be read from the table

To
From l | co | 0 [gm’£1]<m(u)> [ghgoo]ﬁn(u)) [60151]0”(#))

6, 6%V (1) (2)](3)]  (4-) (5.) (6.)
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where
> s/q
(1) (1r.1) where (1.1) sup > ( > |ank|‘1) < oo
n p=0\kel,
(2.) (1.1) and (2.1) where (2.1} is (2.1) in Theorem 4.4
e 9\ s/e
(3.) (8.1 where (3.1) sup > (Zkgu’ 3 ank ) <o
N »=0 neN
(4 (4.1) where (4.1)
e q\s/q
su max am, <o
Mp<M(#)CMu VZ::[](ZICEIV me%(,u) k‘ ) )
e a\s/q
(5.) (5.1) where (5.1) sup(sup 3 (Zk%] > atwk‘ )7 <o
N \MeT v=0 HEN

(6.) (4.1) and (6.1) where (6.1) is (6.1) in Theorem 4.4.

Ifr=1o0rp=1replace 3,72 or >, c; by sup,sq or maxes, in conditions
(1.1), (3.1), (4.1) and (5.1) in (1.)=(6.). The conditions for A € ([co, £,]**),Y)

are those in (1.)—(6.) with s = 1 in (1.1), (5.1), (4.1) and (5.1). Finally
([goc,ep]uc(y»,y) = ([CO:Ep]UC(V»:Y) fO’I" Y 7& Cp, [CO:El]<m(u)>‘

Now we give the dual result of Theorem 4.4. We write 7" for the set of all
strictly increasing sequences t = (¢,)°2, of integers such that for each v there is
one and only one ¢, € I,,.

THEOREM 4.6. Let W be a BK space with AK and Y = WPB. Then the
conditions for A € (X,Y) where X is any of the spaces €, co, {1, [El,foo]<k(y)>,
[0oc, 2115 or [co, 0] can be read from the table

From
Th loc | co | 0 [éoc’gl]@('/)) [eligoo]@('/)) [CO=gl]<k(V)>

Y (1.)[(2)|(3) (4-) (5.) (6.)

where

(1) (1.1) where (1.1) sup|| > A"y < oo
N  neN

(2.) (1.1)

(3.) (3.1) where (8.1) sup ||A™||ly < o<

(4.) (4.1) where (4.1) sup(sup > At"||y) < oo
N MeT! yenN

(5.) (5.1) where (5.1) sgp(K(m)ax > Am||y)<oo

v)CK, meK(v)
(6.) (4.1).
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Proof. Since X is a BK space with AK when X is any of the spaces cg, £1,
[61,655]%% and [cg, 211", we have A € (X,Y) if and only if AT € (W, X?)
by [14, Theorem 8.3.9, p. 124], and (2.), (3.), (5.) and (6.) are immcdiate
consequences of Theorem 4.4 (3.), (1.), (4.) and (5.). Furthermore, since c5° =
loe and ([co, 1] *MBB = [0, 0] and (X,Y) = (XP#,Y) by [14, Theorem
8.3.9, p. 124], (1.) and (4.) follow from (2.) and (6.).m

We obtain as an immediate consequence of Theorem 4.6

COROLLARY 4.7. Let 1 < r <oc and 1 < p < co. Then the conditions for
A e (X, [ﬂr,ﬁp]m(“))) where X is any of the spaces in Theorem 4.4 can be read
from the table

From
To b | co | [goc’gl]@(’/)) [eligoo]@('/)) [60=gl]<k(V)>
[6r, €)M (1) ] (2.)](3.)]  (4) (5.) (6.)
where
o0 p\T/P
(1.) (1.1) where (1.1) sup Z( S0 akn ) < oo
N p=0‘keM,'neN
(2) (1.1)

(3.) (8.1) where (3.1) sup i ( > |akn|p)r/p <o

n pu=0‘keM,
p\"/P
) )<oo

Y. Gk,

veN

(4.) (4.1) where (4.1) Sl]\l[p(Sllp i( >

teT" n=0 ‘kEM,,

Z akm‘P)T/P) < 0o

(5.) (5.1) where (5.1) sup(k(nﬁeg{ Zﬂ(k 3 ’ »
v vv= EM,'meK (v

N
(6.) (4.1).

