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WEYL’S THEOREM FOR A GENERALIZED DERIVATION
AND AN ELEMENTARY OPERATOR

B. P. Duggal

Abstract. For a,b € B(H), B(H) the algebra of operators on a complex infinite dimensional
Hilbert space H, the generalized derivation 8., € B(B(H)) and the elementary operator A, €
B(B(H)) are defined by §,:(z) = axz — b and A (z) = axb — z. Let dup = bap or Dgp. It is
proved that if a,b* are hyponormal, then f(d,;) satisfies (generalized) Weyl’s thcorem for cach
function f analytic on a neighbourhood of o(das).

1. Introduction

Let B(H) denote the algebra of operators (i.e., bounded linear transforma-
tions) on a complex infinite dimensional Hilbert space H. For a,b € B(H), let
Sap: B(H) — B(H) and Ayp: B(H) — B(H) denotes the generalized derivation
Sap(z) = ax — xb and the elementary operator Agp(x) = axhb — z. Let du, = dgp or
Agp. The following implications hold for a general bounded lincar operator ¢ on a
normed linear space V', in particular for t = dg:

t7H0) L &(V) =t~ 1(0) nclt(V) = {0}
= t710) N (V) = {0} <= asc(t) < 1

[6, page 25]. Here asc(t) denotes the ascent of t, clt(V) denote the closure of the
range of t and £+71(0) L (V) denotes that the kernel of # is orthogonal to the range
of t in the sense of G. Birkhoff. Recall that if M, N are lincar subspaces of a normed
linear space V', then M | N in the sense of Birkhoff if ||m|| < ||m+n| for allm € M
and n € N. This concept of orthogonality is not symmetric, i.e., M L N does not
imply N L M, but the concept does agree with the usual concept of orthogonality in
the case in which V' = H. The range-kernel orthogonality of d,; has been considered
by a number of authors (see [1,6,10,15,22,23] for further references). A sufficient
condition guaranteeing d_!(0) L dup(B(H)) is that d_,1(0) C d_L. (0) [10, Theorem
(i)]. The class of operators a,b* € B(H) such that d_;!(0) C d;%.(0) is large, and
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includes in particular the class of hyponormal a and b* [9,20]. If a,b* € B(H) are
hyponormal, then (dgp — A)71(0) C (da=p- — A)7(0) and asc(dyy — A) < 1 for all

complex numbers A. This implies that d,; has the single-valued extension property
and hence satisfies Browder’s theorem [8].

A dctailed study of the spectral properties of the operator dy; has been carried
out in a series of papers by T.. A. Fialkow (of which [14] is an earlier sample). Our
aim here is a modest one. We show that if a, b* € B(H) are hyponormal, and f is a
function which is analytic on a neighbourhood of the spectrum of dgp, then f(dg)
satisfies Weyl’s theorem. Indeed more is true: f(d,;) satisfies the generalized Weyl’s
theorem. Problems of this type seem not to have previously been considered.

The plan of this paper is as follows. We use the remainder of this section
to introduce some of our notation and terminology. (Any additional notation or
terminology will be introduced as and when required.) Section 2 will be devoted
to proving some complementary results, amongst them that dg,, a,b* € B(H)
hyponormal, is isoloid and that the range of d,; — A is closed for each isolated point
A of the spectrum of d,;,. We shall prove Weyl’s theorems for d;, in Section 3.

We shall denote the spectrum, the point spectrum and the set of isolated points
of the spectrum of a Banach space operator t € B(V) by o(t),0,(¢) and isoo(t),
respectively. The range, the kernel and the restriction to an invariant subspace M
of t will be denoted by ¢(V) (or, ran(t)), t71(0) (or, kert) and t|,, respectively.
The operator t is a quasi-affinity if it is injective and has dense range, and ¢ is
said to be isoloid if there is implication A € isoo(t) = A € o,(¢). Recall that
the ascent asc(t) of an operator t is the smallest non-negative integer n such that
t="(0) = ¢t~ (n+1)(0).

Let V be a (complex) Banach space, and let ¢/ be an open subset of the complex
plane C. Let O(U, V) denote the Frechet space of V-valued analytic functions from
U. The operator t € B(V) is said to satisfy Bishop’s condition (3) if, for cach open
subset U of C, the operator t;, given by (t;,f)(A) := (t — A)f()) is injective and
has dense range in O(U, V) for each f € O(U,V) and all A € Y. For a closed subset
F of C, let V;(F) denote the analytic spectral manifold

Vi(F)={v eV :(t—X)f(A) =v has an analytic solution f: C\ F — V}.

