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CHARACTERIZATIONS OF CONVEXITIES OF NORMED SPACES
BY MEANS OF g-ANGLES

Pavle M. Milicié

Abstract. The notion of g-angle has been defined by the author [8]. This notion appeared
to be very useful in characterisations of inner product spaces [8]. Here we use the same notion
in characterizations of strictly convex spaces, uniformly convex spaces, locally uniformly convex
spaces, and normed spaces that are uniformly convex in every direction. Some corollaries of
this characterizations are described as well. For example, we show that the so called quasi-inner
product spaces are uniformly convex spaces, what has not been noted earlier.

0. Introduction and definitions

Let X be a real normed space, S(X) the unit sphere in X and B(X) the unit
ball in X. The functionals

rila,y) = T ¢ (e + tyll = Ilal),

o) = e gy i), @yex)

always exist on X 2. The functional ¢ is a natural generalization of the inner product
and reduces to it in an inner product space (cf. [7]). In any normed space it has
following properties

g(z, ) = l2|*  (z € X),
glaz,By)=apy(z,y) (v,y€X; a,BER)
gz, x +y) = |lzl* + g(z,y) (z,y € X),
lg(z, )| < [lzlllyll - (z,y € X)) (cf. [6]).
By means of the functional g we defined the following notions.
DEFINITION 1. ([8]) For z,y € X \ {0}, the number

g(z,y) + gy, ) 5)

4 (z,y) := arccos ,
2|l lyll

is called the g-angle between z and y.
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In accordance with (4), the angle between z and y (x # 0,y # 0) can be
defined also by
g(z,y)
[l 1yl
However, the advantage of definition (5) is reflected in the fact that % (z,y) =

Ly, ).
DEFINITION 2. ([9]) A normed space X in which the equality

Iz +yllI* = llz = ylI* = 8 (Il[|* g(z,y) + Iyll* 9(y, 2)) (z,y € X)

holds is called a quasi-inner product space (q.i.p. space). The space of sequences
I* is a q.i.p. space [9].

' (z,y) = arccos

Now we quote some standard definitions.

DEeFINITION 3. ([2]) A space X is strictly convex (SC), if no open interval
from B(X) crosses S(X).

DEFINITION 4. ([1]) X is uniformly convex (UC) if for any ¢ > 0 there exists
6 = 6(¢) > 0 such that for each z,y € S(X) we have

r+y
2

H <1-6()

whenever ||z — y|| > ¢.

DEFINITION 5. ([5]). X is locally uniformly convex (LUC) if for any zq € S(X)
and ¢ > 0 there is § = 6(e,29) > 0 such that with y € S(X), the inequality
o — vl > € implies

<1-—6(e, ).

To+y
2

DEFINITION 6. ([4]) X is uniformly convex in every direction (UCED) if for
every z € X\{0} and e > 0 there exists a § = (e, z) such that |A\| < eif z,y € S(X),
r—y=Azand
T4y

2

DEFINITION 7. The point € S(X) is an extremal point of the ball B(X) if
for x1,29 € B(X) the equality = %(xl + x2) implies 1 = x5 = 7.

H >1—96(e,2).

In what follows we shall write cos (z, y) instead of cos <(z,y). Some additional
properties of functional g are quoted below.

LEMMA 1. For xz,y € X we have
=Mzl lyll < lzll Qlzll = lle = yll) < gz, y) < llell (lz +yll = lzl) < [lz/Hyll. (6)
Proof. Using (2), (3) and (4) we obtain
g(z,x £ y) = ||z]* £ g(z,y) < ||zl l= £ yl.

Hence (6) is true. m
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For z,y € S(X) the definition (5) and inequalities (6) imply
1—|lz =yl < cos(z,y) <z +yl - 1. (7)
LEMMA 2. For z,y € X \ {0}, the implication
cos(z,y) =1 = g(z,y) = g(y,z) = ||z |y (8)

18 true.