5. The fS-duals of the spaces ZA and matrix transformations

In this section, we determine the §-duals of the sets Za and characterise some
matrix transformations between them.

First we prove a general result which reduces the determination of (Xa)? for
arbitrary BK spaces with AK to that of X# and the characterisation of the class
(X, Co).

If X is a normed space, we write X* its continuous dual, that is the set of all
continuous linear functionals f on X with the norm || f|| = sup,cp, |f(z)|.

Let ¥ = (U'nk)f:)kzl be the matrix with o,z = 1 for 1 < k < nand op =0
fork>n(n=1,2,...). Then x = A(X(z)) = X(A(z)) for all z € w. Let X Cw
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and Y = Xa. Then z € X if and only if y = X(z) € Y, and y € Y if and only if
z=A(y) € X. If X is a BK space then so is Y and Bx = By by [14, Theorem
4.3.12, p. 63].

Given any sequence a, we write B* for the matrix with the rows B = anel™
(n=1,2,...). Then B%(z) = ap,Xn(z) = apny, for all z € X, y = X(z) and all n,
that is

a € M(Xa,W)if and only if B* € (X, W) for arbitrary subscts X and W of w.
(5.1)

THEOREM 5.1. Let E = BT, If X is a BK space with AK then a € (Xa)P
if and only if a € (XP)p and V* € (X, co) where V is the matriz with the rows
Ve = En(a)el’l (n=1,2,...). Purthermore if a € (Xa)? then

S oaryr = Y, Er(a)Ag(y) for ally € Xa. (5.2)
k=1 k=1

Proof. We write Y = XA and V = V@ for short.

First we assume a € Y. Then B® € (X, cs) by (5.1), and so C = £B% € (X, ¢c)
by [11, Theorem 3.8, p. 180]. Since ¢ is a closed subspace of .., we have by [14,
8.3.6, p. 123]

lim cpr = Y, a; = Ex(a) exists for all k (5.3)
and
Ce(X.l). (5.4)
From (5.3), we obtain that the matrix V is defined and
nh_)ngc Vpk = nll)ngcj;n a; = 0. (5.5)
We also have
m—1 m m
ST oakyr = . Er(a)Ar(y) — 32 v,uAx(y) for all m and all y. (5.6)
k=1 k=1 k=1

Since X is a BK space with AK, condition (5.4) implies CT € (¢1, X?) by [14
Theorem 8.3.9, p. 124]. Now X# is a BK space with

61/ =sup sup | 52 by | = sup B[ (b € X7)
m xEBx'k=1 m
by [14, Example 4.3.16, p. 65]. Therelore, by [14, Example 8.4.1, p. 126], the

columns of the matrix C7, that is the rows of C are a bounded set in X#. Thus
there is a constant K; such that

3 cnkxk‘ < K, for all m and n and for all x € By. (5.7)
k=1

Now (5.3) implies | >, | Ex(a)zi| < K; for all m and all z € Bx. It follows from
this and (5.6) that

m—1
[Vin(z)] < K1+ | Y. agyk| for all z € Bx, y € By and all m. (5.8)
k=1
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We define the linear functionals f,, (m =1,2,...) on Y by f..(y) = Z;::_ll aryi
(y € Y). We note that f,, € Y* for all m, since Y is a BK space. Further-
more a € Y? implies that f(y) = lim,,_oc fm(y) exists for every y € Y, that is
the sequence (f,,)%_, is pointwise convergent, hence pointwise bounded, and so
uniformly bounded by the uniform boundedness principle. Thus there exists a con-
stant K5 such that |fim(y)] = | > 1o, Yaxyr] < K for all y € By and all m, and
it follows from (5.8) that |V,,(z)| < K1 + K> for all m and for all z € Bx, hence
sup,, ||Viml|x 8 < oo. This and (5.5) imply V' € (X,¢g) by Theorem 4.4(2.); and
then (5.6) implies E(a) € X?, that is a € (X?)g.