The spaces Vi(F) are t-invariant (generally, non-closed) manifolds of V. If, for
every closed F C C, V;(F) is closed, then ¢ is said to satisfy Dunford’s property
(C). Condition (3) implies property (C), which in turn implies that the operator ¢,
is injective for every open U C C. This last property is the single-valued extension
property, shortened henceforth to SVEP. (Thus ¢ has SVEP if, for every v € V,
(t — A)f(u) = v has a unique solution f : i/ — V on U C C.) We shall denote the
set of natural numbers by N.

A Banach space operator ¢ € B(V) is said to be Fredholm if t(V) is closed,
and both t71(0) and V' \ clt(V) are finite dimensional. The Fredholm index ind(t)
of t is defined by ind(t) = dim(¢t~1(0)) — dim(V \ ¢(V)). The operator ¢ is Weyl if
it is Fredholm of index 0, and it is Browder if it is Fredholm and both asc(t) and
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dsc(t) are finite [11]. The (Fredholm) essential spectrum o.(t), the Weyl spectrum
o (t) and the Browder spectrum op(t) of ¢ are defined by

g.(t)={x e C:t— X\ is not Fredholm},
ow(t)={A e C:t— X\ is not Weyl},
op(t) ={A € C:t— X is not Browder}.

Evidently, c.(¢t) C a,() C op(t) C o.(t) Uace o(t). In general, the spectral
mapping theorem holds for o4(t) but fails for o,,(¢) [12,13]. Let o,(¢t) denote the
set of Riesz points of t, and let 0,,(t) = {\ € isoo(t) : 0 < dim(t — A\)71(0) < oo}.
Then isoo(t) \ 0.(t) = isoc(t) \ 0u(t) = 0,(t) C 0,,(t). We say that t satisfies
Weyl’s theorem (resp., Browder’s theorem) if

o)\ ow(t) = 000(t) (vesp., o(t)\ ou(t) = ao(t)).

2. Complementary results

We prove in this section that if a,b* € B(H) are hyponormal, then d,;, is
isoloid and ran(da, — A) is closed for each \ € 0,,(d,p). But we start by working
towards proving that dy;, has SVEP. Throughout the following, we write ¢ — A
for the operator ¢ — AI. The operators of “left multiplication by a” and “right
multiplication by " shall be denoted by L, and Ry, respectively.

LEMMA 2.1. Let a,b € B(H) be normal. If there exists a quasi- affinity
z € N0, then b is invertible and = € §_,' 1 (0).

Proof. The operators a and b being normal, it follows from an application
of the Putnam-Fuglede theorem for normal operators that AM(0) = AZL.(0)
[9, Corollary 3]. Let the quasiaffinity = € A;bl (0) have the polar decomposition
x = u|z| (where u is unitary). Since Agp(z) =0 = A,p-(2), it follows from

blz|? = br* (axb) = (bx*a)zb = |z|*b

that |z|2, and so also |z|, € §;,(0). Hence, since Agp(z) = Ay (ulz]) = Dap(uw)|z| =
0, u € AL}(0). Let h € H. Then

Nap(u)h =0 = u¥aubh = h = ||h|| = ||u"audh|| < ||a||||bk]|,

i.e., b is bounded below. Tt is clear from Agvp(z) = a*zb* — z = 0 that b* is
injective. Hence b is invertible and = € 5,1, (0). m

The following lemma is proved in [20] for the case in which d = §; for the case
in which d = A a proof follows from the argument of the proof of [9, Lemma 4].

LEMMA 2.2. Ifa,b € B(H) are normal, then d2(0) = d_}(0).

The ascent of the operator d,;, (indeed, any operator) equals 0 if and only if d,,;,
is injective, and then {0} = d_}(0) C d_%. (0) trivially. The following proposition

a*b*
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says that non-injective d,; — \ satisfying (dgp — A)71(0) C (dg=p- — A)~1(0) have
ascent one.

PROPOSITION 2.3. Ifa,b € B(H) and A € C are such that (dg, — ) 71(0) C
(dosp- — A)7H(0) , then asc(dgy — A) < 1.