Proof. g(x,y) + gy, x)

2|z lyll
the proof it is sufficient to use (4). m

=1 = g(z,y) + 9(y,2) = 2|[z[l[ly]l. To complete

LEMMA 3. We have

(VzeS(X))(Vye X) [z +y| <1 =

= (g(z,y) =0A(Vt € [-1,1]) |z +ty]| = 1), (9)
(Vz,y € S(X))lz £y <1 =

= (9(z,y) = g(y,2) =0A(Vt € [-L,1]) |lz + tyl| = |ly + tzl| = 1)-(10)

Proof. Let z € S(X) and ||z £ y|| < 1. Then using (3) and (4) we get
g(x,xty) =1+g(x,y) < 1. From here g(z,y) = 0 and |g(z,z+ty)| =1 < ||z +ty||
for any t € [—1,1]. Accordingly ||z £ y|| = 1. In addition for ¢ € [-1, 1] we have

g,z ty) = 1< [lo £ty = o — ta + 12 % 1y
=1 =)z + t(x £ y)| (resp. (1 + )z + (=t)(x F y)l])
<(l—t)+t=1if 0<t<1
(resp. (1—t)+(—t)=11if —1<t<0).
Hence, ||z £ ty|| =1 for ¢t € [-1,1].

If in the above considerations we assume that y € S(X), then for z and y the
same arguments can be applied, what means that (10) holds. m

1. Characterization of the property (SC) by g-angle

It is known that strict convexity can be characterized by extremal points.
Namely, if every point z € S(X) is an extremal point of the ball B(X), then X is
strictly convex. The converse of this statement also holds.

LEMMA 4. z € S(X) is an extremal point of the ball B(X) if and only if
(VyeX)|loty| <1 = y=0. (11)

Proof. Let x € S(X) be an extremal point of the ball B(X) and let ||[z+y| < 1.
Let u=2+y, v=2—y. Then uw,v € B(X) and « = (v + v)/2, thus u = v = z.
There from we have y = 0. Let now « € S(X), x = (21 +2)/2, 1,22 € B(X). Let
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us put y = (1 — x2)/2. Then x +y = z1, * —y = z2 and ||z £ y|| < 1. Therefore
by (11) we have y = 0 what means that z; =z, = z. m

LeMMA 5. The following statements are equivalent

(Vo,y € S(X)) x #y = gla,y) <1, (12)
(Vz,y e S(X))z #y = cos(z,y) < 1. (13)

Proof. (12) = (13). For z,y € S(X) and = # y, from g(x,y) < 1 and
g(y,z) < 1 we get cos(x,y) < 1 by (5), hence (13) holds.

(13) = (12). Suppose that (12) does not hold. This means that there exist
x,y € S(X) with 2 # y such that g(z,y) = 1. For these z and y we have ||[z+y| < 2
and g(z,z+y) = 1+1 < ||z+y|| wherefrom ||x+y|| = 2. Settingz+y =u, z—y =v
we get ¢ = (u+v)/2,y = (u—v)/2, |[u/2+v/2]| =1 and u/2 € S(X). Therefore
by (3) we have g(z+y,z—y) = g(z+y,z+y—2y) = ||z +y|* —29(z+y,y) = 0 and
g(x+y,y) =2. Hence g(z+y,z) = gz +y, v +y—y) = |t +y|* —g(z +y,y) = 2.
So we have that cos(z,(z +y)/2) = 1. In view of  # (z + y)/2, this means that
(13) fails. m

THEOREM 1. The following statements are equivalent:

(a) X is strictly conver,
(b) The implication (12) holds,
(¢) The implication (18) holds.