If a € Y8 then E(a) € X? and V € (X,c), as we have just shown, and so
(5.2) follows from (5.6).

Conversely, if a € (X?) and V € (X,c) then a € Y# by (5.6). m

Now we give the (Z)? in some special cases.

ExXAMPLE 5.2. (a) Let 1 < p < 00, 1 < r < oc and ¢ and s be the
conjugate numbers of p and r. The conditions for E(a) € ([4, ¢ ] k@) Y8 and
E(a) € ([en.? ] V)>)B are given in Example 4.3(a). Corollary 4.5 yields the

conditions for V* € ([ér,ﬁp]<k(y)>,co) and V2 € ([eg, £ ] kD, ¢g), the condition
lim,, o v%, = 0 for each k being redundant. For each pos1t1ve integer n, let v(n)
denote the uniquely defined integer such that n € I,(,). We define the sequence
b%7 by

(V(%:((k(u +1) — k()24 (0 + 1~ k(w(n))/2) (1<r<oo,1<p< o)

b =9 (v(n) + 1)/ (1<r<oo,p=1)
max{0<urgi)7cl)71(k(v +1) = k()Y (n+1— k(u(n)))l/q} (r=1,1<p< o0).

It is easy to see that condition (1.1) for A = V2 in Corollary 4.5 is equivalent to
E(a) € (b>7)~! % £4; in the case of [co, £,] ¥ (1 < p < 00), we use the sequence
ba,

Let us mention that the condition E(a) € (b%9)71 x £, becomes redundant is
some cases. Asin Example2.2,let k(v) =v+1(r=0,1,...). Then, forl < p < oo,
we have bvP = ([Ep,€1]<k('/)>)A, and a € (bvP)# if and only if Y 00 (| 327 ak|? < oc
and sup,(n + 1)1/9|375° ax| < oo, and it is easy to see that, in general ncither
condition implies the other. If, however, p = 1, then bv = ([81,61]<k('/)>)A =
([61,£50] ¥¥7) o, and the conditions E(a) € [fos, £1]*“? and E(a) € b°! % £ are
the same, namely sup,, | > o~ ax| < oc that is a € cs.

(b) Let the sequences yr and d be defined as in Example 2.2(b). First we observe
that a € (&(u))? if and only if a/u = (an/ue)s2, € (([d71 * co, £,]" ) 2)8. Also
E(a/u) € [(1/d)~" = 61, £,]*™ if and only if

o0 .

€ [61,€q]<k(y)> where ¢, = 1/dy Ex(a/p) = prw+1) Z

Y (kel;v=01,...)
P> ( )

(5.10)
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Since obviously, for all v € U and for all X,Y C w, we have 4 € (u™! x X,Y)
if and only if B € (X,Y) where b, = ank/ui for all n and k, it follows that

Vee (ptx[dtx co,ﬁp]<k(y)>,00) if and only if V* € ([d~! « co,ﬁp]<k(y)>,00), where
02, = En(a/u) for 1 <k <nand @¢, =0fork >n (n=1,2,...). Finally, since
ze[dtx co,ﬁp]<k(y)> if and only if y € [co,ﬁp]<k(y)> where y = dyz; (k€ I;v =
0,1,...), we have V* & ([d~! = co,ﬁp]<k(y)>,co) if and only if W° & ([co,ﬁp]<k(y)>,00)
where w2, = 9¢,.1/d, (k € I;v = 0,1,...) for all n = 1,2,.... Again, the
condition lim,, o Wni = 0 is redundant, and we nced

sup 3 [|(W:)®l < oo. (5.11)

We define the sequence b%(p) by

v(n)—1

> ek +1) = kE)Y? — prman (n+ 1 —k((n))/? (1 <p <)
TarN »=0
b () =9 Ly

;} Hr(v+1) (p=1).