Proof. We consider the cases dgp = dap and dgp, = Agyp separately.

Case dgp = §4p. Let 2 € (6,5 — A)71(0). Then the hypothesis (6,5 — A)71(0) C
(Saspr — A)7H0) = ax — 2(b+ ) = 0 = a*z — z(b* + \) = 7anz reduces a and
kerLx reduces b+ . Since 2 € (5q5 — A)7H(0) => az and z(b+)) € (845 — A)7(0),

a*ax = az(b+ \)" = aa*x

and
b+ N (b+N)=a"z(b+ X)) =z(b+ N)(b+ \)".
Hence a1 = alrgnz and by = (b+ A)|perL, are normal operators.

Suppose now that y € (64 — A)72(0). Set (dup — Ny = =, let 1 : kertz —
ranz be the quasi-aflinity defined by setting z1h = xh for each h € H and let
y : kertz @ kerz — 7anz @ Fanz - have the matrix representation y = [yij]ij:l.
Then 0 = dap() = dap, (z1) B0 = 6., (y11) @ 0. The operators a; and by being
normal, it follows from Lemma (2.2) that da,p, (y11) = 0. Hence z = 4,8, (y11)90 =
0= (dup — AN)(y) =0 = asc(bsp — A) < 1.

Case dgp = Ngp- The proof is split into the cases A = —1 and A # —1.

IfX=—1,theny € (Aup—A)72(0) = ayb € (Dup — A)71(0) = |a|?y|b*|? =
0. If both |a| and |b*| are injective, then y = 0 (and we are done). If only one of
|a| and |b*| is injective, say |a|, then y|b*|? = 0. Letting |b*| = 0 bg, bs invertible,
and y = [yij]?,j=1 it then follows that y12 = y92 = 0. Hence y|b*| = 0, which
implies that |a|y|b*| = 0 = ayb = 0. Finally, if both |a| and |b*| are not injective,
then upon letting |a| = 0@ ag, [b*| = 0@ by and y = [y]7 ;- it follows that
y22 = 0 = |a|y|b*| = 0 = ayb = 0. In either case asc(Aqs — A) < 1.

If A # —1, then Awp — A = (L4 N and (Dap — N)7H0) C (Dgrpe —
N)7H0) <= AL 0) € A} (0), where we have set 3xa = c. Let z € ALY(0).
Then czb — 2 = 0 = ¢*zb* — x —> Fanz reduces ¢, kertz reduces b and bl L,
is invertible (see the proof of Lemma 2.1). Obviously, z € AS'(0) = cz and
zb € ALH0). Since AZM0) C AL (0),

Ac*b* (CCL‘) =0= CAC*Z,* (l‘) and Ac*b* (.l‘b) =0= Ac*b* (.’E)b

which implies that ¢y = ¢|7gmz and by = b|ie,1, are normal operators. Assume now
that y € AZ2(0). Set Au(y) = =, let y : kertz @ kerz — 7anz & Tanz- have
the matrix representation y = [y”]l2 j=1, and define the quasi-aflinity =, : kertz —
ranz as above. Then

0 = ACb(m) = AClbl (‘Tl) 52 0 = Aglbl (yll) S O

The operators ¢; and b; being normal, it follows (from an application of Lemma
(2.2)) that Agyp, (y11) = 0. Hence & = Dy, (111)90=0= (Dps —A)(y) = 0 =
asc(Ngpy —A)<1.m
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If + € B(H) is hyponormal, then so are the operators At and t + X for every
X € C. Since the inclusion d;}(0) C d%.(0) holds for hyponormal a,b* € B(H)
[9,20], it follows that

(a6 = X)7H0) = b,

o0 (0) € 07740+ (0) = (Janpe = X)7H(0).

Again, if A # —1, then
(B =2)7H0) = (L 0B = 1)7H0) € (Lo oo R —=1)7H(0) = (Darp — 1) 7H(0)5

L4

and if A = —1, then
(Dab = N)7HO0) = (LaRp)7H(0) C (La- Ro-)7H0) = (Lavp- — A)7H(0).

COROLLARY 2.4. If a,b* € B(H) are hyponormal, then asc(dg — A) < 1 for
all x € C. In particular, dy, has SVEP.