Proof. In view of Lemma 5, it is sufficient to show that X is strictly convex
if and only if the implication (12) holds. Suppose that X is SC and (12) does not
hold. This means that there exist x,y € S(X) such that x # y and g(x,y) = 1.
Then by (7) we have g(z,y) < ||z + y|| — 1 wherefrom we get ||z + y|| = 2. By
letting  +y = w and © —y = v we have x = (v +v)/2, y = (u — v)/2, u/2 € S(X)
and ||lu/2 £ v/2|| = 1. From Lemma 4 we conclude v = 0, i.e. = y, contrary to
the hypothesis.

Suppose now that (12) holds and X is not SC. Then, by Lemma 4, there exists
x € S(X) and y # 0 such that ||z £ y|| < 1. Applying Lemma 3 we conclude that
g(x,y) = 0 and || — y|| = 1. Therefore by (12) we have g(z,z —y) < 1. On the
other hand we have g(x,z — y) = g(z,z) — g(x,y) = 1, which yields 1 < 1 what is
impossible. Hence, (12) implies strict convexity of the space X. m

COROLLARY 1. X is strictly convez if and only if one of the following two
implications holds:

(Vz,y € S(X)) cos(z,y) =1 = z =y,
(Ve,y € S(X)) g(z,y) =1 = x=y.
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2. Characterization of the property (UC)
and the property (LUC) by g-angles

LeEMMA 6. The following statements hold.

(a) Let (zy,) and (yn) be sequences from S(X) such that cos(x,,yn) — 1 (n — o).
Then ||z + yul|l — 2 (n — ).

(b) Let (z,,) and (y.) be sequences from B(X) such that ||z, + y.| — 2 (n — 00).
Then g((zn + yn)/llTn + yull,zn) = 1 (n — 00).

(¢) Let (xn) be a sequence from S(X) and (y.) a sequence from B(X) such
that g(xn,y,) — 1 (n — o0). Then ||x, + ynl] — 2 (n — o0) and
cos((@n + yn)/l|Tn + ynll,zn) = 1 (n — o0).

(d) Let (z,,) and (y,) be sequences from B(X) such that |z, + yn| — 2 (n — 00).
I ll(@n +yn)/2n + ynll = zull = 0 (n — 00), then |lzn = ynll — 0 (n — o0).
Proof. The statement a) follows immediately from (7).

(b) By virtue of (6) we have

lZn + ynll (120 + yull = lynll) < 9(xn + Yn, 20) < |20 + Yl

Tn +
= 20 +Ynll = 1< 2n +uynll = llynll < g ("7% xn) <1

”xn + yn“7
Sy (u” 1 (n— o).
[Zn + ynl
(c) By virtue of (6) we have ||z, + yn|| — 2 (n — o0). From (b)
g (et en) =1 (n— 00). By g (Ebeg o) = 2 and glan,y,) —
1 (n — o0) we have g (xn, Hzizo — 1 (n — 0). So, cos (llzZiZH’x") -1
(n — o).
4 lzn=Ynll—(2—llzn+ynl) [zl [0 —=Yn—(2—llzn+ynlDzull —
(d) Since Ton+on]] S Tontun] =
| ttey — | from llza +-al = 2 (1 — o0) and [+ y)/llzn +yall =7 = 0

(n — 00) we get ||z, —yn|| — 0. m

LemMA 7. The following implications are equivalent:
(a) (Vzn,yn € S(X)) [lzn +ynll/2—=1 (n = 00) = ||z —ynl| = 0 (n — o0).
(b) (Van,yn € S(X)) 9(x0,yn) = 1 (n = 00) = |l —ynll =0 (n — 00).
(¢) (Von,yn € S(X)) cos(zn,yn) =1 (R — 00) = [[Tn —yn|l = 0 (n — o0).

uch that

(
Proof. (a) = (¢). Let (x,) and (y,) be sequences from S(X) s
1 (n — ).

co8(xn,yn) — 1. Then, by virtue of (a) in Lemma 6, ||z, + yn||/2 —
So, by the implication (a), ||z, — yu|| — 0 (n — o).