Condition (5.10) is equivalent to

o0 .
ai

j=k Hj

Z%

j=k Mj

a\ 1/q
) <o (1 <p<oo),

2_:0 Mk(u+1)< Z

kel,

0

=1),
kel, <o (p )

v=

HE(v41) Max
0

and it is easy to see that condition (5.11) is equivalent to E(a/p) € (b19)7! % £
for 1 < p < oc and E(a/u) € (b4°°(u))~! * £, for p = 1, this condition being
redundant, if there are reals s and ¢ with 0 < s < ppy/prw+1) <t <1 for all v.

The next result reduces the the characterisation of (Xa,Y") to that of (X,Y)
and (X, ¢yp).

THEOREM 5.3. Let X D ¢ be a BK space with AK andY be a subset of w.
Then A € (Xa,Y) if and only if

E* € (X,Y) where ey = 3 an; for alln and k (5.12)
=k
and
VA € (X, co) for alln (5.13)

where VA» is the matriz with the rows Vi = Ep,(Ap)el™ (m=1,2,...).
Proof. First we assume A € (Xa,Y). Then A, € (Xa)? for all n, hence
condition (5.13) holds and
E(A,) € XP for all n (5.14)
by Theorem 5.1. Let 2 € X be given. Then A,, € (XA)% implies
(EM(2) = An(Z(2)) for all n (5.15)
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by (5.2). Since X(z) € Xa, it follows that A(X(z)) € Y, hence E4(x) € Y. Thus
(5.12) also holds.

Conversely we assume that conditions (5.12) and (5.13) are satisfied. Then
(5.14) holds, and this and (5.13) imply A, € (Xa)? for all n by Theorem 5.1.
Again (5.15) holds and then A € (Xa,Y). m

Now we give some characterisations of matrix transformations between Z and
ZA.

We obtain as an immediate consequence of Theorems 5.3 and 4.4 and of [11,
Theorem 3.8, p. 180]

THEOREM 5.4. Let X be a BK space with AK and Y be any of the spaces
locs €0, 01 [loos 1) ™M, [b1, £0] ™ o1 [cq, €)1

(a) Then A € (Xa,Y) holds if and only if condition (5.13) holds in addition
to the respective conditions in Theorem. 4.4 with the A replaced by EA.

(b) Let C = AA, that is cni = Gnk—an_1k for alln and k. Then A € (Xa,YA)
if and only if condition (5.13) with VA~ replaced by VE» holds in addition to the
respective conditions of Theorem 4.4 with A replaced by EC.

In particular, we have, applying Corollary 4.5

COROLLARY 5.5. Letl <r < oc andl < p < oo, s and q be the conjugate
numbers of r and p, and Y be any of the spaces in Theorem 5.4. Finally, let the
sequences b*? be defined as in Example 5.2(a).

(a) Then (A € ([, 6,]" N A,Y) if and only if E(A,) € (0(5D)~1 « £y for
all n, and the respective conditions in Corollary 4.5 hold with A replaced by E*.
Furthermore, A € (([co,ﬁp]<k(y)>)A,Y) for 1 < p < oc if and only if E(A,) €
(b29) =1 x £ for all n, and the respective conditions in Corollary 4.5 hold with A
replaced by EA.

(b) The conditions for A € (([£,£,]* ) a,Ya) and (([co, €,] VA, YA) are
obtained from the respective ones in Part (a) by replacing A by C throughout.

For the next result, we need to know the S8-duals of £, and [fu,¥¢;] which
cannot be determined by Theorem 5.1, since they do not have AK.

LEMMA 5.6. Let E = X7, Then

(a) a € ((Loo)a)? if and only if a € (41 N ((n)o=y) ™ * co)m;

(6) @ € (([boes 6]V a)? if and only if @ € (62, £6]*™ 11 (B%) 7 5 o)
where the sequence b is defined as in Example 5.2(a).

In both parts, if a € ((Ls)a)? or a € (([ls, 1)) 2)8 then (5.2) holds.