Proof. Since (dgp — A)71(0) C (dg-p- — A)71(0) for all X € C, Proposition 2.3
applies. The finite ascent property of (dgs — A) implies SVEP [17]. m

REMARKS 2.5. (i) The asymmetric hypotheses on a and b in Corollary 2.4
are not surprising; for the record the corollary fails if a and b are hyponormal
(even, subnormal). Specifically, take u to be the (forward) unilateral shift and let
T = [1 —Ouu* g} (on H & H). Choose a = b= u & 0 in the case in which d = §
,and a =u® I and b= (I 4+ w) & 0 in the case in which d = A. Then = € d_}(0)
but z ¢ d_4.(0).

(ii) More is true in Corollary 2.4 in the case in which d = §. The hypothesis
a,b* € B(H) are hyponormal implies that a, b* satisfy Bishop’s condition (8) [17].
Hence 4, satisfies condition (C) [17, Theorem 3.6.10, page 277] (which implies
that d,5 has SVEP). Denoting B(H) by V and &4 by ¢, this implies that E;(F)
is closed for all closed sets F' C C if and only if Ey(F) = Vi(F) [17, Proposition
1.4.13], where the algebraic spectral subspace E;(F) is the largest subspace of V'
on which all restrictions of t — A\, A € C\ F, are surjective. (We note here that
Ei(F) = Nxgpnen(t — A)™ for all subsets F' of C, because of the finite ascent
property of t.)

(iii) Does Agp, a and b* € B(H) hyponormal, satisfy condition (C)?

For the remainder of this section we assume that a, b* € B(H) are hyponormal.

THEOREM 2.6. (dgp — A) has closed range for each \ € iso0(dgs).

Proof. Before proceeding with the proof proper let us recall that if t € B(H)
is hyponormal, then: (i) ¢ — X is hyponormal; (ii) ¢ quasi-nilpotent implies t = 0;
(iii) the isolated points of o(f) are poles of order one of the resolvent of ¢; and
(iv) the eigenvalues of t are normal eigenvalues. Let A € isoo(d,s).

The case dgp = Ngp. We divide the proof into the cases A = —1 and A # —1.
Let ®,, = L,Ry. If A = —1, then 0 € isoo(®y). Since o(Pyp) = U{o(za) : 2 €
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a(b)} (this well known fact follows from [11, Theorem 3.2]), we must have that
cither 0 € isoo(b) or 0 € isoo(a). Suppose that 0 € isoo(b). (The other case is
similarly dealt with.) Then 0 can not be a limit point of o(a). For if 0 is a limit
point of o(a), then there exists a sequence {®,} € o(a) such that a,, = 0 € o(a).
Choosing a non-zero z € o(b) we then have a sequence {za,} € o(®,;) such that
za, — 0, which contradicts the fact that 0 € isoo(P4p). (We remark here that
such a choice of z is always possible, for if not then o(b) = {0} and b is the zero
operator.) The conclusion that 0 can not be a limit point of o(a) implies that cither
0 ¢ o(a) or 0 € isoo(a). If 0 & o(a), then a is invertible and ran(®,) is closed
whenever ran(®y,) is closed. Notice that 0 € isoo(b) = 0 € isoc(b*). Since b* is
hyponormal, ker(b*) reduces b and b = 0 & by with respect to the decomposition
H = ker(b*) @ kert(b*) = H, & Ho, say, of H. Clearly, the operator by = b|y, is
invertible. Let x : Hi® Hy; — Hq® Hy have the matrix representation x — [;Uij]zj:l.
0 1202
0 2202
and hence ran(®,) (and so also ran(®q)) is closed. Now let 0 € isoa(a). Then
a = 0 @ ay with respect to the decomposition H = ker(a) @ kert(a) = H| & H},
say, of H, where the operator az = a|p; is invertible. Let x : H, @ Hy — H] @ Hy

Then ®,,(z) = [0 0 } The

Then ®,(z) = } The operator be being invertible, ® 3, is invertible,

have the matrix representation & = [x]7;_. 0 b
22202

operator ®,,;, being invertible, ran(®,,s,) (and so also ran(®,;)) is closed. This
leaves us with the case A # —1, which we consider next.