(¢) = (b). Let (z,) and (y,) be sequences from S(X) such that g(x,,yn) — 1
(n — o0). Then, by virtue of (c¢) in Lemma 6, ||z, + .|| — 2 (n — o0) and
cos((zn +yn)/llZn+ynll,zn) = 1 (n — o0), whence ||(zn+yn)/||n+ynll—znl — 0
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(n — o) by the implication (c). Then, by virtue of (d) in Lemma 6, ||z, —y.| — O
(n — 0).

(b) = (a). Let (x,,) and (y,) be sequences from S(X) such that ||z, +y.|/2 —
1 (n — o). Then, by virtue of (b) in Lemma 6, g((z, + yn)/||Zn + ynll,2n) — 1
(n — 00), whence ||(zn + yn)/||Tn + Ynl| — znl|| = 0 (n — o00) by the implication
(b). So, by virtue of (d) in Lemma 6, ||z, —yn|| — 0 (n — c0). m

THEOREM 2. The following statements about X are equivalent.
(a) The space X 1s UC.
(b) (Van, yn € S(X)) g(@n,yn) =1 (n = 0) = |lzn —yal = 0 (n — o).
(¢) (Van,yn € S(X)) cos(zn,yn) = 1 (n—00) = [lzn —yull = 0 (n — 00).
(d) (Ve >0)(36 > 0)(Vz,y € S(X)) |xr —yl]| > = cos(z,y) <1-06.

Proof. By statement (4), p.189 of [2] X is UC if and only if X has the property
(a) in Lemma 7. Hence, by Lemma 7 we have (a) < (b) < (c).

(d) = (c). Suppose that (d) does hold but (c) does not hold. This means that
there exist a sequence (z,,) and a sequence (y,,) from S(X) such that cos(zn, yn) —
1(n — o0) and ||z, — yn|| 7~ 0 (n — 00). This means that the following statement
holds. For (z,) and (y,) selected as above we have

(3= > 0)(Vno € N) n > ng = ||z, — yull > =

By (d) there exists 6 > 0 such that cos(x,,y,) < 1 — 6 what is contrary to
cos(Tn,yn) — 1 (n — 00). So, the statement (c) holds.

(c) = (d). If (d) does not hold, then
(32 > 0)(Vé6 > 0)(3z,y € S(X)) ||z — y|| > & Acos(z,y) > 1 — 6.

Let § = 1, n € N. Then there exist sequences (z,) and (y,) from S(X) such that,

for n € N, ||z, — yn|| > € and 1 — L < cos(z,,yn). So, cos(zn,yn) — 1 (n — 0)
and ||z, — ya|l 7 0 (n — o). Hence, the statement (¢) does not hold. m

THEOREM 3. The following statements about X are equivalent.

(a) The space X is LUC.

(b) (Vzo € S(X))(Vyn € S(X)) cos(zo,yn) = 1 (0 — 00) = |lzo — yall — 0
(n — o).

(c) (Vzo € S(X))(Ve > 0)(36 > 0)(Vy € S(X)) llwo —yll 2 ¢ = cos(wo,y) <
1-4.

Proor. (a) = (b) and (b) = (c). In the proof of corresponding parts in
Theorem 2, we may replace x,, by zo for every n.

(c) = (a). Let 2y € S(X) and let (y,) be a sequence from S(X) such that
lzo + ynll = 2 (n — o). To show (a), we have only to prove that ||zg — yn|| — 0
(n — o00). By virtue of (b) in Lemma 6, g(z,,20) — 1 (n — o), where z, =
(xo +Yn)/||To + ynll for every n. Then, by virtue of (c) in Lemma 6, ||zg + 25| — 2
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(n — o0) and cos((xg + zn)/||zo + zall,z0) — 1 (n — o0), whence ||zg — (z¢ +
zZn)/ |0 + znll || = 0 (n — o0) by the implication (c). Hence, we get by (d) in
Lemma 6 that ||zg — z,]| — 0 (n — 00), and so ||zg — yn|| — 0 (n — o0). Thus (a)
holds. m

It was proved earlier (cf. [9]) that a quasi-inner product space is smooth, uni-
formly smooth and very smooth. Now we get the following result.