Proof. (a) This follows from [9, Theorem 2, Corollary 2].
(b) We write Xoo = (([foc, £1]*®) A and Xo = ([co, £1]@) 4, for short.
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First Xo C Xo implies X2 € X2 hence X8 C ([61,450]"**") 5 by Example
4.3(a). Now we assume a € X8 . Since e € X, the sequence E(a) is defined.
Let y € X, be given. Then, by (5.6), a € X2 and E(a) € [f1,£oo] "™ together
yield V“ ([éoc,f ]<k(y)>,c), that is E(a) € (X0, c) by (5.1). Conversely, if a €

(161, £o0]* Y N M(X o, ), then E(a) € [loo, £1] and Va € (Xo,c), hence
a € X8 by (5.6). Thus we have shown X2 = ([f1,£:]* " N M(Xse,c))p. We
will prove

M(Xoo,¢) = M(Xoo,co) = (b%°) " % cq. (5.16)

We write b = b5 and observe that a € M(X,c) if and only if B* €
([oo, 1] €) by (5.1).
First we assume B® € ([ﬁoc.c]<k(y)>.c). Then, by [7, Satz 4.8],

Z max [6%,| converges uniformly in 7 (5.17)
v=0
and lim,,_,o 0%, = «ay exists for each k. Since [co,fl]<k(y)> C [Koc,fl]<k(y)> im-
plies ([£oc, 1] c)  ([co, 1], ¢), we have sup,, ||B%||1.0c < oc by Corollary
4.5(2.), and this is equivalent to a € b= = £, by Example 5.2(a). Thus there is a
constant K such that sup,, |a,|b, < K, whence |a,| < K/b, — 0 (n — o0), that is
a € cg. By (5.17), given € > 0 there is vy € INy such that

Z néax|b el <lan] (br = brue)—1) < €/2 for all n.

v=vg
Furthermore, since a € ¢y, we can choose ng € IN such that |a, |bg,)—1 < £/2 for
all n. > ng. Then |ay|b, < € for all n > ng, that isa € b=1 x ¢q.

Conversely we assume a € b~1 % ¢5. Then obviously a € ¢g. Furthermore
a € b1 x ¢y implies

1Balla,o0) = 2 max b =0 (n = o0) and sup |Blr 0 < o0

By [6, Lemma, p. 168], these two conditions together 1mply (5.17). From this and
My, o0 b2, = limy, o0 ay = 0, we conclude B® € ([fos, 1], co) by [7, Satz 4.8],
hence a € M(Xoc,c0). ®

We obtain as an immediate consequence of Theorems 5.3, 4.6, Example 5.2(a)
and Lemma 5.6

THEOREM 5.7. Let W be a BK space with AK and Y = W# and X be any
of the spaces by, co, 01, [61,€oo]<k(y)>, [Koc,fl]<k(y)> or [co, £ ] RO,

(a) Then A € (Xa,Y) if and only if the respective conditions in Theorem 4.6
hold with A replaced by E* and, in addition for all m, E(A,) € ((n)2,)~! * cq
when X = L, (Am) € ((n)2,) L x £y, when X = ¢y, E(A,,) € (b:l °°) Lk co
when X = [fu 61] k(@) , E(An) € (boo’l) % Lo when X = [£y,¢ ] RN and
E(Ay) € (bb°°) sty when X = [co,El] ROV - no additional condition is needed
when X = £, by Fzample 5.2(a).
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(b) Then A € (Xa,YA) if and only if the respective conditions in Part (a) hold
with A replaced by C = AA.

We obtain from Corollary 4.7

COROLLARY 5.8. Letl <r<oc andl <p < oc ad X be any of the spaces in
Theorem. 5.7.

(a) Then A € (Xa,[tr,€,]"™ ) if and only if the conditions in Corollary 4.7
with A replaced by E* and the additional conditions of Theorem 5.7(a) hold.

(b) Then A € (Xa, ([ér,ﬁp]<m(“)>)A) if and only if the conditions of Part (a)
hold with A replaced by C = AA.
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