If A # —1, then (Aup—A)(2) = axb— (14 )z, and it follows from [11, Theorem
3.2] that

Dap — N = J{o(=1+ N + za) : z € ()}

Ifhe isoa(Aab), then 0 € zsoa( ab — A). There exists a finite set {81, 82,-..,0n}
of distinct non-zero values of z € isoo(b), and corresponding to these values of
z a finite set {ay,as,...,a,} of distinct non-zero values a; € isoc(a) such that
a;f; =1+ Aforall 1 <i<mn. Let

H = \/jzlker(b—ﬁi)*, H = \/jzlker(a—ai), Hy = HSH, and H, = HoH,.

Then a and b have the direct sum decompositions ¢ = a1 @ ag and b = by & bo,
where a1 = af H] and b; = b|y, are normal operators with finite spectrum, b; is
invertible, ay = a|gz, b2 = blu,, and o(a1) No(az) = 0 = o(by) No(b2). Let
x: Hy @ Hy — Hj @ Hj have the matrix representation & = [z;;]7 ,_,. Then

(Aalbl - )\)'Tll (Aalbg - )\)$12
(Aazbl - A)x21 (Aagbg - )\)1722

where 0 € o(Agp; — A) for all 1 < 4,5 < 2 such that 4,5 # 1. To prove that
ran(fgs — A) is closed it thus remains to prove that ran(Ags, — A) is closed.
This follows from [1, (2 4) Theorem], since b; invertible implies (Ng,5, — A)211 =

(arz1; — 211 (1 + N)byh)by = 84, (1+7)b- )(mllbl), where the normal operators a,
and (1 + \)by! have finite spectrum

(Bar=Ne= |
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The case day = Oap. Let A € is00(8ap). Then 0 € isoo(6qp — A), where
0(8ap—A) = o(a) —o(b+ A) [11]. Hence o(a)No(b+ A) consists of points which are
isolated in both o(a) and o(b+ A). In particular, o(a) No(b+ A) does not contain
any limit points of o(a) U o(b+ A). There exists a finite set S = {1, a2,...,a,}

of distinct values a; such that S = o(a) N o(b+ A) and each a;, 1 < i < n, is an
isolated point of both o(a) and o (b + A). Let

Hy = \/jzlker(b—az-)*, H = \/jzlker(a—ai), H, = HoH, and H, = HOH,.

Then, upon defining the normal operators a; and b; as before and letting = :
H, & Hy — Hj & Hj have the matrix representation x = [z;;]7 ,_,, it is seen that

(6(11[)1 - )\)'Tll (5(11192 - )\)$12
(6a251 - )\)3321 (5a2b2 - )‘)3522

where as = algy, b2 = by, and o(a;) No(b; + A) = 0 for all 1 < 4,5 < 2 such
that 4,7 # 1 (so that 0 & o(6,, — A) for all 1 < 4,5 < 2 such that 4,7 # 1). That
ran(dqs — A) is closed now follows (see the proof above). m

(6 N = |

As earlier stated, hyponormal operators are isoloid. The following theorem
says that d,p, retains this property in the case in which a,b* are hyponormal.

THEOREM 2.7. dgp 1s tsoloid.

Proof. If X € isoc(dgp), then 0 € isoo(da — A). Let P denote the spectral
projection of d,; — A at 0. Then

0# P(B(H)) ={z € B(H) : lim ||(das — A)"z||= = 0}

We prove that
P(B(H))={z € B(H) : (dep — Nz =0}.

Let d = §. Then upon arguing as in the proof of Theorem (2.6) it is seen that therce
exist decompositions H = Hy & Hy and H = H| & H) such that = : H; & Hy —
H{ @ Hj has the representation 2 = [x;;]7,_; and

(51117 - )‘)x = [(6aibj - A)xij]?,jzla

where a1 = ag; and b1 = by, are normal operators with finite spectrum, and
where 0 ¢ (04,5, — A) for all 1 < 4,7 <2 such that 4, # 1. Since

{Bass; — N 2i5l1}™ < [1(6ap — A7 — 0

as n — oc implies that (4,5, — A) is quasi-nilpotent for all 1 < ¢,7 < 2, it follows
that @;; = 0 for all 1 <4, < 2 such that 4, j # 1. Consequently,

P(B(H))={z =121, ®0¢€ B(H): nh_f%c (Sass, — A)'za||* = O}
The operators a; and by + X in 8, (5, +2) = as5, — A being normal,

lim [[(§ays, — N201]|7 & (Bags, — A1 =0

n—oc
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[20, Lemma 2], i.e., if and only if 0 is an eigenvalue of §,,5, — A. Hence
P(B(H)) = {x =x1100¢€ B(H) : (5ab — )\)3311 G0 = 0}