COROLLARY 1. A q¢.i.p. space is UC.

Proof. Using Definition 2 we easily show that for a q.i.p. space the following

implication holds

2,_:4

(Vz,y € S(X)) lo —yll 2 e = cos(z,y) <1- 1o

3. Characterization of the property (UCED) by g-angle

LEMMA 8. The following implication is true

(Yo, yn € B(X)) ([[tn +ynll = 2A 20 —yn — 2) (n — 00) =

Tn + Yn z
= - —— = = (n— 14)
BT
S T A BT
lzn +ynll 2 [Zn + ynl lzn +ynll 2
[Zn + ynl |20 +ynll 2
LEMMA 9. If
(Vo, € S(X))(Vy, € B(X)) (cos (zn,yn) = LATy—yn — 2) (n — 00) = 2 =0.
(15)
then
(Vo, € S(X))(Vyn € B(X)) (9(Tn,yn) = 1 ATy —yp — 2) (n = 0) = 2z=0.
(16)

Proof. Let the sequence (x,) be from S(X) and let the sequence (y,) be from
B(X). Suppose that g(zn,yn) — 1 (n — o) and z, — y, — 2z (n — o). By
(6) we have g(zn,yn) < ||Tn + yn|l — 1 and g(2n,y,) — 1 (n — oo) implies that
|2 + ynl] = 2 (n — o0). Therefore g ”:Bniiy"“,xn — 1 (n — o0) (see b) in

Tn T Yn
Lemma 6).

In addition, ¢(2,,y,) — 1 (n — o0) and ||z, + yu|| — 2 (n — o) imply

that ¢ xn,M — 1 (n — o0). Since xn,M € S(X), we get
Tn + Yn

cos (x M) — 1 (n — o0). Since by Lemma 8 we have x,, — [ —
Tn T Yn

v lzn + yull
(n — o0) we obtain by (15) that z = 0, hence (16) holds. m

NGRS
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THEOREM 4. X is UCED if an only if (16) holds.

Proof. By Theorem 1 from [3] X is UCED if and only if the following statement
holds

(Ven,yn € B(X)) (lon +ynll =2 A 2y —yn — 2) (n > 00) = 2=0. (17)
We shall prove that statements (16) and (17) are equivalent.

(17) = (16). Let (x,) be a sequence from S(X) and (y,) a sequence from
B(X) such that g(xn,yn) — 1 (n — o0) and x, — yn — 2z (n — o0). We have
already seen that g(z,,yn) — 1 (n — o) implies ||, + y.|| — 2 (n — 00). Hence,
for given sequences (z,) and (y,) we have z,,,y, € B(X), ||2n +ynl| — 2 (n — o)
and x, —y, — z (n — 00). Therefore, according to (17), we get z = 0. This means
that (17) = (16).

(16) = (17). Let sequences (x,) and (y,) from B(X) fulfill conditions
|zn + ynll = 2 (n — o) and z, — Yy, — 2z (n — o0). Since |ly.|]| < 1, from
the inequality

22 g(@n +yn,wn) 2 |20 + ynll(lzn +ynll = lynll) = llzn + yull(lzn + ynll = 1)

Tn + Yn
(cf. (6)) we get g <m,xn> — 1 (n — o0).
Besides ,,, % € B(X) and by Lemma 8 we have
Tn T Yn
Tn + Yn 4 ( )
——— 5= (n— o
lon +ynll 2

Therefore by (16) we conclude that z = 0, i.e. the condition (17) is fulfilled. m
COROLLARY 2. If the statement (15) holds, then X is UCED.
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