Now let d = A, and let 0 € isoo(Lgp). If A # —1, then (it follows from
Theorem 2.6 that)
(Aab - )‘)x = [(Aaibj - A)xij]?,jzla
where @ and b; are normal invertible operators with finite spectrum, and where
0 ¢ o(Agp; —A) forall 1 <4, 5 < 2 such that 4,5 # 1. Consequently,

P(B(H))={z=an ®0€ B(H) : lim [[(La;s, = \)"eu]|* =0}
The operator b; being invertible normal,
160,01 = A @a1ll™ = [(Dars, = A 212)b; 17 < 167 1 ((Dassy = Nznal|= =0
as n — oc. This implies that
(0gpmt = A)z11 = 05 (Do, —A)711 =0
and hence that
P(B(H)) ={z =711 ®0 € B(H) : (Aa — A)(z11 $0) = 0}
in the case in which A # —1. Arguing similarly it is seen that if A = —1, then

P(B(H)) ={z=[3}10] or [2}; "¢°] € B(H) :
(Dap — Nz =B 1(z) or Pop(z)=0}. =

REMARK 2.8. It is clear from the proof of Theorem 2.7 that if 0 € isoo(dg),
then P(B(H)) = d;}(0). Since B(H) = P(B(H)) @ P~'(0) and P~(0) C
doy(B(H)), it follows from [16, Theorem 3.4] that 0 is a pole of order one of the
resolvent of dg, and B(H) = d;} (0) & day(B(H)).

The descent of the operator t, dsc(t), is the smallest non-negative integer n
such that ran(t") = ran(t"™!). The operator t is said to be Drazin invertible if
there is an operator s and an n € N such that

t"st=1t",sts =s and st =ts.

Tt is known that ¢ is Drazin invertible if and only if both asc(t) and dsc(t) are
finite (and this is equivalent to the existence of a decomposition ¢ = t¢ & ¢, where
to is nilpotent and #; is invertible) [18]. The following theorem relates the Drazin
invertibility of d,, to the finiteness of a subset of o(d,;). But before that we
recall (once again) from [2, Theorem 3.3] that if s,¢ € B(H) are normal, then
cl(85:(B(H)))®;1(0) = 8.+(B(H))®6,,1(0) = B(H) if and only if the set o(s)No(t)
is isolated in ¢(ds:). Since o(dap) = o(a) —o(b) (and o(Ag) = U{o(-1+ za) :
z€o(b)}), 0€isoc(dup) (resp., 0 € isoo(Agp))if and only if the set o(a) No(b) is
isolated in o(d4p) (resp., the set {af: a € o(a),8 € o(b), and «f = 1} is isolated
in o(Ngp).)
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THEOREM 2.9. dap (Tesp., Nap) is Drazin invertible if and only if the set
{o(a)Na(b)} is isolated in o (8,p) (Tesp., the set {a € o(a) : o=t € a(b)} is isolated
in U(Aab)).

Proof. We prove the case in which d = d; the other case is similarly proved. If
845 is Drazin invertible, then both asc(8,5) and dsc(d,p) are finite. Since ase(dqp) <
1 by Corollary (2.4), it follows from [21, Theorem V.6.2] that asc(d.p) = dsc{dqp) <
1 and 6,(B(H)) @ 6,,'(0) = B(H). Hence 0 € is00(6,5), which implies that
{o(a)No(b)} is isolated in o(dap)-

Conversely, {o(a) No(b)} isolated in 0(dgp) = 0 € is00(dap). (Clearly, 0 ¢
0(8,5) = Drazin invertibility, trivially.) By Remark 2.8, 0 is a pole of order 1 of §,;
and 8,(B(H)) @ 6,1 (0) = B(H). Hence asc(d4) = dsc(dqp) < 1 [17, Proposition
4.10.6] and 4, is Drazin invertible. m

Note that the Drazin invertibility of dg; implies the existence of a projection
p and a bijection ¢ on B(H) such that du, = pe = ¢p (see [17, Proposition 4.10.7]).

3. Weyl’s Theorem

The implication Weyl’s theorem —> Browder’s theorem holds, but the reverse
implication is in general false. SVEP = Browder’s theorem [8], but this im-
plication fails if one replaces “Browder’s theorem” by “Weyl’s theorem” [7]. Let
V = B(H) and let (as before) a,b* € B(H) be hyponormal. Then the SVEP
of d,;, = Browder’s theorem holds for d,;. Recall from [7, Theorem 2.5] that
if an operator ¢+ on a Banach space has SVEP, then ¢ satisfies Weyl’s thcorem
<= ran(t — ) is closed for every A\ € 0,,(¢t). Hence, in view of Theorem (2.6), dgp
satisfies Weyl’s theorem. More is true.

THEOREM 3.1. If f is analytic on a neighbourhood of o(d.p), then f(dgp)
satisfies Weyl’s theorem.

Proof. SVEP being stable under the functional calculus [17], d,;, has SVEP —>

f(dgp) has SVEP for each f analytic in a neighbourhood of o(dyp) = o5 (f(das)) =
ow(f(dap)) [13]. Since the spectral mapping theorem holds for o, we have

T (f(dap)) = ob(f(dav)) = f(o6(dab)) = f(ow(dab))-

To complete the proof we have to show that f(o,(dap)) = o (f(das)) \ 000 f(das)):
this follows from Theorem 2.7 and a limit argument applied to [19, Proposition 1]. m

REMARK 3.2. Browder’s theorem is transmitted to and from dual operators,
but the same does not in general hold for Weyl’ theorem [13]. It is known that if
T € B(H) is hyponormal, then both T" and T™* satisfy Weyl’s theorem. A formal
dual of the operator d,; may be defined by dg«p«. Does dy+p+ satisfy Browder’s
theorem? Notice that o(dg+p) = o(dep) and A € isoo(dy-p-) = X € is00(dyp) =
X € Gooldap) = X € 0oo(darp+). Since Weyl’s theorem holds for dy,

0(da p-)\ Gool{darp-) = 0(dap) \ T00(dap) = T (dap)-

Does m = 0w(daxp-)?
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GENERALIZED WEYL’S THEOREM. An operator + € B(V) is said to be gener-
alized Fredholm, or B-Fredholm, if there is an n € N for which the induced operator
ty 1 t*(V) = t™(V) is Fredholm in the usual sense, and generalized Weyl, or “B-
Weyl”, if in addition ¢,, has index zero. The generalized Weyl spectrum o pg,,(t) of
t is defined to be the set {A € C: (¢t — A) is not generalized Weyl}, and we say
that ¢ satisfies generalized Weyl’s theorem (resp., generalized Browder’s theorem) if
ogw(t) = c(t) \ E(t) (resp., opw(t) = o(t) \ II(¥)), where E(t) = {\ € isoc(t) : A
is an eigenvalue of t} and II(¢) is the set of poles of ¢. (See [3,4,5] for further in-
formation.) The implication ¢ satisfies genarlized Weyl’s theorem —> ¢ satisfies
Weyl’s theorem holds, but the reverse implication in general fails [5, Example 4.1].
Operators dgp, recall a, b* are hyponormal, satisfy generalized Weyl’s theorem.

THEOREM 3.3. 0w (das) = 0(das) \ E(dap). Furthermore, if f is analytic on
a neighbourhood of o(d,p), then f(d.p) satisfies generalized Weyl’s theorem.

Proof. Let X € o(dup) \ opw(das)- Since dgp has SVEP, it follows upon arguing
as in the proof of [5, Theorem 3.12] and an application of Theorem (2.7) that
X € isoo(dyp) = E(dyp). Conversely, if A € E(dy), then dyp — A is Fredholm
of index 0 ( by Theorems (2.6) and (2.7)). Hence d, satisfies generalized Weyl’s
theorem.

Now let f be as in the statement of the theorem, and let op(da) = {X €
C : (dap — A) is not Drazin invertible } denote the Drazin spectrum of dg;. Then
op(f(das)) = flop(das)) [3, Corollary 2.4]. Also, since dgp, and f(d,;) have SVEP,
op(dap) = 0Bw(dap) and op(f(das)) = 05w (f(des)) [5, Theorem 3.12]. Hence

f(UBw(dab)) = f(a(dab) \ E(dab)) = UBw(f(dab))-

The isoloid property of o(d4;), Theorem 2.7, now implies that
UBw(f(dab)) = U(f(dab)) \ E(f(dab))

[4, Lemma 2.9], and the proof is complete. m
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